1
|
Ruczyńska W, Szlinder-Richert J, Nermer T. The occurrence and distribution of nonylphenols and nonylphenol ethoxylates in different species of fish. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1057-1070. [PMID: 32175546 DOI: 10.1039/c9em00584f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to analyze the accumulation of nonylphenols (NPs) and nonylphenol ethoxylates (NPEOs) in the muscles, liver, and bile of flounder (Platichthys flesus), cod (Gadus morhua), and eels (Anguilla anguilla). The flounder and cod were caught in the Gulf of Gdańsk (the Baltic Sea), while the eels were sampled in the Vistula and Szczecin lagoons (the Baltic Sea) and in the inland waters of the Masurian Lake District. NP concentrations in muscles were low in all the samples analyzed and ranged from 14.2 to 28.2 μg-1 kg ww. In contrast, a wide range of NP concentrations were observed in livers, which seemed to depend on both the species and the feeding status of the fishes. NP levels in flounder and eel livers were from three to twenty times higher than those in the muscles, but they were below the limit of quantitation (LOQ) in all the cod liver samples. The mean concentration of NPs in the liver of flounder caught in the Gulf of Gdańsk was 222 μg kg-1 ww, while in that of the eel ranged from 57 μg kg-1 ww in fish caught in the Masurian Lake District to 519 μg kg-1 ww in eels caught in the Vistula Lagoon. NPs were detected in bile in only a few eel samples, which indicated that bile analysis has limited applications for estimating NP contamination in marine fish. The NPEOs in all the samples analyzed were below the LOQ.
Collapse
Affiliation(s)
- Wiesława Ruczyńska
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland.
| | | | | |
Collapse
|
2
|
Jiang R, Liu J, Huang B, Wang X, Luan T, Yuan K. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136689. [PMID: 31978772 DOI: 10.1016/j.scitotenv.2020.136689] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Residual chemicals discharged from wastewater treatment plants (WWTPs) and subsequent ecological risk are important in production safety when reuse of the effluent water occurs. Thus, this work provides an investigation of the occurrence and removal of dissolved Endocrine-disrupting chemicals (EDCs) in 38 WWTPs in Guangdong Province, China. The results indicate that EDCs are widely distributed in the investigated WWTPs, while nonylphenols (NPs) are the predominant chemical among the target EDCs, accounting for >98% of the concentration in the influent and >97% of the concentration in the effluent. Moreover, 4 main types of wastewater treatment processes (oxidation ditch, A2/O, conventional activated sludge and microaeration oxidation ditch followed by A2/O) were found to be inefficient for removing dissolved EDCs, with a mean removal rate of approximately 25%. The potential environmental risk was predicted for residual EDCs. Specifically, 17α-ethynylestradiol (EE2) was considered to be the most hazardous chemical among the target EDCs, with a median risk quotient (RQ) of 8.94. In addition, β-estradiol (E2) and estrone (E1) have median RQs of 1.14 and 0.27, and NPs have median RQs of 0.61 (algae), 0.37 (inverberate) and 0.25 (fish), respectively.
Collapse
Affiliation(s)
- Ruirun Jiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Bi Huang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Pinkney AE, Harshbarger JC, Rutter MA, Sakaris PC. Trends in Liver and Skin Tumor Prevalence in Brown Bullhead (Ameiurus nebulosus) from the Anacostia River, Washington, DC, and Nearby Waters. Toxicol Pathol 2019; 47:174-189. [DOI: 10.1177/0192623318823150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prevalence of liver and skin tumors in brown bullhead ( Ameiurus nebulosus) from the Anacostia River (Washington, DC) and nearby areas was determined in 2014, 2015, and 2016. The objectives were to (1) compare tumor prevalence across space and time; (2) analyze the 1992–2016 Chesapeake Bay Tumor Database to identify reference locations and test age, length, weight, and sex as covariates; and (3) explore whether changes in bullhead exposure to contaminants can explain the observed trends. With logistic regression, we reported large statistically significant decreases in liver tumor probabilities in bullheads from the Anacostia CSX Bridge (ANAC) area between 1996 and 2001 (merged: female, 77.8%; male, 48.6%), 2009 to 2011 (female, 42.5%; male, 16.6%), and 2014 to 2016 (female, 18.0%; male, 5.7%). Skin tumors decreased by a factor of six in both females and males. Polycyclic aromatic compounds (PAC) initiate liver neoplasms and polychlorinated biphenyls (PCBs) and DDT compounds are promoters. The causes of skin tumors in bullhead are uncertain. Biomarker and tissue data show decreases in PAC-DNA adducts and PCB and DDT contamination in ANAC bullheads. It is likely that the decreased liver tumor prevalence is associated with decreased exposure to these contaminants.
Collapse
Affiliation(s)
- Alfred E. Pinkney
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland, USA
| | - John C. Harshbarger
- Department of Pathology, George Washington University Medical Center, Washington, District of Columbia, USA
| | - Michael A. Rutter
- Department of Mathematics, Penn State Behrend, Erie, Pennsylvania, USA
| | - Peter C. Sakaris
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia, USA
| |
Collapse
|
4
|
Liu S, Xu XR, Qi ZH, Chen H, Hao QW, Hu YX, Zhao JL, Ying GG. Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:72-81. [PMID: 28525786 DOI: 10.1016/j.envpol.2017.05.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
More attention was previously paid to adverse effects of steroids on aquatic organisms and their ecological risks to the aquatic environment. So far, little information has been reported on the bioaccumulative characteristics of different classes of steroids in cultured fish tissues. The present study for the first time provided a comprehensive analysis of the occurrence, bioaccumulation, and global consumers' health risks via fish consumption of androgens, glucocorticoids and progestanges in typical freshwater cultured farms in South China. The numbers and total concentrations of steroids detected in the tissues of five common species of the cultured fish were in the order of plasma > bile > liver > muscle and plasma > bile, muscle > liver, respectively. The field bioaccumulation factors for the detected synthetic steroids ranged from 450 to 97,000 in bile, 450 to 65,000 in plasma, 2900 to 16,000 in liver, and 42 to 2600 in muscle of fish, respectively. This data suggests that steroids are bioaccumulative in fish tissues. Mostly important, 4-androstene-3,17-dione (AED) and cortisone (CRN) were found to be reliable chemical indicators to predict the levels of steroids in plasma and muscle of the inter-species cultured fish, respectively. Furthermore, the maximum hazard quotients (HQs) of testosterone and progesterone were 5.8 × 10-4 and 9.9 × 10-5, suggesting that human health risks were negligible via ingestion of the steroids-contaminated fish.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhan-Hui Qi
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hui Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qin-Wei Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yong-Xia Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Harding LB, Schultz IR, da Silva DAM, Ylitalo GM, Ragsdale D, Harris SI, Bailey S, Pepich BV, Swanson P. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:118-31. [PMID: 27475653 DOI: 10.1016/j.aquatox.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023]
Abstract
It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.
Collapse
Affiliation(s)
- Louisa B Harding
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Irvin R Schultz
- Pacific Northwest National Laboratory -Marine Sciences Laboratory, 1529 West Sequim Bay Road, Sequim, WA 98382, USA
| | - Denis A M da Silva
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Dave Ragsdale
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Stephanie I Harris
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Stephanie Bailey
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Barry V Pepich
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 98164, USA.
| |
Collapse
|
6
|
Bussy U, Li K, Li W. Application of liquid chromatography-tandem mass spectrometry in quantitative bioanalyses of organic molecules in aquatic environment and organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9459-79. [PMID: 26996906 DOI: 10.1007/s11356-016-6433-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/07/2016] [Indexed: 05/16/2023]
Abstract
Analytical methods using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of metabolites or contaminants (or both) in various tissues of aquatic organisms and in the aquatic environment have received increasing attention in the last few years. This review discusses the findings relevant to such procedures published between 2005 and 2015. The aim is to evaluate the advantages, restrictions, and performances of the procedures from sample preparation to mass spectrometry measurement. To support these discussions, a general knowledge on LC-MS/MS is also provided.
Collapse
Affiliation(s)
- Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13, Natural Resources Bldg., East Lansing, MI, 48824, USA
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13, Natural Resources Bldg., East Lansing, MI, 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13, Natural Resources Bldg., East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Simultaneous enzymatic hydrolysis and extraction of endocrine-disrupting chemicals in fish bile using polyethersulfone polymer. Anal Bioanal Chem 2015; 407:7413-23. [DOI: 10.1007/s00216-015-8905-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 12/27/2022]
|
8
|
Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 2015; 13:1559325815598308. [PMID: 26674671 PMCID: PMC4674187 DOI: 10.1177/1559325815598308] [Citation(s) in RCA: 443] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs.
Collapse
Affiliation(s)
- Jone Corrales
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Lauren A. Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - W. Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Brian S. Yates
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Christopher S. Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - E. Spencer Williams
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W. Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
9
|
Yang J, Li H, Ran Y, Chan K. Distribution and bioconcentration of endocrine disrupting chemicals in surface water and fish bile of the Pearl River Delta, South China. CHEMOSPHERE 2014; 107:439-446. [PMID: 24582358 DOI: 10.1016/j.chemosphere.2014.01.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 05/20/2023]
Abstract
The distribution and bioconcentration of endocrine disrupting chemicals (EDCs) in water, algae, and wild carp bile of the Pearl River Delta (PRD), South China were investigated. 4-tert octylphenol (OP), 4-nonylphenol (NP), and bisphenol A (BPA) (unit, ng L(-1)) in water were in the ranges of 1-14, 117-865, and 4-377, those (ng g(-1) dry weight) in algae were in the ranges of 2-13, 53-282, and 16-94, and those (ng g(-1)) in carp bile were in the ranges of 14-39, 950-4648, 70-1020, respectively. Estrone (E1) and 17α-ethinylestradiol (EE2) in water ranged from <LOQ to 1.58 ng L(-1) and from <LOQ to 3.43 ng L(-1), respectively. In bile and algae, E1 ranged from nd to 30 ng g(-1), but EE2 was not detected. The E2 activity equivalents (EEQs) ranged from 1.20 to 10.97 ng g(-1) in carp bile and from 0.07 to 8.06 ng L(-1) in water. The EEQs in carp bile were significantly related to those in water, illustrating that occurrence of EDCs in carp bile can reflect that in ambient water in the PRD region. The bioconcentration factors (BCF, L kg(-1)) of OP, NP, BPA, and E1 in algae were in the ranges of 482-7251, 131-740, 2846-12979, and undetectable, respectively, and those in carp bile were in the ranges of 1500-12960, 1648-11137, 3583-14178, and 13208-39623, respectively. The phenolic EDCs can be accumulated by wild carp bile and algae in the investigated aquatic ecosystems, which is also affected by the degree of the eutrophication. This study for the first time reported EDCs in carp bile and algae collected from the PRD, China.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Kingming Chan
- Environmental Science Program, School of Life Sciences, Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| |
Collapse
|
10
|
Bizarro C, Ros O, Vallejo A, Prieto A, Etxebarria N, Cajaraville MP, Ortiz-Zarragoitia M. Intersex condition and molecular markers of endocrine disruption in relation with burdens of emerging pollutants in thicklip grey mullets (Chelon labrosus) from Basque estuaries (South-East Bay of Biscay). MARINE ENVIRONMENTAL RESEARCH 2014; 96:19-28. [PMID: 24262030 DOI: 10.1016/j.marenvres.2013.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Endocrine disrupting chemicals (EDCs) interfere with the functioning of the endocrine system, causing reproductive and developmental disturbances in aquatic wildlife. Appearance of intersex gonads and elevated plasma levels of vitellogenin in male fish are well known biomarkers of exposure to xenoestrogenic EDCs. In the present study, intersex condition and transcription levels of vtg and cyp19a1b were assessed in five thicklip grey mullet populations from the Basque coast (Bay of Biscay). Levels of EDCs (estrogenic hormones, polycyclic musks, bisphenol-A, phthalates, alkylphenols and pesticides) were determined in water and fish bile. Intersex gonads were observed in three out of five mullet populations. Vtg and cyp19a1b were up-regulated in mullet populations with relatively higher EDCs load. Phthalates and pesticides were the most abundant EDCs in bile, followed by alkylphenols, musks, bisphenol-A and estrogenic hormones. Statistically significant correlations were found between concentrations of individual and total EDCs in bile and water samples and transcription levels of vtg and cyp19a1b.
Collapse
Affiliation(s)
- C Bizarro
- Dep. Zoology and Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), UPV/EHU, Areatza z/g, E-48620 Plentzia, Basque Country, Spain
| | - O Ros
- Dep. Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - A Vallejo
- Dep. Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - A Prieto
- Dep. Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - N Etxebarria
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), UPV/EHU, Areatza z/g, E-48620 Plentzia, Basque Country, Spain; Dep. Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - M P Cajaraville
- Dep. Zoology and Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), UPV/EHU, Areatza z/g, E-48620 Plentzia, Basque Country, Spain
| | - M Ortiz-Zarragoitia
- Dep. Zoology and Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), UPV/EHU, Areatza z/g, E-48620 Plentzia, Basque Country, Spain.
| |
Collapse
|
11
|
da Silva DAM, Buzitis J, Reichert WL, West JE, O'Neill SM, Johnson LL, Collier TK, Ylitalo GM. Endocrine disrupting chemicals in fish bile: a rapid method of analysis using English sole (Parophrys vetulus) from Puget Sound, WA, USA. CHEMOSPHERE 2013; 92:1550-1556. [PMID: 23683869 DOI: 10.1016/j.chemosphere.2013.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/26/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
This study describes a recently developed and rapid method to measure bisphenol A (BPA), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) in bile of fish using enzymatic hydrolysis of samples followed by solid-phase extraction and ultra-performance liquid chromatography with tandem mass spectrometry. The limits of quantitation (LOQ) for BPA, EE2 and E2 were 6.3ngmL(-1), 12.5ngmL(-1) and 6.3ngmL(-1), respectively. These compounds were analyzed in bile of male English sole (Parophrys vetulus) collected from urban and non-urban sites in Puget Sound, WA, USA. The BPA and E2 concentrations (and occurrence) ranged from <LOQ - 52ngmL(-1) (10-100%) and <LOQ - 310ngmL(-1) (10-70%), respectively. EE2 levels were below the LOQ in all samples. Urban sites were significantly different than non-urban sites, demonstrating the environmental applicability of this analytical method. Moreover, this study presented, for the first time in United States coastal waters, biliary environmental concentrations of these compounds in male English sole collected from Puget Sound, a region of increasing urbanization.
Collapse
Affiliation(s)
- Denis A M da Silva
- Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Togunde OP, Oakes KD, Servos MR, Pawliszyn J. Determination of pharmaceutical residues in fish bile by solid-phase microextraction couple with liquid chromatography-tandem mass spectrometry (LC/MS/MS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5302-5309. [PMID: 22510069 DOI: 10.1021/es203758n] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present study investigates possible uptake and bioconcentration of different classes of pharmaceuticals residues (organic contaminants) in fish bile using a simplified analytical methodology based on solid phase microextration (SPME). The use of solid phase microextraction (SPME), as a simple analytical tool, to screen for target pharmaceuticals in fish bile samples was validated in rainbow trout (Oncorhynchus mykiss) following short-term laboratory exposures to carbamazepine and fluoxetine. While fish bioconcentrated both fluoxetine and carbamazepine from exposure water, fluoxetine accumulated to a greater degree in bile than carbamazepine. Good agreement was obtained for both analytes in bile samples between SPME and traditional liquid (solvent) extraction approaches (R(2) > 0.99). The field application of SPME sampling was further demonstrated in fathead minnow (Pimephales promelas), a small-bodied fish caged upstream and downstream of a local wastewater treatment plant where fluoxetine, atorvastatin, and sertraline were detected in fish bile at the downstream location. SPME is a promising analytical tool for investigating the bioconcentration of trace contaminants in fish bile, facilitating detection of trace environmental contaminants otherwise undetectable due to low concentrations in the environment and biological tissues as well as the complexity of the sample matrices.
Collapse
Affiliation(s)
- Oluranti P Togunde
- Department of Chemistry, University of Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | |
Collapse
|
13
|
Karami A, Christianus A, Bahraminejad B, Gagné F, Courtenay SC. Artificial neural network modeling of biomarkers to infer characteristics of contaminant exposure in Clarias gariepinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 77:28-34. [PMID: 22101109 DOI: 10.1016/j.ecoenv.2011.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 05/31/2023]
Abstract
This study examined the potential of artificial neural network (ANN) modeling to infer timing, route and dose of contaminant exposure from biomarkers in a freshwater fish. Hepatic glutathione S-transferase (GST) activity and biliary concentrations of BaP, 1-OH BaP, 3-OH BaP and 7,8D BaP were quantified in juvenile Clarias gariepinus injected intramuscularly or intraperitoneally with 10-50 mg/kg benzo[a]pyrene (BaP) 1-3 d earlier. A feedforward multilayer perceptron (MLP) ANN resulted in more accurate prediction of timing, route and exposure dose than a linear neural network or a radial basis function (RBF) ANN. MLP sensitivity analyses revealed contribution of all five biomarkers to predicting route of exposure but no contribution of hepatic GST activity or one of the two hydroxylated BaP metabolites to predicting time of exposure and dose of exposure. We conclude that information content of biomarkers collected from fish can be extended by judicious use of ANNs.
Collapse
Affiliation(s)
- Ali Karami
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
14
|
Nallani GC, Paulos PM, Venables BJ, Edziyie RE, Constantine LA, Huggett DB. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:306-313. [PMID: 21710293 DOI: 10.1007/s00244-011-9691-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.
Collapse
Affiliation(s)
- Gopinath C Nallani
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Villarini M, Moretti M, Dominici L, Fatigoni C, Dörr AJM, Elia AC, Monarca S. A protocol for the evaluation of genotoxicity in bile of carp (Cyprinus carpio) exposed to lake water treated with different disinfectants. CHEMOSPHERE 2011; 84:1521-1526. [PMID: 21546055 DOI: 10.1016/j.chemosphere.2011.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
A sensitive and rapid method to evaluate toxic and genotoxic properties of drinking water supplied from Lake Trasimeno (Umbria, Central Italy) was worked out analysing bile in Cyprinus carpio exposed for 20 d to lake water treated with 3 different disinfectants, sodium hypochlorite (NaClO), chlorine dioxide (ClO(2)) and peracetic acid (PAA). Fish were sacrificed at 0, 10 and 20 d in order to investigate the time course of these endpoints. An aliquot of bile samples was fractionated by adsorption on C(18) silica cartridges and the genotoxic potential of whole bile and of bile fractions was evaluated by the single-cell microgel-electrophoresis (comet) assay on human colonic adenocarcinoma cells (Caco-2). Bile (both whole and fractionated) from specimens exposed to the three disinfectants always showed a genotoxic activity as compared to the control group. The results of this study provide evidence that all three disinfectants cause an increase in bile genotoxicity of chronically exposed fish.
Collapse
Affiliation(s)
- Milena Villarini
- Department of Medical-Surgical Specialties and Public Health, University of Perugia, Via del Giochetto, I-06122 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Sebire M, Katsiadaki I, Taylor NGH, Maack G, Tyler CR. Short-term exposure to a treated sewage effluent alters reproductive behaviour in the three-spined stickleback (Gasterosteus aculeatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:78-88. [PMID: 21684244 DOI: 10.1016/j.aquatox.2011.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 05/30/2023]
Abstract
Some UK sewage treatment work (STW) effluents have been found to contain high levels of anti-androgenic activity, but the biological significance of this activity to fish has not been determined. The aim of this study was to investigate the effects of exposure to a STW effluent with anti-androgenic activity on the reproductive physiology and behaviour of three-spined sticklebacks (Gasterosteus aculeatus). Fish were exposed to a STW effluent (50 and 100%, v/v) with a strong anti-androgenic activity (328.56±36.83 μgl(-1) flutamide equivalent, as quantified in a recombinant yeast assay containing the human androgen receptor) and a low level of oestrogenic activity (3.32±0.66 ngl(-1) oestradiol equivalent, quantified in a recombinant yeast assay containing the human oestrogen receptor) for a period of 21 days in a flow-through system in the laboratory. Levels of spiggin, an androgen-regulated protein, were not affected by the STW effluent exposure, nor were levels of vitellogenin (a biomarker of oestrogen exposure), but the reproductive behaviour of the males was impacted. Males exposed to full strength STW effluent built fewer nests and there was a significant reduction in male courtship behaviour for exposures to both the 50 and 100% STW effluent treatments compared with controls. The effect seen on the reproduction of male sticklebacks may not necessarily have been as a consequence of the endocrine active chemicals present in the STW effluent alone, but could relate to other features of the effluent, such as turbidity that can impair visual signalling important for courtship interactions. Regardless the specific causation, the data presented show that effluents from STW have an impact on reproductive behaviour in male sticklebacks which in turn affects reproductive performance/outcome. The study further highlights the use of fish behaviour as a sensitive endpoint for assessing potential effects of contaminated water bodies on fish reproduction.
Collapse
Affiliation(s)
- Marion Sebire
- Cefas Weymouth Laboratory, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | | | | | | | | |
Collapse
|
17
|
Optimization of large volume injection-programmable temperature vaporization-gas chromatography–mass spectrometry analysis for the determination of estrogenic compounds in environmental samples. J Chromatogr A 2010; 1217:8327-33. [DOI: 10.1016/j.chroma.2010.10.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/19/2010] [Accepted: 10/25/2010] [Indexed: 11/21/2022]
|
18
|
Vallejo A, Usobiaga A, Ortiz-Zarragoitia M, Cajaraville MP, Fernández LA, Zuloaga O. Focused ultrasound-assisted acceleration of enzymatic hydrolysis of alkylphenols and 17β-oestradiol glucuronide in fish bile. Anal Bioanal Chem 2010; 398:2307-14. [DOI: 10.1007/s00216-010-4156-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/31/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
|
19
|
Mdegela RH, Braathen M, Mosha RD, Skaare JU, Sandvik M. Assessment of pollution in sewage ponds using biomarker responses in wild African sharptooth catfish (Clarias gariepinus) in Tanzania. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:722-734. [PMID: 20012187 DOI: 10.1007/s10646-009-0449-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
The interactive effects of mixed pollutants in sewage wastewater on biomarker responses were investigated using wild male African sharptooth catfish (Clarias gariepinus) in Morogoro, Tanzania. A total of 58 fish were used, of which 21 were from Mindu dam (reference site) and 22, 9 and 10 from Mafisa, Mazimbu and Mzumbe sewage ponds, respectively. Liver somatic index (LSI) and gonadosomatic index (GSI) were significantly greater (two- to threefold) and (five- to sixfold), respectively, in fish from all sewage ponds. Haemoglobin concentration and gill filament 7-ethoxyresurufin O-deethylase (EROD) activities were significantly higher (1.2-fold and twofold, respectively) in fish from Mzumbe sewage ponds than in fish from Mindu dam, whereas liver EROD activity was significantly higher in fish from Mzumbe and Mafisa sewage ponds (5-fold). A HPLC method for determination of enzymatically formed p-nitrophenyl-glucuronide (PNPG) was developed and applied to measure UDP-glucuronosyl transferase (UGT) activities that was significantly higher in fish from all sewage ponds (2-2.5-fold) than in fish from Mindu dam. Kinetic characteristics and assay dependence of UGT were studied with microsomal preparations. Metallothionein (MT) content was significantly lower (three- to fourfold) in fish from sewage ponds than in fish from Mindu dam, and corresponded with cumulative levels of cadmium, lead and mercury. Condition factor, vitellogenin (Vtg), acetylcholinesterase (AChE) activities in plasma, eyes and brain, haematocrit, plasma protein and cytosolic glutathione S-transferase (GST) activities were comparable in fish from sewage ponds and Mindu dam. Although specific pollutants other than the metals were not identified by chemical analysis, application of a suite of biomarkers in C. gariepinus demonstrated that all sewage ponds were contaminated by pollutants of public health concern.
Collapse
Affiliation(s)
- Robinson H Mdegela
- Faculty of Veterinary Medicine, Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P. O. Box 3021, Morogoro, Tanzania
| | | | | | | | | |
Collapse
|
20
|
Blahová J, Havelková M, Kruzíková K, Hilscherová K, Halouzka R, Modrá H, Grabic R, Halírová J, Jurcíková J, Ocelka T, Harustiaková D, Svobodová Z. Assessment of contamination of the Svitava and Svratka rivers in the Czech Republic using selected biochemical markers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:541-549. [PMID: 20821476 DOI: 10.1002/etc.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aim of the present study is to assess aquatic ecosystem contamination using selected biochemical markers: cytochrome P450, ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), tripeptide glutathione, vitellogenin, and 11-ketotestosterone in chub (Leuciscus cephalus L.). Seven locations on the Svitava and Svratka rivers (in the Brno conurbation, Czech Republic) were assessed. The results were compared with the levels of the most important inductors of these biomarkers: organic pollutants hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), DDT and its metabolites, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in bottom sediment, fish muscle, and semipermeable membrane devices (SPMDs) and metals in sediment. The highest levels of pollutants were observed at sites situated downstream from Brno, especially at Modrice and Rajhradice. Significant positive correlations (p < 0.05) were found between EROD activity and HCH concentration in SPMDs, and also between GST and EROD activity with HCB concentration in muscle, after adjusting for age.
Collapse
Affiliation(s)
- Jana Blahová
- Department of Veterinary Public Health and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1-3, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Matsumura Y, Hosokawa C, Sasaki-Mori M, Akahira A, Fukunaga K, Ikeuchi T, Oshiman KI, Tsuchido T. Isolation and characterization of novel bisphenol-A--degrading bacteria from soils. Biocontrol Sci 2010; 14:161-9. [PMID: 20055221 DOI: 10.4265/bio.14.161] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
One hundred and seven soil samples were collected from various places in Japan, and their bisphenol-A (BPA, 2,2-bis(4-Hydroxyphenyl) propane) degradative capacities were evaluated. Eighty-five soil samples possessed BPA degradative capacities, and 26 bacterial strains could be isolated as BPA-degrading bacterium. Sequence analysis of their 16S rRNA genes indicated that 22 isolates belonged to proteobacteria groups, and three of four Gram-positive bacterial strains, YA27, NO13, and NO15, were classified as Bacilli. All isolates except strain YA27 completely degraded 115 microg/mL BPA in L medium but strain YA27 degraded only 50 microg/mL BPA. Strain YA27 and three Sphingomonas sp. strains could also grow in basal salt media containing BPA as a sole carbon source (BSMB medium). In HPLC analyses, some isolates, including the three Sphingomonas strains, produced some BPA metabolites in their cultures although the others, including strain YA27, produced no detectable metabolite. Furthermore, the Pseudomonas strains SU1 and SU4 produced some BPA metabolites that were different from the metabolites detected in the degradation of BPA by the S. bisphenolicum strain AO1. These results suggested that all isolates could be applicable to the bioremediation of BPA-polluted soil and water. Furthermore, we suggest that Bacillus sp. YA27 and Pseudomonas SU1 and SU4 may exhibit novel BPA metabolism pathways that are distinct from that of S. bisphenolicum AO1.
Collapse
Affiliation(s)
- Yoshinobu Matsumura
- Department of Life Science and Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fenlon KA, Johnson AC, Tyler CR, Hill EM. Gas–liquid chromatography–tandem mass spectrometry methodology for the quantitation of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents and from wild populations. J Chromatogr A 2010; 1217:112-8. [DOI: 10.1016/j.chroma.2009.10.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/01/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
|
23
|
Gunnarsson L, Adolfsson-Erici M, Björlenius B, Rutgersson C, Förlin L, Larsson DGJ. Comparison of six different sewage treatment processes--reduction of estrogenic substances and effects on gene expression in exposed male fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5235-5242. [PMID: 19615714 DOI: 10.1016/j.scitotenv.2009.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
Treated sewage effluents often contain a mixture of estrogenic compounds in low concentrations. The total combined activity of these, however, may be sufficiently high to affect the reproduction of aquatic vertebrates. The introduction of advanced treatment technologies has been suggested as a way to remove micro-contaminants, including estrogenic substances. In this study, one municipal influent was treated with six different processes in parallel on a semi-large scale in order to assess their potential to reduce substances that could contribute to estrogenic effects in male fish. The effluent from a conventional, activated sludge treatment line was compared to a similarly treated effluent with a final sand-filtering step. The addition of ozonation (15 g O(3)/m(3)), a moving bed biofilm reactor (MBBR) or both in combination was also evaluated. There was also a separate treatment line that was based on a membrane bioreactor. A small battery of hepatic estrogen-responsive genes was measured in the exposed fish using quantitative PCR. Concentrations of steroid estrogens and estrogenic phenols in the effluents were measured by GC-ECNI-MS. The ozonated effluents were the only tested effluents for which all measured biological effects in exposed fish were removed. Chemical data suggested that the MBBR technology was equally effective in removing the analyzed estrogens; however, elevated expression of estrogen-responsive genes suggested that some estrogenic substances were still present in the effluent. The membrane bioreactor removed most of the measured estrogens and it reduced the induction of the estrogen-responsive genes. However, fish exposed to this effluent had significantly enlarged livers. Given that the same influent was treated in parallel with a broad set of technologies and that the chemical analyses were combined with an in vivo assessment of estrogenic responses, this study provides valuable input into the assessment of advanced treatment processes for removing estrogenic substances.
Collapse
Affiliation(s)
- L Gunnarsson
- Department of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Braathen M, Mdegela RH, Correia D, Rundberget T, Myburgh J, Botha C, Skaare JU, Sandvik M. Vitellogenin in African sharptooth catfish (Clarias gariepinus): purification, characterization, and ELISA development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:173-183. [PMID: 19184732 DOI: 10.1080/15287390802539012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vitellogenin (Vtg) induction in African sharptooth catfish (Clarias gariepinus) was assessed in order to develop a method for monitoring estrogenic pollution in African freshwater systems. Clarias gariepinus Vtg (Cg-Vtg) was purified from serum obtained from 17alpha-ethynylestradiol (EE2)-exposed fish and polyclonal antibodies against Cg-Vtg were raised. An enzyme-linked immunosorbent assay (ELISA) was developed and the induction and kinetics of Vtg were assessed in male fish in three different exposure trials using both natural estrogen (17alpha-estradiol [E2]) and synthetic EE2. Concentrations of EE2 in water and levels of EE2 conjugates in bile were quantified by liquid chromatography-mass spectrometry (LC-MS). In addition, co-administration of E2 and benzo[a]pyrene (BaP) were studied. Vtg was induced in all exposure trials and the maximum induction was observed 1 wk after exposure. Exposure of male C. gariepinus to 1.4, 2.7, and 13.9 microg/ml EE2 induced Vtg synthesis at all concentrations. BaP did not influence the Vtg kinetics. However, an increased rate of biliary excretion of EE2 was observed when BaP was additionally administered. In conclusion, Vtg is induced in male C. gariepinus after exposure to both E2 and EE2, rendering it a suitable biomarker for endocrine-disrupting chemicals in African freshwater systems.
Collapse
|
25
|
Pettersson M, Hahlbeck E, Katsiadaki I, Asplund L, Bengtsson BE. Survey of estrogenic and androgenic disruption in Swedish coastal waters by the analysis of bile fluid from perch and biomarkers in the three-spined stickleback. MARINE POLLUTION BULLETIN 2007; 54:1868-80. [PMID: 17884107 DOI: 10.1016/j.marpolbul.2007.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 07/26/2007] [Accepted: 08/01/2007] [Indexed: 05/04/2023]
Abstract
The potential for endocrine disruption close to sewage treatment plant and pulp mill effluent discharge points along the Swedish Baltic Sea coast was explored using a dual survey strategy employing two stationary fish species. The levels of vitellogenin and spiggin as biomarkers of endocrine disruption were determined in juvenile three-spined sticklebacks (Gasterosteus aculeatus L.) together with the sex ratios and the presence of intersex. As an indication of exposure, estrogenic and androgenic substances were analysed by GC-MS in bile from perch (Perca fluviatilis L.). Spiggin and vitellogenin levels in juvenile three-spined sticklebacks were generally low, and, for most sampling sites no deviation in gonad type ratios were observed. No remarkable levels of natural or synthetic estrogens or androgens were observed in bile fluid from perch, while bisphenol A and 4-nonylphenol were detected in perch from both reference sites and exposed sites. Taken together, the results did not indicate estrogenic or androgenic disruption in the investigated waters.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Brown JN, Paxéus N, Förlin L, Larsson DGJ. Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 24:267-74. [PMID: 21783821 DOI: 10.1016/j.etap.2007.06.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 05/02/2023]
Abstract
The "Fish Plasma Model" has been proposed for prioritizing pharmaceuticals for in-depth environmental risk assessment efforts. The model compares estimated drug concentrations in fish plasma with human therapeutic plasma concentrations in order to assess the risk for a pharmacological interaction in the fish. In this study the equation used to estimate bioconcentration from water to fish blood plasma was field-tested by exposing rainbow trout in situ to sewage effluents from three treatment plants. Measured plasma levels of diclofenac, naproxen, ketoprofen and gemfibrozil were similar or lower than those modelled, which is acceptable for an early tier. However, measured levels of ibuprofen were >200 times higher than modelled for the largest plant (Gryaab Göteborg). Comparing measured fish plasma concentrations to the human therapeutic concentrations ranked the relative risks from the pharmaceuticals. Diclofenac and gemfibrozil, followed by ibuprofen, presented the highest risk for target interactions, whereas naproxen and ketoprofen presented little risk. Remarkably, measured bioconcentration factors varied considerably between sites. This variation could not be attributed to differences in water concentrations, temperatures, pH or exposure times, thereby suggesting that chemical characteristics of effluents and/or recipient waters strongly affected the uptake/bioconcentration of the pharmaceuticals.
Collapse
Affiliation(s)
- Jeffrey N Brown
- The Institute for Neuroscience and Physiology, Department of Physiology/Endocrinology, the Sahlgrenska Academy at Göteborg University, Box 434, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
27
|
Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:281-300. [PMID: 17560835 DOI: 10.1016/j.cbpc.2007.04.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/30/2007] [Accepted: 04/07/2007] [Indexed: 11/30/2022]
Abstract
The paper outlines a 2-tier approach for wide-scale biomonitoring programmes. To obtain a high level of standardization, we suggest the use of caged organisms (mussels or fish). An "early warning", highly sensitive, low-cost biomarker is employed in tier 1 (i.e. lysosomal membrane stability (LMS) and survival rate, a marker for highly polluted sites). Tier 2 is used only for animals sampled at sites in which LMS changes are evident and there is no mortality, with a complete battery of biomarkers assessing the levels of pollutant-induced stress syndrome. Possible approaches for integrating biomarker data in a synthetic index are discussed, along with our proposal to use a recently developed Expert System. The latter system allows a correct selection of biomarkers at different levels of biological organisation (molecular/cellular/tissue/organism) taking into account trends in pollutant-induced biomarker changes (increasing, decreasing, bell-shape). A selection of biomarkers of stress, genotoxicity and exposure usually employed in biomonitoring programmes is presented, together with a brief overview of new biomolecular approaches.
Collapse
Affiliation(s)
- A Viarengo
- Department of Environmental and Life Sciences (DiSAV), University of Piemonte Orientale, Via Bellini 25/G 15100 Alessandria, Italy.
| | | | | | | | | |
Collapse
|