1
|
Fu X, He J, Zheng D, Yang X, Wang P, Tuo F, Wang L, Li S, Xu J, Yu J. Association of endocrine disrupting chemicals levels in serum, environmental risk factors, and hepatic function among 5- to 14-year-old children. Toxicology 2021; 465:153011. [PMID: 34715266 DOI: 10.1016/j.tox.2021.153011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood diseases by disrupting hormone-mediated processes that are critical for growth and development during childhood, however, the association among the exposure level of EDCs such as Nonylphenol (NP), Bisphenol A (BPA), Dimethyl phthalate (DMP) in children and environmental risk factors, as well as hepatic function has not been elaborated. This study aimed to discuss this interesting relationship among NP, BPA, DMP concentrations in serum, environmental risk factors, hepatic function of 5- to 14-year-old children in industrial zone, residential zone and suburb in northern district of Guizhou Province, China. In Zunyi city, 1006 children participated in cross-sectional health assessments from July to August 2018, and their parents completed identical questionnaires on the environmental risk factors of EDCs exposure to mothers and children. Serum NP, BPA and DMP concentrations were measured by high performance liquid chromatography (HPLC). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT, total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL) were detected with automatic biochemical analyzer. The median concentrations of serum NP, BPA, and DMP in the participants were 45.85 ng/mL, 26.31 ng/mL and 31.62 ng/mL, respectively, which were higher than the environmental concentration limits of the U.S. National Environmental Protection Agency (EPA). Hair gels used during pregnancy, types of domestic drinking water, nail polish and cosmetics used by children were significantly positive correlated with serum NP concentration (P < 0.05). Gender, feeding pattern, plastic water cup used during pregnancy, hair spray and perfume use for children, duration of children birth, materials for baby bottle or cup and ways to plastic products were significantly positively correlated with serum BPA concentration (P < 0.05). Gender, perms used during pregnancy, hair spray and perfume use for children, using plastic lunch box during pregnancy, duration of children birth, exposure to pesticides, parents' occupations were significantly positively correlated with serum DMP concentrations (P < 0.05). Serum NP (β = 0.296, P = 0.036) and DMP (β = 0.316, P = 0.026) concentrations and TBIL level were significantly positively correlated. Serum NP concentration and the levels of IBIL (β = 0.382, P = 0.006) are significantly positively correlated. Cosmetics used during pregnancy significantly increased AST level (β = 2.641, P = 0.021). There was a positive correlation between the frequency of hair spray and perfume use for children and the AST (β = 4.241, P = 0.022). NP, BPA and DMP, which were commonly detected in the serum of children aged 5-14 years old in Zunyi City, Northern Guizhou Province, China, were closely related to the environmental risk factors of exposure environment during pregnancy, infancy and school age. Exposure to NP, BPA and DMP would have negative effects on hepatic function, and these effects showed differences in gender and geographical location. Notably,The relationships were more evident in girls than in boys.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Deliang Zheng
- Department of Laboratory Medicine, Honghuagang District People's Hospital, Zunyi, Guizhou, 563000, PR China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563000, PR China
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lin Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Shixu Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
2
|
Das MT, Kumar SS, Ghosh P, Shah G, Malyan SK, Bajar S, Thakur IS, Singh L. Remediation strategies for mitigation of phthalate pollution: Challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124496. [PMID: 33187797 DOI: 10.1016/j.jhazmat.2020.124496] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
Phthalates are a group of emerging xenobiotic compounds commonly used as plasticizers. In recent times, there has been an increasing concern over the risk of phthalate exposure leading to adverse effects to human health and the environment. Therefore, it is necessary to not only understand the current status of phthalate pollution, their sources, exposure routes and health impacts, but also identify remediation technologies for mitigating phthalate pollution. Present review article aims to inform its readers about the ever increasing data on health burdens posed by phthalates and simultaneously highlights the recent advancements in research to alleviate phthalate contamination from environment. The article enumerates the major phthalates in use today, traces their environmental fate, addresses their growing health hazard concerns and largely focus on to provide an in-depth understanding of the different physical, chemical and biological treatment methods currently being used or under research for alleviating the risk of phthalate pollution, their challenges and the future research perspectives.
Collapse
Affiliation(s)
- Mihir Tanay Das
- Department of Environmental Science, Fakir Mohan University, Balasore 756020, Odisha, India
| | - Smita S Kumar
- J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India; Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Goldy Shah
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion 7505101, Israel
| | - Somvir Bajar
- J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati 522502, Andhra Pradesh, India.
| |
Collapse
|
3
|
Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland. WATER 2021. [DOI: 10.3390/w13060788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dimethyl phthalate (DMP), belonging to the family of Phthalate esters (PAEs), is a plasticizer and has been widely used in the world for many years. Nowadays, it has become a ubiquitous environmental pollutant and is listed as an environmental priority pollutant by China’s Environmental Monitoring Center. The purpose of this study is to estimate the responses of the bacterial community and enzyme activity to DMP contamination in three vertical flow constructed wetlands (VFCW), namely the constructed wetland A (planted with Pennisetum sinese Roxb), constructed wetland B (planted with Pennisetum purpureum Schum.), and constructed wetland C (unplanted), respectively. The results showed that the relative percentages of some genera associated with nitrogen metabolism and the function of degrading aromatic hydrocarbons were increased by DMP contamination, such as Dechloromonas agitata, Pleomorphomonas sp., Denitratisoma oestradiolicum, Plasticicumulans lactativorans, Novosphingobium sp., Alicycliphilus denitrificans, and Thauera sp. Meanwhile, principal coordinate analysis (PCA) analysis showed that the addition of DMP divided 12 samples into two groups as followed: one was the DMP group containing a-1, a-2, b-1, b-2, c-1 and c-2 while the other was no DMP group including A-1, A-2, B-1, B-2, C-1 and C-2. It indicated that DMP was the main reason for this change. In addition, by monitoring the activity of substrate enzymes, the activity of urease, phosphatase, catalase, and invertase in the wetlands before and after the experiment, these were significantly higher in the upper layer than in the lower layer and maintained high activity. Ultimately, the average influent concentration of DMP in three VFCWs was 8.12 mg/L and the average removal efficiency of the effluent was over 90%. Our results suggested that DMP was an important factor affecting the microbial community structure of wetland and the upper layer of the VFCW was the main site for the degradation of DMP. VFCW has great potential for the removal of the high concentration of DMP and it can be a good choice for the treatment of PAEs.
Collapse
|
4
|
Prasad B. Phthalate pollution: environmental fate and cumulative human exposure index using the multivariate analysis approach. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:389-399. [PMID: 33566875 DOI: 10.1039/d0em00396d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A comprehensive review was performed on the environmental fate, environmental occurrence, toxicity, physical-chemical properties, abiotic and biotic removal and degradation of phthalate esters (PAEs) to compute the overall phthalate exposure and their impact on human beings. The removal and degradation of these wide spread pollutants by abiotic processes such as hydrolysis and photodecomposition are very slow and insignificant. On the other hand, the breakdown of PAEs by microorganisms is considered to be one of the major routes of environmental degradation for these widespread pollutants. Numerous microbial strains have been reported to degrade these compounds under aerobic, anaerobic and facultative conditions. Concurrently, the environmental fate, transport and transformation/degradation of these compounds under natural conditions are highly dependent on their physical and chemical properties. In order to understand the relationship between the concentrations of PAEs of different environmental compartments and human exposure prospects, a novel average phthalate pollution index (PPI) and cumulative phthalate exposure index (PEI) were proposed using the multivariate analysis approach. These indices were computed on the basis of relative importance, environmental occurrence, toxicity, physical-chemical properties, abiotic and biotic removal and degradation of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and diethyl-hexyl phthalate (DEHP). At present, the average PPI and cumulative PEI of 29 countries were evaluated using the concentrations of PAEs reported in the literature. These indices signify the overall phthalate pollution, human exposure and their interrelation. According to the index, Slovakia, Canada, Taiwan, Sweden and South Africa are among the top five countries in terms of cumulative phthalate exposure as per the existing data. The exposure percentage of total PAEs significantly varies between 23 and 44% since many environmental compartments are not directly exposed to human beings and they are degraded under natural conditions.
Collapse
Affiliation(s)
- Bablu Prasad
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
5
|
Patidar R, Srivastava VC. Evaluation of the sono-assisted photolysis method for the mineralization of toxic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Li J, Li H, Lin D, Li M, Wang Q, Xie S, Zhang Y, Liu F. Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124030. [PMID: 33045484 DOI: 10.1016/j.jhazmat.2020.124030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Butyl benzyl phthalate (BBP) is widely used as a plasticizer to increase the plasticity and flexibility of plastic products. Although the potential health hazards of BBP have recently received extensive attention, its toxicological properties and mechanisms remain largely undefined. In the present work, growth, reproductive and developmental toxicity of BBP to Daphnia magna were evaluated, and the transcriptomic alteration of early embryos upon BBP exposure was analyzed. In a 21-day chronic toxicity test, reduced survival ratio, decreased body length, increased abnormal ratio, advanced time to first brood, and reduced offspring of D. magna were observed. BBP exposure inhibited expression of the vitellogenin gene. In addition, embryotoxicity of BBP was observed, which showed not only in the induction of abnormal neonates, but also in the shortened embryonic development cycle. RNA-Seq of early embryo treated with 0.1 mg/L BBP indicated that the pathways involved in signal transduction, cell communication, and embryonic development were significantly down-regulated, while those of biosynthesis, metabolism, cell homeostasis, redox homeostasis were remarkably up-regulated upon BBP exposure, which was consistent with the above phenotypic results. Taken together, our results highlight the toxic effects of BBP on the embryonic development and larval growth of D. magna.
Collapse
Affiliation(s)
- Jing Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Haotian Li
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Dongdong Lin
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Muyi Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Quansheng Wang
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Song Xie
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Zhang H, Lin Z, Liu B, Wang G, Weng L, Zhou J, Hu H, He H, Huang Y, Chen J, Ruth N, Li C, Ren L. Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02: Characterization, metabolic pathway and kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139138. [PMID: 32446058 DOI: 10.1016/j.scitotenv.2020.139138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer and a representative endocrine disrupting chemical. The toxicological effects of DEHP on environmental and human health have been widely investigated. In this study, the DEHP-degrading bacterial strain RL-JC02 was isolated from red soil with long-term usage of plastic mulch, and it was identified as Gordonia terrae by 16S rRNA gene analysis coupled with physiological and biochemical characterization. The biodegrading capacity of different phthalic acid esters and related intermediates was investigated as well as the performance of strain RL-JC02 under different environmental conditions, such as temperature, pH, salinity and DEHP concentration. Specifically, strain RL-JC02 showed good tolerance to low pH, with 86.6% of DEHP degraded under the initial pH of 5.0 within 72 h. The metabolic pathway of DEHP was examined by metabolic intermediate identification via a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analysis in which DEHP was hydrolyzed into phthalic acid (PA) and 2-ethylhexanol (2-EH) via mono (2-ethylhexyl) phthalate (MEHP). PA and 2-EH were further utilized through the protocatechuic acid metabolic pathway and β-oxidation via protocatechuic acid and 2-ethylhexanoic acid, respectively. The application potential of strain RL-JC02 was confirmed through the bioremediation of artificial DEHP-contaminated red soil showing 91.8% DEHP degradation by strain RL-JC02 within 30 d. The kinetics analysis of DEHP degradation by strain RL-JC02 in soil demonstrated that the process followed the modified Gompertz model. Meanwhile, the cell concentration monitoring of strain RL-JC02 in soil with absolute quantification polymerase chain reaction (qPCR) suggested that strain RL-JC02 survived well during bioremediation. This study provides sufficient evidence of a robust degrader for the bioremediation of PAE-contaminated red soil.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guan Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liyun Weng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Junliang Zhou
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hong He
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinjun Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Nahurira Ruth
- Faculty of Science, Kabale University, Kabale 317, Uganda
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
8
|
Photocatalytic degradation mechanisms of dimethyl phthalate esters by MWCNTs-anatase TiO2 nanocomposites using the UHPLC/Orbitrap/MS technique. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Li S, Chi Z, Li W. In vitro toxicity of dimethyl phthalate to human erythrocytes: From the aspects of antioxidant and immune functions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:239-245. [PMID: 31319240 DOI: 10.1016/j.envpol.2019.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
In the study, the effects of dimethyl phthalate (DMP) on the antioxidant defense capacity and immune functions of human erythrocytes were experimentally explored. DMP affected the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) and the contents of glutathione (GSH) and malondialdehyde (MDA) in erythrocytes, thus impairing the function of antioxidant defense system of erythrocytes. When DMP concentration increased from 0 to 28 μmol L-1, the SOD and GPX activities were increased firstly and then gradually decreased. When DMP concentration was below 20 μmol L-1, the relative activity of SOD was enhanced by DMP and the effect was known as hormesis. The relative activity of GPX was also increased when the concentration of DMP was below 12 μmol L-1. The CAT activity was more significantly inhibited by DMP than the activities of SOD and GPX, whereas the relative GSH content was increased by DMP. MDA levels were significantly changed after the exposure to DMP (0-24 μmol L-1). The experimental results of the activity of SOD and CAT, and the content of MDA also suggested that DMP could inhibit the immune functions of red blood cells (RBCs), which were further proved by the decrease of two indicators (RBC-C3b and RBC-IC) due to the destruction of C3b receptor with immune adherence function on erythrocyte membrane. The study provides a deep understanding of the toxicity of DMP on erythrocytes.
Collapse
Affiliation(s)
- Shixuan Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 2(#) Wenhua West Road, Weihai 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 2(#) Wenhua West Road, Weihai 264209, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China.
| | - Weiguo Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 2(#) Wenhua West Road, Weihai 264209, PR China
| |
Collapse
|
10
|
Zheng X, Yan Z, Liu P, Li H, Zhou J, Wang Y, Fan J, Liu Z. Derivation of aquatic life criteria for four phthalate esters and their ecological risk assessment in Liao River. CHEMOSPHERE 2019; 220:802-810. [PMID: 30612049 DOI: 10.1016/j.chemosphere.2018.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 05/13/2023]
Abstract
As a critical family of endocrine disruptors, phthalate esters (PAEs) attracted considerable attentions due to increasingly detected worldwide. Aquatic life criteria (ALC) for PAEs are crucial for their accurate ecological risk assessment (ERA) and have seldom been derived before. Given this concern, the purpose of the present study is to optimize the ALCs of four priority PAEs to estimate their ecological risks in Liao River. Reproductive endpoint was found to be more sensitive than other endpoints. Thus, reproduction related toxicity data were screened to derive ALCs applying species sensitivity distribution (SSD) method. ALCs of DEHP, DBP, BBP and DEP were calculated to be 0.04, 0.62, 4.71 and 41.9 μg L-1, which indicated decreased toxicity in sequence. Then, the derived ALCs of the four PAEs were applied to estimate their ecological risks in Liao River. A total of 27 sampling sites were selected to detect and analyze the exposure concentrations of PAEs. ERA using the hazard quotient (HQ) method was conducted. The results demonstrated that DEHP exhibited higher risks at 92.6% of sampling sites, and risks posed by DBP were moderate at 63.0% sampling sites. However, risks posed by BBP were low at 70.4% of sampling sites, and there were no risks posed by DEP at 96.3% of sampling sites. The results of probabilistic ecological risk assessment (PERA) indicated that probabilities of exceeding effects thresholds on 5% of species were 60.41%, 0%, 0.12%, 14.28% for DEHP, DEP, BBP and DBP, respectively. The work provides useful information to protect aquatic species in Liao River.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Hong Li
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| | - Junli Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yizhe Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
11
|
Junghare M, Spiteller D, Schink B. Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. ISME JOURNAL 2019; 13:1252-1268. [PMID: 30647456 DOI: 10.1038/s41396-019-0348-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
Syntrophorhabdus aromaticivorans is a syntrophically fermenting bacterium that can degrade isophthalate (3-carboxybenzoate). It is a xenobiotic compound which has accumulated in the environment for more than 50 years due to its global industrial usage and can cause negative effects on the environment. Isophthalate degradation by the strictly anaerobic S. aromaticivorans was investigated to advance our understanding of the degradation of xenobiotics introduced into nature, and to identify enzymes that might have ecological significance for bioremediation. Differential proteome analysis of isophthalate- vs benzoate-grown cells revealed over 400 differentially expressed proteins of which only four were unique to isophthalate-grown cells. The isophthalate-induced proteins include a phenylacetate:CoA ligase, a UbiD-like decarboxylase, a UbiX-like flavin prenyltransferase, and a hypothetical protein. These proteins are encoded by genes forming a single gene cluster that putatively codes for anaerobic conversion of isophthalate to benzoyl-CoA. Subsequently, benzoyl-CoA is metabolized by the enzymes of the anaerobic benzoate degradation pathway that were identified in the proteomic analysis. In vitro enzyme assays with cell-free extracts of isophthalate-grown cells indicated that isophthalate is activated to isophthalyl-CoA by an ATP-dependent isophthalate:CoA ligase (IPCL), and subsequently decarboxylated to benzoyl-CoA by a UbiD family isophthalyl-CoA decarboxylase (IPCD) that requires a prenylated flavin mononucleotide (prFMN) cofactor supplied by UbiX to effect decarboxylation. Phylogenetic analysis revealed that IPCD is a novel member of the functionally diverse UbiD family (de)carboxylases. Homologs of the IPCD encoding genes are found in several other bacteria, such as aromatic compound-degrading denitrifiers, marine sulfate-reducers, and methanogenic communities in a terephthalate-degrading reactor. These results suggest that metabolic strategies adapted for degradation of isophthalate and other phthalate are conserved between microorganisms that are involved in the anaerobic degradation of environmentally relevant aromatic compounds.
Collapse
Affiliation(s)
- Madan Junghare
- Microbial Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Dieter Spiteller
- Chemical Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
12
|
Yu J, Wang W, Wang J, Wang C, Li C. Short-term toxicity of dibutyl phthalate to mice intestinal tissue. Toxicol Ind Health 2018; 35:20-31. [PMID: 30453839 DOI: 10.1177/0748233718807303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate changes in intestinal histopathology and expression of heat-shock proteins (HSPs) in the small intestinal tissue of mouse after acute exposure to dibutyl phthalate (DBP). Forty-eight 60-day-old Institute of Cancer Research (ICR) mice were administered DBP by gavage once a day for 10 days. The mice were divided into three groups of 16 mice each: the high-dose group was administered 500 mg/kg body weight (BW) DBP; the low-dose group was administered 50 mg/kg BW; and the control group was not administered DBP. Significant increases in the uterine index, ovary index, and testicular index were observed in the DBP-exposed groups compared to those in the control group. Villus height and V/ C ratio significantly increased ( p < 0.05) in the duodenum and decreased ( p < 0.05) in the jejunum after the administration of DBP. The goblet cell number decreased in both the duodenum and the jejunum of mice exposed to DBP ( p < 0.05) compared to the number in the control group mice. Damage to the structure of the small intestine was accompanied by a marked increase in HSP27 expression and a decrease in the expression of HSP70 and HSP90 in both high-dose and low-dose groups. These results indicate that elevated HSP27 levels in the duodenum and jejunum may be important markers for acute DBP exposure and that HSP27 may act as a protective protein involved in intestinal mucosa repair.
Collapse
Affiliation(s)
- Jimian Yu
- 1 Ningbo College of Health Sciences, Ningbo, China
| | - Wei Wang
- 2 College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jianfeng Wang
- 3 Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Chun Wang
- 3 Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Caiyan Li
- 2 College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
13
|
|
14
|
Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050964. [PMID: 29751654 PMCID: PMC5982003 DOI: 10.3390/ijerph15050964] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
Di-(2-ethylehxyl) phthalate (DEHP) is one of the most broadly representative phthalic acid esters (PAEs) used as a plasticizer in polyvinyl chloride (PVC) production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0⁻12% NaCl), is the first DEHP-degrader isolated from marine plastic debris found in coastal saline seawater. Strain YC-YT1 completely degraded 100 mg/L DEHP within three days (pH 7.0, 30 °C). According to high-performance liquid chromatography⁻mass spectrometry (HPLC-MS) analysis, DEHP was transformed by strain YC-YT1 into phthalate (PA) via mono (2-ethylehxyl) phthalate (MEHP), then PA was used for cell growth. Furthermore, YC-YT1 metabolized initial concentrations of DEHP ranging from 0.5 to 1000 mg/L. Especially, YC-YT1 degraded up to 60% of the 0.5 mg/L initial DEHP concentration. Moreover, compared with previous reports, strain YC-YT1 had the largest substrate spectrum, degrading up to 13 kinds of PAEs as well as diphenyl, p-nitrophenol, PA, benzoic acid, phenol, protocatechuic acid, salicylic acid, catechol, and 1,2,3,3-tetrachlorobenzene. The excellent environmental adaptability of strain YC-YT1 contributed to its ability to adjust its cell surface hydrophobicity (CSH) so that 79.7⁻95.9% of DEHP-contaminated agricultural soil, river water, coastal sediment, and coastal seawater were remedied. These results demonstrate that R. ruber YC-YT1 has vast potential to bioremediate various DEHP-contaminated environments, especially in saline environments.
Collapse
|
15
|
Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms. Appl Microbiol Biotechnol 2017; 102:1085-1096. [DOI: 10.1007/s00253-017-8687-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
16
|
Enhanced dimethyl phthalate biodegradation by accelerating phthalic acid di-oxygenation. Biodegradation 2017; 28:413-421. [DOI: 10.1007/s10532-017-9805-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023]
|
17
|
Kumar V, Maitra SS. Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway. 3 Biotech 2016; 6:200. [PMID: 28330272 PMCID: PMC5031561 DOI: 10.1007/s13205-016-0524-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Methylobacillus are methanotrophs, a metabolic feature that is widespread in the phylum Proteobacteria. The study demonstrates the isolation and characterization of a newly isolated Methylobacillus sp. V29b. which grows on methanol, protocatechuate, monobutyl phthalate, dibutyl phthalate, diethyl phthalate, benzyl butyl phthalate, dioctyl phthalate and diisodecyl phthalate. Methylobacillus sp. V29b was characterized with scanning electron microscopy, transmission electron microscopy, Gram staining, antibiotics sensitivity tests and biochemical characterization. It degrades 70 % of the initial DBP in minimal salt medium and 65 % of the initial DBP in samples contaminated with DBP. DBP biodegradation kinetics was explained by the Monod growth inhibition model. Values for maximum specific growth rate (µmax) and half-velocity constant (Ks) are 0.07 h−1 and 998.2 mg/l, respectively. Stoichiometry for DBP degradation was calculated for Methylobacillus sp. V29b. Four metabolic intermediates, dibutyl phthalate (DBP), monobutyl phthalate, phthalic acid and pyrocatechol, were identified. Based on the metabolic intermediates identified, a chemical pathway for DBP degradation was proposed. Six genes for phthalic acid degradation were identified from the genome of Methylobacillus sp. V29b.
Collapse
Affiliation(s)
- Vinay Kumar
- Lab No. 117, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - S S Maitra
- Lab No. 117, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
18
|
Junghare M, Spiteller D, Schink B. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01. Environ Microbiol 2016; 18:3175-88. [PMID: 27387486 DOI: 10.1111/1462-2920.13447] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
The pathway of anaerobic degradation of o-phthalate was studied in the nitrate-reducing bacterium Azoarcus sp. strain PA01. Differential two-dimensional protein gel profiling allowed the identification of specifically induced proteins in o-phthalate-grown compared to benzoate-grown cells. The genes encoding o-phthalate-induced proteins were found in a 9.9 kb gene cluster in the genome of Azoarcus sp. strain PA01. The o-phthalate-induced gene cluster codes for proteins homologous to a dicarboxylic acid transporter, putative CoA-transferases and a UbiD-like decarboxylase that were assigned to be specifically involved in the initial steps of anaerobic o-phthalate degradation. We propose that o-phthalate is first activated to o-phthalyl-CoA by a putative succinyl-CoA-dependent succinyl-CoA:o-phthalate CoA-transferase, and o-phthalyl-CoA is subsequently decarboxylated to benzoyl-CoA by a putative o-phthalyl-CoA decarboxylase. Results from in vitro enzyme assays with cell-free extracts of o-phthalate-grown cells demonstrated the formation of o-phthalyl-CoA from o-phthalate and succinyl-CoA as CoA donor, and its subsequent decarboxylation to benzoyl-CoA. The putative succinyl-CoA:o-phthalate CoA-transferase showed high substrate specificity for o-phthalate and did not accept isophthalate, terephthalate or 3-fluoro-o-phthalate whereas the putative o-phthalyl-CoA decarboxylase converted fluoro-o-phthalyl-CoA to fluoro-benzoyl-CoA. No decarboxylase activity was observed with isophthalyl-CoA or terephthalyl-CoA. Both enzyme activities were oxygen-insensitive and inducible only after growth with o-phthalate. Further degradation of benzoyl-CoA proceeds analogous to the well-established anaerobic benzoyl-CoA degradation pathway of nitrate-reducing bacteria.
Collapse
Affiliation(s)
- Madan Junghare
- Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, D-78457, Germany. .,Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany.
| | - Dieter Spiteller
- Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, D-78457, Germany.,Department of Biology, Chemical Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Bernhard Schink
- Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, D-78457, Germany.,Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
19
|
Ren L, Jia Y, Ruth N, Qiao C, Wang J, Zhao B, Yan Y. Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16609-16619. [PMID: 27178296 DOI: 10.1007/s11356-016-6829-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
Bacterial strain YC-RL4, capable of utilizing phthalic acid esters (PAEs) as the sole carbon source for growth, was isolated from petroleum-contaminated soil. Strain YC-RL4 was identified as Mycobacterium sp. by 16S rRNA gene analysis and Biolog tests. Mycobacterium sp. YC-RL4 could rapidly degrade dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), dicyclohexyl phthalate (DCHP), and di-(2-ethylhexyl) phthalate (DEHP) under both individual and mixed conditions, and all the degradation rates were above 85.0 % within 5 days. The effects of environmental factors which might affect the degrading process were optimized as 30 °C and pH 8.0. The DEHP metabolites were detected by HPLC-MS and the degradation pathway was deduced tentatively. DEHP was transformed into phthalic acid (PA) via mono (2-ethylhexyl) phthalate (MEHP) and PA was further utilized for growth via benzoic acid (BA) degradation pathway. Cell surface hydrophobicity (CSH) assays illuminated that the strain YC-RL4 was of higher hydrophobicity while grown on DEHP and CSH increased with the higher DEHP concentration. The degradation rates of DEHP by strain YC-RL4 in different environmental samples was around 62.0 to 83.3 % and strain YC-RL4 survived well in the soil sample. These results suggested that the strain YC-RL4 could be used as a potential and efficient PAE degrader for the bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Lei Ren
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Jia
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nahurira Ruth
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qiao
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baisuo Zhao
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
20
|
Jin D, Kong X, Liu H, Wang X, Deng Y, Jia M, Yu X. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12. Int J Mol Sci 2016; 17:ijms17071012. [PMID: 27347943 PMCID: PMC4964388 DOI: 10.3390/ijms17071012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/27/2022] Open
Abstract
A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R2 > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains.
Collapse
Affiliation(s)
- Decai Jin
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiao Kong
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijun Liu
- Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing 102206, China.
| | - Xinxin Wang
- China Offshore Environmental Service Co., Ltd., Tianjin 300452, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Minghong Jia
- Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing 102206, China.
| | - Xiangyang Yu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
21
|
Benjamin S, Pradeep S, Josh MS, Kumar S, Masai E. A monograph on the remediation of hazardous phthalates. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:58-72. [PMID: 26004054 DOI: 10.1016/j.jhazmat.2015.05.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 05/25/2023]
Abstract
Phthalates or phthalic acid esters are a group of xenobiotic and hazardous compounds blended in plastics to enhance their plasticity and versatility. Enormous quantities of phthalates are produced globally for the production of plastic goods, whose disposal and leaching out into the surroundings cause serious concerns to the environment, biota and human health. Though in silico computational, in vitro mechanistic, pre-clinical animal and clinical human studies showed endocrine disruption, hepatotoxic, teratogenic and carcinogenic properties, usage of phthalates continues due to their cuteness, attractive chemical properties, low production cost and lack of suitable alternatives. Studies revealed that microbes isolated from phthalate-contaminated environmental niches efficiently bioremediate various phthalates. Based upon this background, this review addresses the enumeration of major phthalates used in industry, routes of environmental contamination, evidences for health hazards, routes for in situ and ex situ microbial degradation, bacterial pathways involved in the degradation, major enzymes involved in the degradation process, half-lives of phthalates in environments, etc. Briefly, this handy module would enable the readers, environmentalists and policy makers to understand the impact of phthalates on the environment and the biota, coupled with the concerted microbial efforts to alleviate the burden of ever increasing load posed by phthalates.
Collapse
Affiliation(s)
- Sailas Benjamin
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635, India.
| | - Selvanesan Pradeep
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635, India
| | - Moolakkariyil Sarath Josh
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635, India
| | - Sunil Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI Nehru Marg, Nagpur 440 020, India
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137, Japan
| |
Collapse
|
22
|
Chen X, Zhang X, Yang Y, Yue D, Xiao L, Yang L. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase. Biodegradation 2015; 26:171-82. [DOI: 10.1007/s10532-015-9725-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/09/2015] [Indexed: 11/30/2022]
|
23
|
Surhio MA, Talpur FN, Nizamani SM, Amin F, Bong CW, Lee CW, Ashraf MA, Shah MR. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Adv 2014. [DOI: 10.1039/c4ra09465d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have reported a highly efficient dimethyl phthalate (DMP) degrading bacteria,Bacillus thuringiensis, which mineralize 99% of 400 mg L−1DMP. Various experimental variables and intermediates were investigated with proposed biodegradation pathway.
Collapse
Affiliation(s)
- Muhammad Ali Surhio
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro-76080, Pakistan
| | - Farah N. Talpur
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro-76080, Pakistan
| | - Shafi M. Nizamani
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro-76080, Pakistan
| | - Farah Amin
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro-76080, Pakistan
| | - Chui Wei Bong
- Institute of Biological Sciences
- Faculty of Science Building
- University of Malaya
- Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Institute of Biological Sciences
- Faculty of Science Building
- University of Malaya
- Kuala Lumpur, Malaysia
| | - M. A. Ashraf
- Department of Geology
- Faculty of Science
- University of Malaya
- Kuala Lumpur, Malaysia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi 75270, Pakistan
| |
Collapse
|
24
|
Bach C, Dauchy X, Severin I, Munoz JF, Etienne S, Chagnon MC. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity. Food Chem 2013; 139:672-80. [DOI: 10.1016/j.foodchem.2013.01.046] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/30/2012] [Accepted: 01/15/2013] [Indexed: 01/14/2023]
|
25
|
Xu LJ, Chu W, Graham N. Sonophotolytic degradation of dimethyl phthalate without catalyst: analysis of the synergistic effect and modeling. WATER RESEARCH 2013; 47:1996-2004. [PMID: 23395311 DOI: 10.1016/j.watres.2013.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/13/2012] [Accepted: 01/06/2013] [Indexed: 06/01/2023]
Abstract
The merits of the combined process of high-frequency ultrasound (US) and catalyst-free ultraviolet irradiation (UV) have been evaluated in this study by investigating the sonophotolytic degradation of dimethyl phthalate (DMP). A 400 kHz ultrasonic system and a photolytic system at 253.7 nm were employed individually, sequentially and simultaneously to examine the details of the processes. High UV intensities and low pH conditions enhanced the sonophotolytic degradation of DMP and a clear synergy was evident from the combination of the US and UV irradiation with a synergetic index of 2.6. The role of ultrasonically generated hydrogen peroxide was examined qualitatively and quantitatively, and its generation and photo-decomposition were found to be the principal reason for the process synergy. A novel inverted S-curve model was developed and found to successfully describe the process of sonophotolysis and DMP degradation.
Collapse
Affiliation(s)
- L J Xu
- Department of Civil and Structural Engineering, Research Centre for Urban Environmental Technology and Management, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | |
Collapse
|
26
|
Faraji H, Mirzaie A, Waqif-Husain S. Liquid phase microextraction-ion exchange-high performance thin layer chromatography for the preconcentration, separation, and determination of plasticizers in aqueous samples. J Sep Sci 2013; 36:1486-92. [DOI: 10.1002/jssc.201200995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Hakim Faraji
- Department of Chemistry; Faculty of Science; Varamin-Pishva Branch; Islamic Azad University; Varamin Iran
| | - Afshin Mirzaie
- Faculty of Food Science and Technology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Syed Waqif-Husain
- Department of Chemistry; Science and Research Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
27
|
Abdel daiem MM, Rivera-Utrilla J, Ocampo-Pérez R, Méndez-Díaz JD, Sánchez-Polo M. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies--a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 109:164-78. [PMID: 22796723 DOI: 10.1016/j.jenvman.2012.05.014] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/08/2012] [Accepted: 05/16/2012] [Indexed: 05/26/2023]
Abstract
This article describes the most recent methods developed to remove phthalic acid esters (PAEs) from water, wastewater, sludge, and soil. In general, PAEs are considered to be endocrine disrupting chemicals (EDCs), whose effects may not appear until long after exposure. There are numerous methods for removing PAEs from the environment, including physical, chemical and biological treatments, advanced oxidation processes and combinations of these techniques. This review largely focuses on the treatment of PAEs in aqueous solutions but also reports on their treatment in soil and sludge, as well as their effects on human health and the environment.
Collapse
Affiliation(s)
- Mahmoud M Abdel daiem
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
28
|
Jin D, Bai Z, Chang D, Hoefel D, Jin B, Wang P, Wei D, Zhuang G. Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11: Genetic identification and degradation kinetics. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:80-85. [PMID: 22542774 DOI: 10.1016/j.jhazmat.2012.04.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Di-n-butyl phthalate (DBP) is one of the most widely used phthalic acid esters (PAEs), which have shown increasing environmental concerns worldwide. A bacterial strain designated as QH-11, was isolated from activated sludge and found to be capable of utilizing DBP as carbon and energy sources for growth. 16S rRNA and gyrb gene sequence analysis revealed that strain QH-11 was most closely related to Gordonia sp. Kinetics studies of DBP degradation by the strain QH-11 revealed that DBP depletion curves fit with the modified Gompertz model (R(2)>0.98). Meanwhile, substrate utilization tests showed that strain QH-11 could utilize other common PAEs and also the main intermediate product phthalic acid (PA). A gene encoding the large subunit of the phthalate dioxygenase, which is responsible for PA degradation, was successfully detected in strain QH-11. Furthermore, the results of reverse transcription quantitative PCR demonstrate that mRNA expression level of phthalate dioxygenase increased significantly after strain QH-11 was induced by DBP and PA.
Collapse
Affiliation(s)
- Decai Jin
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fang CR, Long YY, Shen DS. Comparison on the removal of phthalic acid diesters in a bioreactor landfill and a conventional landfill. BIORESOURCE TECHNOLOGY 2009; 100:5664-5670. [PMID: 19589675 DOI: 10.1016/j.biortech.2009.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 05/28/2023]
Abstract
The removal of phthalic acid diesters (PAEs) in municipal solid waste (MSW) from two simulated landfill reactors was compared. The results showed that the original concentrations of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP) in the refuse were 3.3 microg g(-1), 18.5 microg g(-1) and 0.8 microg g(-1), respectively. The concentrations of DMP and DBP in both leachate and refuse decreased greatly during decomposition of the waste in both reactors. The major loss of PAEs from the landfill occurred during an active methanogenic environment with a low concentration of volatile fatty acids (VFA) in the later period. In addition, strong correlations were found between the residual DMP, DBP concentrations and the biologically degradable material (BDM) of the refuse. Finally, PAEs degraded more rapidly in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill with direct leachate discharge.
Collapse
Affiliation(s)
- Cheng-ran Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
30
|
Lin C, Lee CJ, Mao WM, Nadim F. Identifying the potential sources of di-(2-ethylhexyl) phthalate contamination in the sediment of the Houjing River in southern Taiwan. JOURNAL OF HAZARDOUS MATERIALS 2009; 161:270-275. [PMID: 18456397 DOI: 10.1016/j.jhazmat.2008.03.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 05/26/2023]
Abstract
Sediment samples were analyzed for di-(2-ethylhexyl) phthalate (DEHP), an organic endocrine disruptor, in Houjing River in southern Taiwan. The average DEHP concentration at 10 sampling locations, spanning from upper, middle, and lower segments of the stream, was calculated at 3.81+/-6.36mgkg(-1)drywt. Highest concentration was recorded at the Jhongsing Bridge (20.22mgkg(-1)drywt.) near the Dashe Industrial Park, followed by the Renwu Bridge (8.93mgkg(-1)drywt.) near the Renwu Industrial Park. The surface sediment concentration of DEHP was found to be higher in the dry season (October and December), and lower in the wet (flood) season (August), indicating that sources of DEHP remained active and continued to recharge the Houjing River. Vertical sediment core analysis revealed that highest concentration occurred at the depth of 40-60cm, indicating that historical discharges of DEPH may have been higher than recent years. Domestic comparison of DEHP concentrations in sediment from highest to lowest could be categorized as northern, southern, central, and eastern Taiwan, respectively, and seemed to be positively correlated with population density and/or industrial activity. Compared to other countries, DEHP concentration of the Houjing River was relatively higher than rivers studied in Japan, Germany, Italy, and Malaysia, and was relatively lower than the Aire and Trent Rivers in the United Kingdom.
Collapse
Affiliation(s)
- Chitsan Lin
- National Kaohsiung Marine University, Department of Marine Environmental Engineering, 142, Haijhuan Road, Nanzih District, Kaohsiung 81157, Taiwan.
| | | | | | | |
Collapse
|
31
|
Liang DW, Fang H, Zhang T. Microbial characterization and quantification of an anaerobic sludge degrading dimethyl phthalate. J Appl Microbiol 2009; 106:296-305. [DOI: 10.1111/j.1365-2672.2008.04003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
SANTOS MSD, BUDZIAK D, MARTENDAL E, CARASEK E. Determination of Phthalates and Adipate in Physiological Saline Solutions by Solid-Phase Microextraction and Gas Chromatography. ANAL SCI 2009; 25:865-8. [DOI: 10.2116/analsci.25.865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Dilma BUDZIAK
- Departamento de Química, Universidade Federal de Santa Catarina
| | - Edmar MARTENDAL
- Departamento de Química, Universidade Federal de Santa Catarina
| | - Eduardo CARASEK
- Departamento de Química, Universidade Federal de Santa Catarina
| |
Collapse
|
33
|
Wang Y, Yin B, Hong Y, Yan Y, Gu JD. Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea. ECOTOXICOLOGY (LONDON, ENGLAND) 2008; 17:845-852. [PMID: 18651216 DOI: 10.1007/s10646-008-0247-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
Burkholderia cepacia DA2, isolated from marine sediment of the South China Sea, is capable of utilizing dimethyl phthalate (DMP) as the sole source of carbon and energy. During the transformation of DMP in batch culture, its corresponding degradation intermediates were identified as monomethyl phthalate (MMP) and phthalate acid (PA) sequentially over the time of incubation. The biodegradation biochemical pathway of DMP was DMP to MMP and then to PA before mineralization. Degradation of DMP by B. cepacia DA2 was also dependent upon DMP-induction, and the initial concentrations of DMP affected the degradation rate. Degradation kinetics fit well with the modified Gompertz model. The optimum pH and salinity was 6.0 and < 5 per thousand, respectively, for DMP degradation by B. cepacia DA2. This study showed that the indigenous microorganisms of the deep-ocean sediments are capable of DMP degradation completely.
Collapse
Affiliation(s)
- Yali Wang
- Key Laboratory of Tropical Marine Environment Dynamics (LED), South China Sea Institute of Oceanography, Chinese Academy of Sciences, 164 Xingang Road West, Guangzhou 510301, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Yu OY, Chung JW, Kwak SY. Reduced migration from flexible poly(vinyl chloride) of a plasticizer containing beta-cyclodextrin derivative. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7522-7527. [PMID: 18939596 DOI: 10.1021/es800895x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The migration of endocrine-disrupting di-(2-ethylhexyl) phthalate (DEHP) poses a serious threat to public health and the environment. In this study, we successfully prepared a plasticizerwith reduced DEHP migration by directly incorporating 2,3,6-per-O-benzoyl-beta-cyclodextrin (Bz-beta-CD) into DEHP. Bz-beta-CD was prepared by esterification between the hydroxyl groups of beta-CD and benzoyl chloride. The presence of this cyclodextrin is expected to facilitate formation of stable complexes through pi-pi association with DEHP molecules. The flexible PVC was prepared with a gelation-fusion process that uses the prepared migration-resistant plasticizer, and its properties (flexibility, thermal stability, and clarity) were evaluated by carrying out DSC and tensile testing, TGA, and haze testing, respectively. No significant changes in the physical properties of the flexible PVC were observed when Bz-beta-CD was added. DEHP migration tests were carried out for the flexible PVC according to the ISO 3826:1993(E) test method, and the quantity of migrated DEHP was then determined with UV-vis spectroscopy. It was found that the addition of Bz-beta-CD decreases the levels of DEHP migration from the flexible PVC samples by almost 40%. We investigated the molecular interaction between Bz-beta-CD and DEHP using molecular mechanics simulations, and we conclude that this reduction in DEHP migration is due to the formation of stabilized pi-pi attractive association and inclusion complexes of Bz-beta-CD and DEHP in flexible PVC.
Collapse
Affiliation(s)
- Ong Yong Yu
- Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | | | | |
Collapse
|
35
|
Liang DW, Zhang T, Fang HHP, He J. Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 2008; 80:183-98. [DOI: 10.1007/s00253-008-1548-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
|
36
|
Wu D, Mahmood Q, Wu L, Zheng P. Activated sludge-mediated biodegradation of dimethyl phthalate under fermentative conditions. J Environ Sci (China) 2008; 20:922-926. [PMID: 18817069 DOI: 10.1016/s1001-0742(08)62187-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The biodegradation of dimethyl phthalate (DMP) was investigated under fermentative conditions in this study. The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods. The fermentative bacteria were able to biodegrade the DMP under anaerobic conditions, with the biodegradation rate of 0.36 mg DMP/(L x h). The results demonstrated that the DMP degradation under fermentative conditions followed the modified Gompertz model with the correlation coefficient of 0.99. Monomethyl phthalate (MMP) and phthalic acid (PA) were detected as the intermediates of DMP biodegradation. During the experiment, MMP was rapidly produced and removed; however, PA accumulated as the biodegradation was slower throughout the course of the experiment. The COD(Cr) concentration decreased from 245.06 to 72.01 mg/L after the experimental operation of 20 d. The volume of methane produced was 3.65 ml over a period of 20 d and the amount of methane recovered corresponded to 40.2% of the stoichiometric value. The COD(Cr) variation and methane production showed that the DMP could not be completely mineralized under the fermentative conditions, which implied that the fermentative bacteria were not able to biodegrade DMP entirely.
Collapse
Affiliation(s)
- Donglei Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China.
| | | | | | | |
Collapse
|