1
|
Zhang M, Yuan X, Zeng Z, Pan M, Wu P, Xiao J, Keenan TF. A pronounced decline in northern vegetation resistance to flash droughts from 2001 to 2022. Nat Commun 2025; 16:2984. [PMID: 40140384 PMCID: PMC11947216 DOI: 10.1038/s41467-025-58253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Climate change has led to the transition of droughts into rapid and intensified phenomena known as flash droughts, presenting considerable challenges for risk management, particularly concerning their impact on ecosystem productivity. Quantifying the ecosystem's capacity to maintain productivity during flash droughts, referred to as ecosystem resistance, is crucial to assess drought impacts. However, it remains uncertain how the resistance of ecosystem productivity to flash drought changes over time. Here we show that vegetation resistance to flash droughts declines by up to 27% (±5%) over the Northern Hemisphere hotspots during 2001-2022, including eastern Asia, western North America, and northern Europe. The notable decline in vegetation resistance is mainly attributed to increased vapour pressure deficit and temperature, and enhanced vegetation structural sensitivity to water availability. Flash droughts pose higher ecological risks than slowly-developing droughts during the growing seasons, where ecosystem productivity experiences faster decline rates with a shorter response time. Our results underscore the limited ecosystem capacity to resist flash droughts under climate change.
Collapse
Affiliation(s)
- Miao Zhang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China
- State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Environmental Science, Policy and Management, University of California, Berkeley, USA
| | - Xing Yuan
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China.
- State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Zhenzhong Zeng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Ningbo Institute of Digital Twin, Eastern Institute for Advanced Study, Ningbo, China
| | - Ming Pan
- Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Peili Wu
- Met Office Hadley Centre, Exeter, UK
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, USA
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
2
|
Li Z, Bai X, Tan Q, Zhao C, Li Y, Luo G, Chen F, Li C, Ran C, Zhang S, Xiong L, Song F, Du C, Xiao B, Xue Y, Long M. Dryness stress weakens the sustainability of global vegetation cooling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168474. [PMID: 37951263 DOI: 10.1016/j.scitotenv.2023.168474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Dryness stress can limit vegetation growth, and the cooling potential of vegetation will also be strongly influenced. However, it is still unclear how dryness stress feedback weakens the sustainability of vegetation-based cooling. Based on the long-time series of multi-source remote sensing product data for the period 2001-2020, the relative contribution rate, and the method of decoupling and boxing, we determined that greening will likely mitigate global warming by 0.065 ± 0.009 °C/a, but nearly 47 % of the area is unsustainable. This phenomenon is strongly related to dryness stress. The restricted area of soil moisture (SM: 68.35 %) to vegetation is larger than that of the atmospheric vapor pressure deficit (VPD: 34.19 %). With the decrease in SM, vegetation will decrease by an average of 14.9 %, and with the increase in VPD, vegetation will decrease by 3.8 %. With the continuous increase in the dryness stress area, the sustainability of the vegetation cooling effect will be threatened in an area of about 21.03 million km2, which is equivalent to the area of North America. Specifically, we found that with the decrease in SM and the increase in VPD, the contribution of vegetation to the cooling effect has been weakened by 10.8 %. This conclusion confirms that dryness stress will threaten the sustainability of vegetation-based climate cooling and provides further insight into the effect of dryness stress on vegetation cooling.
Collapse
Affiliation(s)
- Zilin Li
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaoyong Bai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, Shanxi Province, China; College of resources and environmental engineering, Guizhou University, Guiyang 550025, China; College of Environment and Ecology, Chongqing University, Chongqing 404100, China.
| | - Qiu Tan
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China
| | - Cuiwei Zhao
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China
| | - Yangbing Li
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China
| | - Guangjie Luo
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang 550018, China
| | - Fei Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of resources and environmental engineering, Guizhou University, Guiyang 550025, China
| | - Chaojun Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chen Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sirui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lian Xiong
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fengjiao Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chaochao Du
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Biqin Xiao
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yingying Xue
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Minkang Long
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
3
|
Tian F, Zhu Z, Cao S, Zhao W, Li M, Wu J. Satellite-observed increasing coupling between vegetation productivity and greenness in the semiarid Loess Plateau of China is not captured by process-based models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167664. [PMID: 37832667 DOI: 10.1016/j.scitotenv.2023.167664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Global vegetation has experienced notable changes in greenness and productivity since the early 1980s. However, the changes in the relationship between productivity and greenness, i.e., the coupling, and its underlying mechanisms, are poorly understood. The Loess Plateau (LP) is one of China's most significant areas for vegetation greening. Yet, it remains poorly documented what changes in the coupling between productivity and greenness are and how environmental and anthropogenic factors affect this coupling in the LP over the past four decades. We investigated the interannual trend of coupling between Gross Primary Productivity (GPP) and Leaf Area Index (LAI), i.e., the GPP-LAI coupling, and its response to climate factors and afforestation in the LP using long-term remote-sensed LAI, GPP and Solar-induced Chlorophyll Fluorescence (SIF). We found a monotonically increasing trend in the GPP-LAI coupling in the LP from 1982 to 2018 (0.0043 yr-1, p < 0.05), in which the significant trend in the northwest LP was driven by increasing soil water and landcover change, e.g., increased grassland and afforestation. An ensemble of 11 state-of-the-art ecosystem models from the TRENDY project failed to capture the observed monotonically increasing trend of the GPP-LAI coupling in the LP. The consistent projection of a decreasing GPP-LAI coupling in LP during 2019-2100 by 22 Earth System Models (ESMs) under various future scenarios should be treated with caution due to the identified inherent uncertainties in the ecosystem component in ESMs and the notable biases in the simulation of future climate conditions. Our study highlights the need to enhance the key mechanisms that regulate the coupling relationships between photosynthesis and canopy structure in indigenized ecosystem models to accurately estimate the ecosystem change in drylands under global climate change.
Collapse
Affiliation(s)
- Feng Tian
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zaichun Zhu
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Sen Cao
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Weiqing Zhao
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Muyi Li
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jianjun Wu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Liu Q, Peng C, Schneider R, Cyr D, Liu Z, Zhou X, Du M, Li P, Jiang Z, McDowell NG, Kneeshaw D. Vegetation browning: global drivers, impacts, and feedbacks. TRENDS IN PLANT SCIENCE 2023; 28:1014-1032. [PMID: 37087358 DOI: 10.1016/j.tplants.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations. Here, we review associative drivers, impacts, and feedbacks, revealing the complexity of browning. Concomitant increases in browning include the weakening of ecosystem services and functions and alterations to vegetation structure and species composition, as well as the development of potential positive climate change feedbacks. Also discussed are the current challenges in browning detection and understanding associated impacts and feedbacks. Finally, we outline recommended strategies.
Collapse
Affiliation(s)
- Qiuyu Liu
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changhui Peng
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; College of Geographic Science, Hunan Normal University, Changsha, 410081, China.
| | - Robert Schneider
- University of Quebec at Rimouski (UQAR), Rimouski, Quebec, G5L 3A1, Canada
| | - Dominic Cyr
- Science and Technology Branch, Environment and Climate Change Canada, 351 St-Joseph Blvd, Gatineau, Quebec, Canada
| | - Zelin Liu
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaolu Zhou
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Mingxi Du
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng Li
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Zihan Jiang
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA 99352, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Daniel Kneeshaw
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; Centre for Forest Research, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada
| |
Collapse
|
5
|
Liu X, Sun G, Fu Z, Ciais P, Feng X, Li J, Fu B. Compound droughts slow down the greening of the Earth. GLOBAL CHANGE BIOLOGY 2023; 29:3072-3084. [PMID: 36854491 DOI: 10.1111/gcb.16657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
Vegetation response to soil and atmospheric drought has raised extensively controversy, however, the relative contributions of soil drought, atmospheric drought, and their compound droughts on global vegetation growth remain unclear. Combining the changes in soil moisture (SM), vapor pressure deficit (VPD), and vegetation growth (normalized difference vegetation index [NDVI]) during 1982-2015, here we evaluated the trends of these three drought types and quantified their impacts on global NDVI. We found that global VPD has increased 0.22 ± 0.05 kPa·decade-1 during 1982-2015, and this trend was doubled after 1996 (0.32 ± 0.16 kPa·decade-1 ) than before 1996 (0.16 ± 0.15 kPa·decade-1 ). Regions with large increase in VPD trend generally accompanied with decreasing trend in SM, leading to a widespread increasing trend in compound droughts across 37.62% land areas. We further found compound droughts dominated the vegetation browning since late 1990s, contributing to a declined NDVI of 64.56%. Earth system models agree with the dominant role of compound droughts on vegetation growth, but their negative magnitudes are considerably underestimated, with half of the observed results (34.48%). Our results provided the evidence of compound droughts-induced global vegetation browning, highlighting the importance of correctly simulating the ecosystem-scale response to the under-appreciated exposure to compound droughts as it will increase with climate change.
Collapse
Affiliation(s)
- Xianfeng Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Gaopeng Sun
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Bojie Fu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Du R, Wu J, Tian F, Yang J, Han X, Chen M, Zhao B, Lin J. Reversal of soil moisture constraint on vegetation growth in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161246. [PMID: 36587686 DOI: 10.1016/j.scitotenv.2022.161246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The response of vegetation growth to soil moisture varies greatly from space and time under climate change and anthropogenic activities. As an important grain producer in China, the vegetation growth and grain production of North China are constrained by the region's water resources. With the significant increase in vegetation greenness in North China over the last 40 years, it is essential to explore the changes in soil moisture constraints on vegetation growth to water management. However, to what degree vegetation growth responds to soil moisture and how the response varies spatiotemporally in North China remain unclear. In this study, the response patterns of vegetation growth to soil moisture at different depths and the spatiotemporal trend patterns of their relationships were explored thoroughly based on long time series remote sensing data in North China over the past 40 years. The results showed that compared to forests, the growth of grasslands and crops with one maturity per year and two maturity per year in North China was more constrained by soil moisture. Due to the combined effects of climatic conditions and human activities, vegetation growth in North China has been significantly less constrained by soil moisture over the last 40 years. This was especially seen in one maturity per year crop and natural vegetation in Shanxi and central Shandong. However, with the significant increase in temperature, potential evapotranspiration and water demand of the crop, the moisture constraints on vegetation growth in North China have begun to show an increasing trend since the early 2000s, especially for irrigated crop in central and southern North China. These findings highlight a comprehensive understanding of the vegetation response to soil moisture from the time-varying perspective and provide a theoretical basis for water management and appropriate planning of agricultural water use in North China.
Collapse
Affiliation(s)
- Ruohua Du
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| | - Jianjun Wu
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China.
| | - Feng Tian
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| | - Jianhua Yang
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| | - Xinyi Han
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| | - Meng Chen
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| | - Bingyu Zhao
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| | - Jingyu Lin
- State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
| |
Collapse
|
7
|
Qin T, Feng J, Zhang X, Li C, Fan J, Zhang C, Dong B, Wang H, Yan D. Continued decline of global soil moisture content, with obvious soil stratification and regional difference. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160982. [PMID: 36565868 DOI: 10.1016/j.scitotenv.2022.160982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Soil is an important component connecting atmosphere and vegetation, and is an important 'regulator' of slope hydrological process. Global warming accelerates the global water cycle, and Soil Moisture Content (SMC) will change, but this change is not yet clear. Here, we study the global trend of SMC at different depths over the past 70 years and the next 70 years, based on the GLDAS-NOAH025 dataset and precipitation and temperature data from 15 CMIP6 models. We found that compared with the long-term average of 70 years, the global 0-200 cm SMC is decreasing at a rate of 1.284 kg/m2 per year from 2000 to 2020, and the area showing a significant decreasing trend accounts for 31.67 % of the global. Over the past decade, 0-200 cm SMC reduction rate (2.251 kg/m2) doubled. Global warming and precipitation reduction are the main reasons for the attenuation of SMC at different depths in the global from 2000 to 2020. Under the SSP126, SSP245, SSP370 and SSP585 scenarios, the global 0-200 cm SMC will continue to decay in the future, and the area showing a significant reduction trend accounts for 22.73-49.71 % of the global, but the stratified soil and regional differences are obvious. The attenuation of SMC will further aggravate the global water cycle and enhance the variability of extreme meteorological disasters. We will face more severe soil drought problems.
Collapse
Affiliation(s)
- Tianling Qin
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Jianming Feng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China.
| | - Xin Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Chenhao Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Jingjing Fan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Cheng Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Biqiong Dong
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Hao Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China
| | - Denghua Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China.
| |
Collapse
|
8
|
Zona D, Lafleur PM, Hufkens K, Gioli B, Bailey B, Burba G, Euskirchen ES, Watts JD, Arndt KA, Farina M, Kimball JS, Heimann M, Göckede M, Pallandt M, Christensen TR, Mastepanov M, López‐Blanco E, Dolman AJ, Commane R, Miller CE, Hashemi J, Kutzbach L, Holl D, Boike J, Wille C, Sachs T, Kalhori A, Humphreys ER, Sonnentag O, Meyer G, Gosselin GH, Marsh P, Oechel WC. Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity. GLOBAL CHANGE BIOLOGY 2023; 29:1267-1281. [PMID: 36353841 PMCID: PMC10099953 DOI: 10.1111/gcb.16487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 05/26/2023]
Abstract
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.
Collapse
Affiliation(s)
- Donatella Zona
- Department BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Peter M. Lafleur
- School of the EnvironmentTrent UniversityPeterboroughOntarioCanada
| | | | - Beniamino Gioli
- National Research Council (CNR)Institute of BioEconomy (IBE)FlorenceItaly
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State UniversitySan DiegoCaliforniaUSA
| | - George Burba
- LI‐COR BiosciencesLincolnNebraskaUSA
- The Robert B. Daugherty Water for Food Global Institute and School of Natural ResourcesUniversity of NebraskaLincolnNebraskaUSA
| | | | - Jennifer D. Watts
- Woodwell Climate Research CenterFalmouthMassachusettsUSA
- W.A. Franke College of Forestry & ConservationThe University of MontanaMissoulaMontanaUSA
| | - Kyle A. Arndt
- Woodwell Climate Research CenterFalmouthMassachusettsUSA
| | - Mary Farina
- Woodwell Climate Research CenterFalmouthMassachusettsUSA
| | - John S. Kimball
- W.A. Franke College of Forestry & ConservationThe University of MontanaMissoulaMontanaUSA
| | - Martin Heimann
- Max Planck Institute for BiogeochemistryJenaGermany
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR) / Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Torben R. Christensen
- Department of Ecoscience, Arctic Research CentreAarhus UniversityRoskildeDenmark
- Oulanka Research StationOulu UniversityKuusamoFinland
| | - Mikhail Mastepanov
- Department of Ecoscience, Arctic Research CentreAarhus UniversityRoskildeDenmark
- Oulanka Research StationOulu UniversityKuusamoFinland
| | - Efrén López‐Blanco
- Department of Ecoscience, Arctic Research CentreAarhus UniversityRoskildeDenmark
- Department of Environment and Minerals, Greenland Institute of Natural ResourcesNuukGreenland
| | | | - Roisin Commane
- Department of Earth and Environmental Sciences, Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNew YorkUSA
| | - Charles E. Miller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Josh Hashemi
- Department BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Environmental Meteorology, Institute of Earth and Environmental SciencesUniversity of FreiburgFreiburgGermany
| | - Lars Kutzbach
- Institute of Soil Science, Center for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany
| | - David Holl
- Institute of Soil Science, Center for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany
| | - Julia Boike
- Geography DepartmentHumboldt‐Universität zu BerlinBerlinGermany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
| | | | - Torsten Sachs
- GFZ German Research Centre for GeosciencesPotsdamGermany
| | - Aram Kalhori
- GFZ German Research Centre for GeosciencesPotsdamGermany
| | - Elyn R. Humphreys
- Department of Geography & Environmental StudiesCarleton UniversityOttawaOntarioCanada
| | - Oliver Sonnentag
- Département de GéographieUniversité de MontréalMontréalQuebecCanada
| | - Gesa Meyer
- Département de GéographieUniversité de MontréalMontréalQuebecCanada
| | | | - Philip Marsh
- Department of Geography and Environmental Studies, Wilfrid Laurier UniversityWaterlooOntarioCanada
| | - Walter C. Oechel
- Department BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
9
|
Wang L, She D, Xia J, Meng L, Li L. Revegetation affects the response of land surface phenology to climate in Loess Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160383. [PMID: 36414058 DOI: 10.1016/j.scitotenv.2022.160383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Land surface phenology (LSP), defined as the plant's growth rhythm retrieved from satellite sensing products, is proven to shift with climate change and affect the carbon cycles of terrestrial ecosystems. Global afforested area is largely increasing and consequently affecting local and global climate. However, how and to what extent revegetation affects LSP remains relatively unexplored. Here we investigated the difference in four LSPs (i.e., greenup, maturity, senescence, and dormancy) and the response of LSP to climate between restored and native vegetation on Loess Plateau, China, where a remarkable process of vegetation restoration happened during 1982-2015. Most study regions showed a longer growing season (LOS) over time, specifically, with a slight delay in greenup but a relatively large delay in senescence. We found that air temperature was the dominant factor affecting greenup and maturity, while precipitation mostly controlled the senescence and dormancy in the study area. Under similar climate conditions, the LSP of restored vegetation (i.e., restored forest and grassland) showed a significant difference (p < 0.05) from native ones during 1999-2015. Compared to the native forest, restored forest from cropland and grassland showed a delayed greenup date by 0.3 and 3.6 days (p < 0.05) and an advanced dormancy date of 6.6 and 9.0 days (p < 0.05), respectively. Furthermore, the restored vegetation became less sensitive to air temperature than native vegetation, while the restored forest was more sensitive to precipitation, and its growth was affected by the water limitation to a larger extent in the study area. Our study highlights the necessity of considering land use management and its effect on the LSP change to better understand the effect of afforestation on global climate and carbon cycles.
Collapse
Affiliation(s)
- Lvlv Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
| | - Dunxian She
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China.
| | - Jun Xia
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
| | - Lin Meng
- Department of Earth and Environmental Sciences, Vanderbilt University, TN, USA
| | - Lingcheng Li
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
10
|
Zhang B, Wu P, Zhao X. Integrating water deficit quantification, rainwater regulation, and precision irrigation for drought resistance. Sci Bull (Beijing) 2023; 68:48-52. [PMID: 36610857 DOI: 10.1016/j.scib.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Baoqing Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pute Wu
- National Engineering Research Center for Water Saving Irrigation at Yangling, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| | - Xining Zhao
- National Engineering Research Center for Water Saving Irrigation at Yangling, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Chen T, Wang Q, Wang Y, Peng L. Processes and mechanisms of vegetation ecosystem responding to climate and ecological restoration in China. FRONTIERS IN PLANT SCIENCE 2022; 13:1062691. [PMID: 36518500 PMCID: PMC9742609 DOI: 10.3389/fpls.2022.1062691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Vegetation is an essential component of the earth's surface system and its dynamics is a clear indicator of global climate change. However, the vegetation trends of most studies were based on time-unvarying methods, cannot accurately detect the long-term nonlinear characteristics of vegetation changes. Here, the ensemble empirical mode decomposition and the Breaks for Additive Seasonal and Trend algorithm were applied to reconstruct the the normalized difference vegetation index (NDVI) data and diagnose spatiotemporal evolution and abrupt changes of long-term vegetation trends in China during 1982-2018. Residual analysis was used to separate the influence of climate and human activities on NDVI variations, and the effect of specific human drivers on vegetation growth was obtained. The results suggest that based on the time-varying analysis, high vegetation browning was masked by overall vegetation greening. Vegetation growth in China experienced an abrupt change in the 1990s and 2000s, accounting for 50% and 33.6% of the whole China respectively. Of the area before the breakpoint, 45.4% showed a trend of vegetation decrease, which was concentrated mainly in east China, while 43% of the area after the breakpoint also showed vegetation degradation, mainly in northwest China. Climate was an important driving force for vegetation change in China. It played a positive role in south China, but had a negative effect in northwest China. The impact of human activities on vegetation growthchanged from an initial negative influence to a positive one. In terms of human activities, an inverted-U-shaped relation was detected between CO2 emissions and vegetation growth; that is, the fertilization effect of CO2 had a certain threshold. Once that threshold was exceeded, it would hinder vegetation growth. Population density had a slight constraint on vegetation growth, and the implementation of ecological restoration projects (e.g., the Grain for Green Program) can promote vegetation growth to a certain extent.
Collapse
Affiliation(s)
- Tiantian Chen
- Chongqing Key Laboratory of Surface Process and Environment Remote Sensing in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, China
- Chongqing Field Observation and Research Station of Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, China
| | - Qiang Wang
- Chongqing Institute of Surveying and Monitoring for Planning and Natural Resources, Chongqing, China
| | - Yuxi Wang
- Chongqing Key Laboratory of Surface Process and Environment Remote Sensing in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, China
| | - Li Peng
- College of Geography and Resources, Sichuan Normal University, Chengdu, China
| |
Collapse
|
12
|
Divergent Climate Sensitivities of the Alpine Grasslands to Early Growing Season Precipitation on the Tibetan Plateau. REMOTE SENSING 2022. [DOI: 10.3390/rs14102484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Warming is expected to intensify hydrological processes and reshape precipitation regimes, which is closely related to water availability for terrestrial ecosystems. Effects of the inter-annual precipitation changes on plant growth are widely concerned. However, it is not well-known how plant growth responds to intra-annual precipitation regime changes. Here, we compiled reanalysis climate data (ERA5) and four satellite-based vegetation indices, including the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Solar-induced Chlorophyll Fluorescence (SIF), and the Modified Triangular Vegetation Index (MTVI2), to evaluate the response of alpine grasslands (including alpine meadow and alpine steppe) to the change of precipitation regimes, especially to the intra-annual precipitation regimes on the Tibetan Plateau. We found monthly precipitation over the alpine steppe significantly increased in the growing season (May–September), but precipitation over the alpine meadow significantly increased only in the early growing season (May–June) (MJP) during the past four decades (1979–2019). The inter-annual plant growth (vegetation indices changes) on the alpine meadow was dominated by temperature, but it was driven by precipitation for the alpine steppe. On the intra-annual scale, the temperature sensitivity of the vegetation indices generally decreased but precipitation sensitivity increased during the growing season for both the alpine meadow and steppe. In response to the increase in MJP, we found the temperature sensitivity of the vegetation indices during the mid-growing season (July–August) (MGNDVI, MGEVI, MGSIF, and MGMTVI2) in the alpine meadow significantly increased (p < 0.01) while its precipitation sensitivity significantly decreased (p < 0.01). We infer that more MJP over the meadow may be the result of enhanced evapotranspiration, which is at the expense of soil moisture and even induces soil “drought” in the early growing season. This may be to elevate community water acquisition capacity through altering root mass allocation and community composition, consequently regulating the divergent climate sensitivities of vegetation growth in the mid-growing season. Our findings highlight that it is inadequate to regard precipitation as an indicator of water availability conditions for plant growth, which may limit our understanding of the response and acclimatization of plants to climate change.
Collapse
|
13
|
The Joint Assimilation of Remotely Sensed Leaf Area Index and Surface Soil Moisture into a Land Surface Model. REMOTE SENSING 2022. [DOI: 10.3390/rs14030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work tests the hypothesis that jointly assimilating satellite observations of leaf area index and surface soil moisture into a land surface model improves the estimation of land vegetation and water variables. An Ensemble Kalman Filter is used to test this hypothesis across the Contiguous United States from April 2015 to December 2018. The performance of the proposed methodology is assessed for several modeled vegetation and water variables (evapotranspiration, net ecosystem exchange, and soil moisture) in terms of random errors and anomaly correlation coefficients against a set of independent validation datasets (i.e., Global Land Evaporation Amsterdam Model, FLUXCOM, and International Soil Moisture Network). The results show that the assimilation of the leaf area index mostly improves the estimation of evapotranspiration and net ecosystem exchange, whereas the assimilation of surface soil moisture alone improves surface soil moisture content, especially in the western US, in terms of both root mean squared error and anomaly correlation coefficient. The joint assimilation of vegetation and soil moisture information combines the results of individual vegetation and soil moisture assimilations and reduces errors (and increases correlations with the reference datasets) in evapotranspiration, net ecosystem exchange, and surface soil moisture simulated by the land surface model. However, because soil moisture satellite observations only provide information on the water content in the top 5 cm of the soil column, the impact of the proposed data assimilation technique on root zone soil moisture is limited. This work moves one step forward in the direction of improving our estimation and understanding of land surface interactions using a multivariate data assimilation approach, which can be particularly useful in regions of the world where ground observations are sparse or missing altogether.
Collapse
|
14
|
Vegetation Greenness Variations and Response to Climate Change in the Arid and Semi-Arid Transition Zone of the Mongo-Lian Plateau during 1982–2015. REMOTE SENSING 2021. [DOI: 10.3390/rs13204066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vegetation greenness dynamics in arid and semi-arid regions are sensitive to climate change, which is an important phenomenon in global climate change research. However, the driving mechanism, particularly for the longitudinal and latitudinal changes in vegetation greenness related to climate change, has been less studied and remains poorly understood in arid and semi-arid areas. In this study, we investigated changes in vegetation greenness and the vegetation greenness line (the mean growing season normalized difference vegetation index (NDVI) = 0.1 contour line) and its response to climate change based on AVHRR-GIMMS NDVI3g and the fifth and latest global climate reanalysis dataset from 1982 to 2015 in the arid and semi-arid transition zone of the Mongolian Plateau (ASTZMP). The results showed that the mean growing season NDVI increased from the central west to east, northeast, and southeast in ASTZMP. The vegetation greenness line migrated to the desert during 1982–1994, to the grassland during 1994–2005, and then to the desert during 2005–2015. Vegetation greenness was positively correlated with precipitation and negatively correlated with temperature. The latitudinal variation of the vegetation greenness line was mainly affected by the combination of precipitation and temperature, while the longitudinal variation was mainly affected by precipitation. In summary, precipitation was a key climatic factor driving rapid changes in vegetation greenness during the growing season of the transition zone. These results can provide meaningful information for research on vegetation coverage changes in arid and semi-arid regions.
Collapse
|
15
|
Sigdel SR, Pandey J, Liang E, Muhammad S, Babst F, Leavitt SW, Shen M, Zhu H, Salerno F, Piao S, Camarero JJ, Peñuelas J. No benefits from warming even for subnival vegetation in the central Himalayas. Sci Bull (Beijing) 2021; 66:1825-1829. [PMID: 36654391 DOI: 10.1016/j.scib.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Affiliation(s)
- Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jayram Pandey
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sher Muhammad
- International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - Steven W Leavitt
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - Miaogen Shen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Franco Salerno
- Water Research Institute-National Research Council (IRSA-CNR), Brugherio 20861, Italy
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza 50080, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia 08913, Spain; CREAF, Cerdanyola del Vallès, Catalonia 08913, Spain.
| |
Collapse
|