1
|
Zhang Z, Yang C, Xi J, Wang Y, Guo J, Liu Q, Liu Y, Ma Y, Zhang J, Ma F, Li C. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes. THE PLANT CELL 2024; 36:3631-3653. [PMID: 38865439 PMCID: PMC11371167 DOI: 10.1093/plcell/koae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/12/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress severely restricts the growth and fruit development of apple (Malus domestica). Little is known about the involvement of WRKY proteins in the heat tolerance mechanism in apple. In this study, we found that the apple transcription factor (TF) MdWRKY75 responds to heat and positively regulates basal thermotolerance. Apple plants that overexpressed MdWRKY75 were more tolerant to heat stress while silencing MdWRKY75 caused the opposite phenotype. RNA-seq and reverse transcription quantitative PCR showed that heat shock factor genes (MdHsfs) could be the potential targets of MdWRKY75. Electrophoretic mobility shift, yeast one-hybrid, β-glucuronidase, and dual-luciferase assays showed that MdWRKY75 can bind to the promoters of MdHsf4, MdHsfB2a, and MdHsfA1d and activate their expression. Apple plants that overexpressed MdHsf4, MdHsfB2a, and MdHsfA1d exhibited heat tolerance and rescued the heat-sensitive phenotype of MdWRKY75-Ri3. In addition, apple heat shock cognate 70 (MdHSC70) interacts with MdWRKY75, as shown by yeast two-hybrid, split luciferase, bimolecular fluorescence complementation, and pull-down assays. MdHSC70 acts as a negative regulator of the heat stress response. Apple plants that overexpressed MdHSC70 were sensitive to heat, while virus-induced gene silencing of MdHSC70 enhanced heat tolerance. Additional research showed that MdHSC70 exhibits heat sensitivity by interacting with MdWRKY75 and inhibiting MdHsfs expression. In summary, we proposed a mechanism for the response of apple to heat that is mediated by the "MdHSC70/MdWRKY75-MdHsfs" molecular module, which enhances our understanding of apple thermotolerance regulated by WRKY TFs.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Xi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Qianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yusong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Mansfeld BN, Yocca A, Ou S, Harkess A, Burchard E, Gutierrez B, van Nocker S, Gottschalk C. A haplotype resolved chromosome-scale assembly of North American wild apple Malus fusca and comparative genomics of the fire blight Mfu10 locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:989-1002. [PMID: 37639371 DOI: 10.1111/tpj.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/08/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
SUMMARYThe Pacific crabapple (Malus fusca) is a wild relative of the commercial apple (Malus × domestica). With a range extending from Alaska to Northern California, M. fusca is extremely hardy and disease resistant. The species represents an untapped genetic resource for the development of new apple cultivars with enhanced stress resistance. However, gene discovery and utilization of M. fusca have been hampered by the lack of genomic resources. Here, we present a high‐quality, haplotype‐resolved, chromosome‐scale genome assembly and annotation for M. fusca. The genome was assembled using high‐fidelity long‐reads and scaffolded using genetic maps and high‐throughput chromatin conformation capture sequencing, resulting in one of the most contiguous apple genomes to date. We annotated the genome using public transcriptomic data from the same species taken from diverse plant structures and developmental stages. Using this assembly, we explored haplotypic structural variation within the genome of M. fusca, identifying thousands of large variants. We further showed high sequence co‐linearity with other domesticated and wild Malus species. Finally, we resolve a known quantitative trait locus associated with resistance to fire blight (Erwinia amylovora). Insights gained from the assembly of a reference‐quality genome of this hardy wild apple relative will be invaluable as a tool to facilitate DNA‐informed introgression breeding.
Collapse
Affiliation(s)
- Ben N Mansfeld
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Shujun Ou
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Erik Burchard
- USDA ARS, Appalachian Fruit Research Station, Kearneysville, West Virginia, USA
| | | | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
3
|
Liu Z, Bian N, Guo J, Zhao S, Khan A, Chu B, Ma Z, Niu C, Ma F, Ma M, Guan Q, Li X. Interfering small ubiquitin modifiers (SUMO) improves the thermotolerance of apple by facilitating the activity of MdDREB2A. STRESS BIOLOGY 2023; 3:10. [PMID: 37676624 PMCID: PMC10442018 DOI: 10.1007/s44154-023-00089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 09/08/2023]
Abstract
Heat stress, which is caused by global warming, threatens crops yield and quality across the world. As a kind of post-translation modification, SUMOylation involves in plants heat stress response with a rapid and wide pattern. Here, we identified small ubiquitin modifiers (SUMO), which affect drought tolerance in apple, also participated in thermotolerance. Six isoforms of SUMOs located on six chromosomes in apple genome, and all the SUMOs were up-regulated in response to heat stress condition. The MdSUMO2 RNAi transgenic apple plants exhibited higher survival rate, lower ion leakage, higher catalase (CAT) activity, and Malondialdehyde (MDA) content under heat stress. MdDREB2A, the substrate of MdSUMO2 in apple, was accumulated in MdSUMO2 RNAi transgenic plants than the wild type GL-3 at the protein level in response to heat stress treatment. Further, the inhibited SUMOylation level of MdDREB2A in MdSUMO2 RNAi plants might repress its ubiquitination, too. The accumulated MdDREB2A in MdSUMO2 RNAi plants further induced heat-responsive genes expression to strengthen plants thermotolerance, including MdHSFA3, MdHSP26.5, MdHSP18.2, MdHSP70, MdCYP18-1 and MdTLP1. In summary, these findings illustrate that interfering small ubiquitin modifiers (SUMO) in apple improves plants thermotolerance, partly by facilitating the stability and activity of MdDREB2A.
Collapse
Affiliation(s)
- Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ningning Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianyan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Ma
- Gansu Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Spera N, Vita LI, Civello PM, Colavita GM. Antioxidant response and quality of sunburn Beurré D'Anjou pears (Pyrus communis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107703. [PMID: 37075677 DOI: 10.1016/j.plaphy.2023.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Sunburn is a physiological fruit disorder induced by exposure to excessive solar radiation. This disorder leads to significant losses in the yield of marketable fruits by negatively affecting quality parameters such as maturity and external color of the fruits. The purpose of this work was to characterize the physiological and biochemical aspects related to oxidative metabolism in Beurré D'Anjou pear fruit with different sunburn levels. Fruits were collected and classified into three sunburn levels at harvest: no sunburn (S0), mild sunburn (S1), and moderate sunburn (S2). On sunburned area, the maturity indices were measured on the fruit flesh, while external color, photosynthetic and photoprotective pigments, total phenols, electrolyte leakage, lipid peroxidation, antioxidant capacity and antioxidant enzymatic activities were determined on fruit peel. The hue angle and saturation of peel color of pears with different sunburn levels showed significant reduction with increasing damage. These changes in peel color were associated with a reduction in chlorophyll content and variations in carotenoid and anthocyanin levels. Due to metabolic changes resulting from defense and adaptive responses to high solar radiation, sunburned tissues showed significantly increased firmness, soluble solids content, and starch degradation, and lower acidity compared to undamaged fruits. We observed also increased antioxidant capacity in the peel of S1 and S2 fruit, related to higher phenolic contents and increased SOD and APX activities. Consistent with previous reports in apple, our study demonstrates that sunburn affects pear fruit quality traits and maturity state by enhancing oxidative metabolism.
Collapse
Affiliation(s)
- Nazarena Spera
- CITAAC (CONICET-UNCo), Centro de Investigaciones en Toxicología ambiental y Agrobiotecnología del Comahue, Buenos Aires 1400, Neuquén, CP8300, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Km 12,5 Ruta 151, Cinco Saltos, CP8303, Argentina.
| | - Laura Inés Vita
- CITAAC (CONICET-UNCo), Centro de Investigaciones en Toxicología ambiental y Agrobiotecnología del Comahue, Buenos Aires 1400, Neuquén, CP8300, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Km 12,5 Ruta 151, Cinco Saltos, CP8303, Argentina
| | - Pedro Marcos Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diagonal 113 Nº 495, La Plata, CPB1900, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 s/n, La Plata, CPB1900, Argentina
| | - Graciela María Colavita
- CITAAC (CONICET-UNCo), Centro de Investigaciones en Toxicología ambiental y Agrobiotecnología del Comahue, Buenos Aires 1400, Neuquén, CP8300, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Km 12,5 Ruta 151, Cinco Saltos, CP8303, Argentina
| |
Collapse
|
5
|
Xu H, Watanabe Y, Ediger D, Yang X, Iritani D. Characteristics of Sunburn Browning Fruit and Rootstock-Dependent Damage-Free Yield of Ambrosia™ Apple after Sustained Summer Heat Events. PLANTS (BASEL, SWITZERLAND) 2022; 11:1201. [PMID: 35567202 PMCID: PMC9100062 DOI: 10.3390/plants11091201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The 2021 summer heat waves experienced in the Pacific Northwest led to considerable fruit damage in many apple production zones. Sunburn browning (SB) was a particularly evident symptom. To understand the mechanism underlying the damage and to facilitate the early assessment of compromised fruit quality, we conducted a study on external characteristics and internal quality attributes of SB 'Ambrosia' apple (Malus domestica var. Ambrosia) and evaluated the fruit loss on five rootstocks. The cell integrity of the epidermal and hypodermal layers of fruit skins in the SB patch was compromised. Specifically, the number of chloroplasts and anthocyanin decreased in damaged cells, while autofluorescent stress-related compounds accumulated in dead cells. Consequently, the affected sun-exposed skin demonstrated a significant increase in differential absorbance between 670 nm and 720 nm, measured using a handheld apple DA meter, highlighting the potential of using this method as a non-destructive early indicator for sunburn damage. Sunburn browning eventually led to lower fruit weight, an increase in average dry matter content, soluble solids content, acidity, deteriorated weight retention, quicker loss of firmness, and accelerated ethylene emission during ripening. Significant inconsistency was found between the sun-exposed and shaded sides in SB apples regarding dry matter content, firmness, and tissue water potential, which implied preharvest water deficit in damaged tissues and the risk of quicker decline of postharvest quality. Geneva 935 (G.935), a large-dwarfing rootstock with more vigor and higher water transport capacity, led to a lower ratio of heat-damaged fruits and a higher yield of disorder-free fruits, suggesting rootstock selection as a long-term horticultural measure to mitigate summer heat stress.
Collapse
|
6
|
Alteration of physiological and biochemical properties in leaves and fruits of pomegranate in response to gamma irradiation. Sci Rep 2022; 12:4312. [PMID: 35279698 PMCID: PMC8918351 DOI: 10.1038/s41598-022-08285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Pomegranate breeding to improve the marketability requires the production of large and high quality fruits. Gamma radiation on pomegranate can be used to generate genetic diversity that allows the breeder to screen the mutants for superior quality and quantity. For this purpose, dormant buds on 1-year-old shoots of pomegranate cultivar "Malase Saveh" were subjected to 36 Gy (Gy) of gamma irradiation from a cobalt (60CO) source. Shoot cuttings were taken from the mutated shoots and generate M1V2. The number of 11 mutants were selected from M1V2 plants based on their winter survival and disease resistance. After a period of 3–4 years, leaf and fruit samples were harvested from the M1V5. Results showed that physiological and biochemical parameters of leaves were altered unevenly, some clones showed no alterations from the control, while others revealed considerable differences. Irradiation altered various aspects related to fruit, such as the number and weight of ripe and unripe fruits, number of cracked, sunburn, worm-eaten fruits, and fruit size. In general, mutant clones 5, 8, and 10 had higher fruit sizes and weight of ripe fruits and less number and weight of unripe fruits. The stability of the detected mutants will be evaluated and new commercial field trials using selected materials will be established.
Collapse
|
7
|
Wada H, Nakata K, Nonami H, Erra-Balsells R, Tatsuki M, Hatakeyama Y, Tanaka F. Direct evidence for dynamics of cell heterogeneity in watercored apples: turgor-associated metabolic modifications and within-fruit water potential gradient unveiled by single-cell analyses. HORTICULTURE RESEARCH 2021; 8:187. [PMID: 34344866 PMCID: PMC8333330 DOI: 10.1038/s41438-021-00603-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Watercore is a physiological disorder in apple (Malus × domestica Borkh.) fruits that appears as water-soaked tissues adjacent to the vascular core, although there is little information on what exactly occurs at cell level in the watercored apples, particularly from the viewpoint of cell water relations. By combining picolitre pressure-probe electrospray-ionization mass spectrometry (picoPPESI-MS) with freezing point osmometry and vapor pressure osmometry, changes in cell water status and metabolisms were spatially assayed in the same fruit. In the watercored fruit, total soluble solid was lower in the watercore region than the normal outer parenchyma region, but there was no spatial difference in the osmotic potentials determined with freezing point osmometry. Importantly, a disagreement between the osmotic potentials determined with two methods has been observed in the watercore region, indicating the presence of significant volatile compounds in the cellular fluids collected. In the watercored fruit, cell turgor varied across flesh, and a steeper water potential gradient has been established from the normal outer parenchyma region to the watercore region, retaining the potential to transport water to the watercore region. Site-specific analysis using picoPPESI-MS revealed that together with a reduction in turgor, remarkable metabolic modifications through fermentation have occurred at the border, inducing greater production of watercore-related volatile compounds, such as alcohols and esters, compared with other regions. Because alcohols including ethanol have low reflection coefficients, it is very likely that these molecules would have rapidly penetrated membranes to accumulate in apoplast to fill. In addition to the water potential gradient detected here, this would physically contribute to the appearance with high tissue transparency and changes in colour differences. Therefore, it is concluded that these spatial changes in cell water relations are closely associated with watercore symptoms as well as with metabolic alterations.
Collapse
Affiliation(s)
- Hiroshi Wada
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, Japan.
| | - Keisuke Nakata
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry and CIHIDECAR (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Miho Tatsuki
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuto Hatakeyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Fukuyo Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Gambetta JM, Holzapfel BP, Stoll M, Friedel M. Sunburn in Grapes: A Review. FRONTIERS IN PLANT SCIENCE 2021; 11:604691. [PMID: 33488654 PMCID: PMC7819898 DOI: 10.3389/fpls.2020.604691] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/04/2023]
Abstract
Sunburn is a physiological disorder that affects the visual and organoleptic properties of grapes. The appearance of brown and necrotic spots severely affects the commercial value of the fruit, and in extreme cases, significantly decreases yield. Depending on the severity of the damage and the driving factors, sunburn on grapes can be classified as sunburn browning (SB) or as sunburn necrosis (SN). Sunburn results from a combination of excessive photosynthetically active radiation (PAR) and UV radiation and temperature that can be exacerbated by other stress factors such as water deficit. Fruit respond to these by activating antioxidant defense mechanisms, de novo synthesis of optical screening compounds and heat-shock proteins as well as through morphological adaptation. This review summarizes the current knowledge on sunburn in grapes and compares it with relevant literature on other fruits. It also discusses the different factors affecting the appearance and degree of sunburn, as well as the biochemical response of grapes to this phenomenon and different potential mitigation strategies. This review proposes further directions for research into sunburn in grapes.
Collapse
Affiliation(s)
- Joanna M. Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Bruno P. Holzapfel
- Department of Primary Industries, National Wine and Grape Industry Centre, Wagga Wagga, NSW, Australia
| | - Manfred Stoll
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Matthias Friedel
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
9
|
Torres CA, Azocar C, Ramos P, Pérez-Díaz R, Sepulveda G, Moya-León MA. Photooxidative stress activates a complex multigenic response integrating the phenylpropanoid pathway and ethylene, leading to lignin accumulation in apple ( Malus domestica Borkh.) fruit. HORTICULTURE RESEARCH 2020; 7:22. [PMID: 32140231 PMCID: PMC7049307 DOI: 10.1038/s41438-020-0244-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Photooxidative stress, when combined with elevated temperatures, triggers various defense mechanisms leading to physiological, biochemical, and morphological changes in fruit tissue. Furthermore, during sun damage, apple fruit undergo textural changes characterized by high flesh firmness compared to unexposed fruit. Fuji and Royal Gala apples were suddenly exposed to sunlight on the tree and then sampled for up to 29 days. Cell wall components and lignin biosynthetic pathway analyses were carried out on the fruit tissue. At harvest, Fuji apples with different sun exposure levels, such as exposed to direct sunlight (Exp), shaded (Non-Exp), and with severe sun damage (Sev), were also characterized. In fruit suddenly exposed to sunlight, the expression levels of phenylpropanoid-related genes, phenylalanine ammonia lyase (MdPAL), chalcone synthase (MdCHS), and flavanone-3-hydroxylase (MdF3H), were upregulated in the skin and flesh of Exp and Sev. Exposure had little effect on the lignin-related genes caffeic acid O-methyltransferase 1 (MdCOMT1) and cinnamyl alcohol dehydrogenase (MdCAD) in the skin; however, the expression of these genes was highly induced in the flesh of Exp and Sev in both cultivars. Lignin deposition increased significantly in skin with sun injury (Sev); in flesh, this increase occurred late during the stress treatment. Additionally, the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase (MdACS) and 1-aminocyclopropane-1-carboxylate oxidase (MdACO) were highly expressed in the skin and flesh tissues but were more upregulated in Sev than in Exp during the time-course experiment, which paralleled the induction of the phenylpropanoid pathway and lignin accumulation. At harvest, flesh from Sev fruit exhibited higher firmness than that from Non-Exp and Exp fruit, although no differences were observed in the alcohol-insoluble residues (AIR) among groups. The fractionation of cell wall polymers revealed an increase in the uronic acid contents of the water-soluble pectin fraction (WSF) in Exp and Sev tissues compared to Non-Exp tissues, while the other pectin-rich fractions, that is, CDTA-soluble (CSF) and Na2CO3-soluble (NSF), were increased only in Sev. The amount of hemicellulose and cellulose did not differ among fruit conditions. These findings suggest that increases in the flesh firmness of apples can be promoted by photooxidative stress, which is associated with the induction of lignin accumulation in the skin and flesh of stressed fruit, with the involvement of stress phytohormones such as ethylene.
Collapse
Affiliation(s)
- Carolina A. Torres
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Department of Horticulture, Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA USA
| | - Constanza Azocar
- Universidad Andres Bello, Facultad Ciencias Biologicas, Santiago, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Talca, Chile
| | - Ricardo Pérez-Díaz
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Gloria Sepulveda
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Department of Horticulture, Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA USA
| | | |
Collapse
|
10
|
Torres CA, Sepúlveda G, Kahlaoui B. Phytohormone Interaction Modulating Fruit Responses to Photooxidative and Heat Stress on Apple ( Malus domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2017; 8:2129. [PMID: 29491868 PMCID: PMC5824616 DOI: 10.3389/fpls.2017.02129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/30/2017] [Indexed: 05/23/2023]
Abstract
Sun-related physiological disorders such as sun damage on apples (Malus domestica Borkh) are caused by cumulative photooxidative and heat stress during their growing season triggering morphological, physiological, and biochemical changes in fruit tissues not only while it is on the tree but also after it has been harvested. The objective of the work was to establish the interaction of auxin (indole-3-acetic acid; IAA), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) and its precursor ACC (free and conjugated, MACC) during development of sun-injury-related disorders pre- and post-harvest on apples. Peel tissue was extracted from fruit growing under different sun exposures (Non-exposed, NE; Exposed, EX) and with sun injury symptoms (Moderate, Mod). Sampling was carried out every 15 days from 75 days after full bloom (DAFB) until 120 days post-harvest in cold storage (1°C, > 90%RH). Concentrations of IAA, ABA, JA, SA, were determined using UHPLC mass spectrometry, and ET and ACC (free and conjugated MACC) using gas chromatography. IAA was found not to be related directly to sun injury development, but it decreased 60% in sun exposed tissue, and during fruit development. ABA, JA, SA, and ethylene concentrations were significantly higher (P ≤ 0.05) in Mod tissue, but their concentration, except for ethylene, were not affected by sun exposure. ACC and MACC concentrations increased until 105 DAFB in all sun exposure categories. During post-harvest, ethylene climacteric peak was delayed on EX compared to Mod. ABA and SA concentrations remained stable throughout storage in both tissue. JA dramatically increased post-harvest in both EX and Mod tissue, and orchards, confirming its role in low temperature tolerance. The results suggest that ABA, JA, and SA together with ethylene are modulating some of the abiotic stress defense responses on sun-exposed fruit during photooxidative and heat stress on the tree.
Collapse
Affiliation(s)
- Carolina A. Torres
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Centro de Pomaceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Gloria Sepúlveda
- Centro de Pomaceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Besma Kahlaoui
- Centro de Pomaceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|