1
|
Wang L, Cao G, Zhang ZF, Liu LY, Jia SM, Fu MQ, Ma WL. Occurrence, seasonal variation and gas/particle partitioning of current used pesticides (CUPs) across 60 °C temperature and 30° latitudes in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132983. [PMID: 37984139 DOI: 10.1016/j.jhazmat.2023.132983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Gas and particle phases samples were collected at three sites in China in 2019-2020, with 60 °C temperature span and 30° latitude range. Totally, among 76 target current used pesticides (CUPs) with four types, 51 were quantified in at least one sample. The concentrations of individual CUPs ranged from 8 orders of magnitude, indicating different pollution levels. Herbicides were the dominated CUPs in Northeast China, while higher concentrations of fungicides were found in Southeast China. The highest concentrations of CUPs were observed in Southeast China in spring and winter, while in summer and autumn in Northeast China, caused by local climates and crop cultivation patterns. The gas/particle (G/P) partitioning of CUPs was mainly influenced by their physicochemical properties and ambient temperature. The G/P partitioning study indicated that the L-M-Y model was the optimum prediction model for herbicides, fungicides and pyrethroids. The L-M-Y model and the H-B model presented equal performance for organophosphate insecticides. To our knowledge, the L-M-Y model was firstly applied for the study of the G/P partitioning of CUPs, which provided new insights into the related fields of new emergency contaminates.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Gang Cao
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Hernández-Del Castillo PC, Robledo-Trujillo G, Rodríguez-González V. Development of a visible-light-active-NiTiO 3 coating for the efficient removal of the persistent herbicide 2,6-dichlorobenzamide (BAM) from drinking water. CHEMOSPHERE 2023; 339:139628. [PMID: 37524267 DOI: 10.1016/j.chemosphere.2023.139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
In the present research work, the photocatalytic evaluation of NiTiO3 nanoparticles immobilized on glass plates by the spin-coating procedure was carried out in the degradation of the recalcitrant herbicide 2,6-dichlorobenzamide (BAM). The concentrations of Ni employed to synthesize NiTiO3 nanoparticles were 1 wt% (1TESNi) and 2 wt% (2TESNi). The stability of coatings was evaluated by several washings and thermal treatments, which were verified by UV-vis analyses. The morphology of the coatings was studied by scanning electron microscopy (SEM-EDS). The coatings displayed thickness values of 1.35 and 2.56 μm for TiO2 and 1TESNi, respectively. The crystalline phases of the coatings were analyzed by X-ray diffraction (XRD), confirming the presence of NiTiO3 and other phases related to TiO2. The bandgap of 1TESNi, compared with the bare TiO2, was reduced from 2.96 to 2.40 eV as a consequence of Ni addition. The TiO2, 1TESNi and 2TESNi coatings were evaluated in the photodegradation of BAM using visible-light for 240 min. The highest effectiveness was displayed by the 1TESNi coating, obtaining degradation of 92.56% after 240 min. Also, the photocatalytic efficiency of the 1TESNi coating was only reduced 1.99% after 3 reuse cycles in the BAM degradation. The scavenger tests revealed that the main oxidizing species involved in the reaction were the •OH- and •O2- radicals. The 1TESNi coating showed the highest photocatalytic efficiency because of its absorption in the visible-light region, valuable surface area and electronic charge separation. Thus, these advantageous features guarantee that NiTiO3 coatings are an efficient method for degrading recalcitrant herbicides from drinking water using a practical way to recover and reuse photocatalysts.
Collapse
Affiliation(s)
- P C Hernández-Del Castillo
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico
| | - G Robledo-Trujillo
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico
| | - V Rodríguez-González
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
4
|
Kim H, Voutchkova DD, Johnsen AR, Albers CN, Thorling L, Hansen B. National Assessment of Long-Term Groundwater Response to Pesticide Regulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14387-14396. [PMID: 36162811 PMCID: PMC9583610 DOI: 10.1021/acs.est.2c02261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 05/24/2023]
Abstract
Quantitative assessments of long-term, national-scale responses of groundwater quality to pesticide applications are essential to evaluate the effectiveness of pesticide regulations. Retardation time in the unsaturated zone (Ru) was estimated for selected herbicides (atrazine, simazine, and bentazon) and degradation products (desethylatrazine (DEA), desisopropylatrazine (DIA), desethyldesisopropylatrazine (DEIA), and BAM) using a multidecadal time series of groundwater solute chemistry (∼30 years) and herbicide sales (∼60 years). The sampling year was converted to recharge year using groundwater age. Then, Ru was estimated using a cross-correlation analysis of the sales and the frequencies of detection and exceedance of the drinking water standard (0.1 μg/L) of each selected compound. The results showed no retardation of the highly polar, thus mobile, parent compounds (i.e., bentazon), while Ru of the moderately polar compounds (i.e., simazine) was about a decade, and their degradation products showed even longer Ru. The temporal trends of the degradation products did not mirror those of the sale data, which were attributed to the various sale periods of the parent compounds, sorption of the parent compounds, and complex degradation pathways. The longer Ru in clayey/organic sediments than in sandy sediments further confirmed the role of soil-specific retardation as an important factor to consider in groundwater protection.
Collapse
Affiliation(s)
- Hyojin Kim
- Department
of Quaternary and Groundwater Mapping, Geological
Survey of Denmark and Greenland (GEUS), Universitetsbyen 81, Building 1782, 8000 Aarhus, Denmark
| | - Denitza D. Voutchkova
- Department
of Quaternary and Groundwater Mapping, Geological
Survey of Denmark and Greenland (GEUS), Universitetsbyen 81, Building 1782, 8000 Aarhus, Denmark
| | - Anders Risbjerg Johnsen
- Department
of Geochemistry, Geological Survey of Denmark
and Greenland (GEUS), Øster Voldgade 10, 1350, Copenhagen, Denmark
| | - Christian Nyrop Albers
- Department
of Geochemistry, Geological Survey of Denmark
and Greenland (GEUS), Øster Voldgade 10, 1350, Copenhagen, Denmark
| | - Lærke Thorling
- Department
of Quaternary and Groundwater Mapping, Geological
Survey of Denmark and Greenland (GEUS), Universitetsbyen 81, Building 1782, 8000 Aarhus, Denmark
| | - Birgitte Hansen
- Department
of Quaternary and Groundwater Mapping, Geological
Survey of Denmark and Greenland (GEUS), Universitetsbyen 81, Building 1782, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Wang J, Poursat BAJ, Feng J, de Ridder D, Zhang C, van der Wal A, Sutton NB. Exploring organic micropollutant biodegradation under dynamic substrate loading in rapid sand filters. WATER RESEARCH 2022; 221:118832. [PMID: 35949068 DOI: 10.1016/j.watres.2022.118832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial removal of trace organic micropollutants (OMPs) from drinking water sources remains challenging. Nitrifying and heterotrophic bacteria in rapid sand filters (RSFs) are capable of biodegrading OMPs while growing on ammonia and dissolved organic matter (DOM). The loading patterns of ammonia and DOM may therefore affect microbial activities as well as OMP biodegradation. So far, there is very limited information on the effect of substrate loading on OMP biodegradation at environmentally relevant concentrations (∼ 1 µg/L) in RSFs. We investigated the biodegradation rates of 16 OMPs at various substrate loading rates and/or empty bed contact times (EBCT). The presence of DOM improved the biodegradation of paracetamol (41.8%) by functioning as supplementary carbon source for the heterotrophic degrader, while hindering the biodegradation of 2,4-D, mecoprop and benzotriazole due to substrate competition. Lower loading ratios of DOM/benzotriazole benefited benzotriazole biodegradation by reducing substrate competition. Higher ammonia loading rates enhanced benzotriazole removal by stimulating nitrification-based co-metabolism. However, stimulating nitrification inhibited heterotrophic activity, which in turn inhibited the biodegradation of paracetamol, 2,4-D and mecoprop. A longer EBCT promoted metformin biodegradation as it is a slowly biodegradable compound, but suppressed the biodegradation of paracetamol and benzotriazole due to limited substrate supply. Therefore, the optimal substrate loading pattern is contingent on the type of OMP, which can be chosen based on the priority compounds in practice. The overall results contribute to understanding OMP biodegradation mechanisms at trace concentrations and offer a step towards enhancing microbial removal of OMPs from drinking water by optimally using RSFs.
Collapse
Affiliation(s)
- Jinsong Wang
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jiahao Feng
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH Rotterdam, The Netherlands
| | - Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH Wageningen, The Netherlands
| | - Albert van der Wal
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Evides Water Company N.V., Schaardijk 150, 3063 NH Rotterdam, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
6
|
Oliva J, Valadez-Renteria E, Kshetri YK, Encinas A, Lee SW, Rodriguez-Gonzalez V. A sustainable composite of rice-paper/BaMoO 4 nanoparticles for the photocatalytic elimination of the recalcitrant 2,6-dichlorobenzamide (BAM) pesticide in drinking water and its mechanisms of degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59915-59929. [PMID: 35397726 DOI: 10.1007/s11356-022-19908-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
This research reports the use of biodegradable and flexible composites for the removal of the 2,6-dichlorobenzamide (BAM) pesticide from drinking water. Rice paper (a biodegradable substrate) and Ag/BaMoO4 (MOBA) nanoparticles were employed to fabricate these composites. The SEM images showed that the MOBA nanoparticles with sizes of 300-800 nm decorated the surface of the biodegradable substrate and formed porous agglomerates, which have sizes of 1-3 μm. The MOBA powders were dispersed in drinking water polluted with BAM and were exposed to 4 h of UV-VIS irradiation, producing a maximum degradation of 82% for the BAM. Moreover, the flexible and biodegradable rice/MOBA composite produced a maximum removal percentage of 95% for the BAM. Also, we studied the effect of pH of the initial solution utilizing both powders and composites. From here, we found that a pH of 10 leads to a complete degradation of BAM after 4h, while a pH of 3 degraded only 37-47% of BAM for the same reaction time. According to the scavenger experiments, the •OH radical and the h+ were the main oxidizing agents for the BAM. Overall, the biodegradable photocatalytic composites are a reliable and a low-cost alternative to eliminate pesticides from the drinking water and can find application in water purification processes.
Collapse
Affiliation(s)
- Jorge Oliva
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, México.
| | - Ernesto Valadez-Renteria
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, México
| | - Yuwaraj K Kshetri
- Department of Environmental and Bio-Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Armando Encinas
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, México
| | - Soo Wohn Lee
- Department of Environmental and Bio-Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Vicente Rodriguez-Gonzalez
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, México
| |
Collapse
|
7
|
Nielsen TK, Horemans B, Lood C, T'Syen J, van Noort V, Lavigne R, Ellegaard-Jensen L, Hylling O, Aamand J, Springael D, Hansen LH. The complete genome of 2,6-dichlorobenzamide (BAM) degrader Aminobacter sp. MSH1 suggests a polyploid chromosome, phylogenetic reassignment, and functions of plasmids. Sci Rep 2021; 11:18943. [PMID: 34556718 PMCID: PMC8460812 DOI: 10.1038/s41598-021-98184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells. Biological treatment with MSH1 is considered a potential sustainable alternative to remediate BAM-contamination in drinking water production. We present the complete genome of MSH1, which was determined independently in two institutes at Aarhus University and KU Leuven. Divergences were observed between the two genomes, i.e. one of them lacked four plasmids compared to the other. Besides the circular chromosome and the two previously described plasmids involved in BAM catabolism, pBAM1 and pBAM2, the genome of MSH1 contained two megaplasmids and three smaller plasmids. The MSH1 substrain from KU Leuven showed a reduced genome lacking a megaplasmid and three smaller plasmids and was designated substrain MK1, whereas the Aarhus variant with all plasmids was designated substrain DK1. A plasmid stability experiment indicate that substrain DK1 may have a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids per cell. Finally, strain MSH1 is reassigned as Aminobacter niigataensis MSH1.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Section for Microbiology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium.,Sustainable Materials Unit, BAT Knowledge Centre, Vlaams Instituut voor Technologisch Onderzoek, Mol, Belgium
| | - Cédric Lood
- Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Jeroen T'Syen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Lea Ellegaard-Jensen
- Section of Environmental Microbiology and Circular Resource Flow, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Hylling
- Section of Environmental Microbiology and Circular Resource Flow, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium.
| | - Lars Hestbjerg Hansen
- Section for Microbiology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
8
|
Desiante WL, Minas NS, Fenner K. Micropollutant biotransformation and bioaccumulation in natural stream biofilms. WATER RESEARCH 2021; 193:116846. [PMID: 33540344 DOI: 10.1016/j.watres.2021.116846] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/27/2023]
Abstract
Micropollutants are ubiquitously found in natural surface waters and pose a potential risk to aquatic organisms. Stream biofilms, consisting of bacteria, algae and other microorganisms potentially contribute to bioremediating aquatic environments by biotransforming xenobiotic substances. When investigating the potential of stream biofilms to remove micropollutants from the water column, it is important to distinguish between different fate processes, such as biotransformation, passive sorption and active bioaccumulation. However, due to the complex nature of the biofilm community and its extracellular matrix, this task is often difficult. In this study, we combined biotransformation experiments involving natural stream biofilms collected up- and downstream of wastewater treatment plant outfalls with the QuEChERS extraction method to distinguish between the different fate processes. The QuEChERS extraction proved to be a suitable method for a broad range of micropollutants (> 80% of the investigated compounds). We found that 31 out of 63 compounds were biotransformed by the biofilms, with the majority being substitution-type biotransformations, and that downstream biofilms have an increased biotransformation potential towards specific wastewater-relevant micropollutants. Overall, using the experimental and analytical strategy developed, stream biofilms were demonstrated to have a broad inherent micropollutant biotransformation potential, and to thus contribute to bioremediation and improving ecosystem health.
Collapse
Affiliation(s)
- Werner L Desiante
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Nora S Minas
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
9
|
Melsbach A, Pittois D, Bayerle M, Daubmeier M, Meyer AH, Hölzer K, Gallé T, Elsner M. Isotope fractionation of micropollutants during large-volume extraction: heads-up from a critical method evaluation for atrazine, desethylatrazine and 2,6-dichlorobenzamide at low ng/L concentrations in groundwater. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:35-52. [PMID: 32972262 DOI: 10.1080/10256016.2020.1812599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Micropollutants are frequently detected in groundwater. Thus, the question arises whether they are eliminated by natural attenuation so that pesticide degradation would be observed with increasing residence time in groundwater. Conventional analytical approaches rely on parent compound/metabolite ratios. These are difficult to interpret if metabolites are sorbed or further transformed. Compound-specific stable isotope analysis (CSIA) presents an alternative for identifying degradation based on the analysis of natural isotope abundances in pesticides and their changes during degradation. However, CSIA by gas chromatography-isotope ratio mass spectrometry is challenged by the low concentrations (ng/L) of micropollutants in groundwater. Consequently, large amounts of water need to be sampled requiring enrichment and clean-up steps from interfering matrix effects that must not introduce artefacts in measured isotope values. The aim of this study was to evaluate the accuracy of isotope ratio measurements of the frequently detected micropollutants atrazine, desethylatrazine and 2,6-dichlorobenzamide after enrichment from large water volumes (up to 100 L) by solid-phase extraction with consecutive clean-up by HPLC. Associated artefacts of isotope discrimination were found to depend on numerous factors including organic matter content and extraction volume. This emphasizes the necessity to perform a careful method evaluation of sample preparation and sample pre-treatment prior reliable CSIA.
Collapse
Affiliation(s)
- Aileen Melsbach
- Institute of Groundwater Ecology, Helmholtz Center Munich, Neuherberg, Germany
- Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Denis Pittois
- Environmental Research & Innovation Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Michael Bayerle
- Environmental Research & Innovation Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Martina Daubmeier
- Institute of Groundwater Ecology, Helmholtz Center Munich, Neuherberg, Germany
| | - Armin H Meyer
- Institute of Groundwater Ecology, Helmholtz Center Munich, Neuherberg, Germany
| | - Kathrin Hölzer
- Institute of Groundwater Ecology, Helmholtz Center Munich, Neuherberg, Germany
| | - Tom Gallé
- Environmental Research & Innovation Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Center Munich, Neuherberg, Germany
- Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Pandey SK, Ojha PK, Roy K. Exploring QSAR models for assessment of acute fish toxicity of environmental transformation products of pesticides (ETPPs). CHEMOSPHERE 2020; 252:126508. [PMID: 32240857 DOI: 10.1016/j.chemosphere.2020.126508] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental transformation products of pesticides (ETPPs) have a great deal of ecological impact owing to their ability to cause toxicity to the aquatic organisms, which can then be translated to the humans. The limited experimental data on biochemical and toxic effects of ETPPs, the high test costs together with regulatory limitations and the international push to reduce animal testing encourage greater dependence on predictive in silico techniques like quantitative structure-activity relationship (QSAR) models. The aim of the present work was to explore the key structural features, which regulate the toxicity towards fishes, for 85 ETPPs using a partial least squares (PLS) regression based chemometric model developed according to Organisation for Economic Co-operation and Development (OECD) guidelines. The model was extensively validated using both internal and external validation metrics, and the results so obtained justify the reliability and usefulness of the developed model (Q2 = 0.648, R2pred or Q2F1 = 0.734 and Q2F2 = 0.733). From the developed model, we can conclude that lipophilicity, polarity, presence of branching and the functional form of O-atom in the transformed structures of pesticides are the important features that are to be considered during ecotoxicity assessment of ETPPs. The information obtained from the descriptors of the developed model could be utilized in the future for assessing ETPPs with the benefit of providing an early warning of their potentially detrimental effect on fishes for regulatory purposes.
Collapse
Affiliation(s)
- Sapna Kumari Pandey
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
11
|
Svendsen SB, Carvalho PN, Bollmann UE, Ellegaard-Jensen L, Albers CN, Strobel BW, Jacobsen CS, Bester K. A comparison of the fate of diflufenican in agricultural sandy soil and gravel used in urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136803. [PMID: 32069738 DOI: 10.1016/j.scitotenv.2020.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Diflufenican is used in both agricultural and urban areas to control weeds. However, in Europe pesticides are regulated using agricultural soil data only. Urban soils where the top layer is replaced by gravel (e.g. driveways, outdoor tiled areas) can evidently differ from agricultural soils in many biotic and physical properties. In the present study, we compared the degradation, mineralization, sorption and aging of diflufenican between an agricultural sandy soil to a gravel used in urban areas. Both diflufenican and its two main aerobic metabolites were investigated. Diflufenican and the metabolites degraded slower in gravel than in agricultural soil. One of the metabolites, 2-[3-(Trifluoromethyl)phenoxy]nicotinic acid (AE B107137 as identified by EFSA; further abbreviated as AE-B), was formed from the incubation of diflufenican in both soil and gravel, however, showing different formation patterns in the two materials: No accumulation of AE-B was determined in the soil, whereas in gravel, an accumulation of AE-B was determined over the full study period of 150 days. After 150 days, approximately 10% of the applied diflufenican was mineralised in the soil (cumulative), while it was not mineralised in the gravel. Diflufenican showed much stronger sorption to the soil than to the gravel, while the sorption of the metabolites was weaker than diflufenican in both soil and gravel. Within the experimental period, the influence of aging on the fate of diflufenican in soil and gravel is limited (<0.9 and <1.4%, respectively) when compared to the amount of compound still present in the soil. Overall, the results imply shortcomings in the risk assessment procedures requested for the registration of pesticides for urban areas.
Collapse
Affiliation(s)
- Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Christian N Albers
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 København K, Denmark
| | - Bjarne W Strobel
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Carsten S Jacobsen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
12
|
Daly AJ, Stock M, Baetens JM, De Baets B. Guiding Mineralization Co-Culture Discovery Using Bayesian Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14459-14469. [PMID: 31682110 DOI: 10.1021/acs.est.9b05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many disciplines rely on testing combinations of compounds, materials, proteins, or bacterial species to drive scientific discovery. It is time-consuming and expensive to determine experimentally, via trial-and-error or random selection approaches, which of the many possible combinations will lead to desirable outcomes. Hence, there is a pressing need for more rational and efficient experimental design approaches to reduce experimental effort. In this work, we demonstrate the potential of machine learning methods for the in silico selection of promising co-culture combinations in the application of bioaugmentation. We use the example of pollutant removal in drinking water treatment plants, which can be achieved using co-cultures of a specialized pollutant degrader with combinations of bacterial isolates. To reduce the experimental effort needed to discover high-performing combinations, we propose a data-driven experimental design. Based on a dataset of mineralization performance for all pairs of 13 bacterial species co-cultured with MSH1, we built a Gaussian process regression model to predict the Gompertz mineralization parameters of the co-cultures of two and three species, based on the single-strain parameters. We subsequently used this model in a Bayesian optimization scheme to suggest potentially high-performing combinations of bacteria. We achieved good performance with this approach, both for predicting mineralization parameters and for selecting effective co-cultures, despite the limited dataset. As a novel application of Bayesian optimization in bioremediation, this experimental design approach has promising applications for highlighting co-culture combinations for in vitro testing in various settings, to lessen the experimental burden and perform more targeted screenings.
Collapse
Affiliation(s)
- Aisling J Daly
- KERMIT, Department of Data Analysis and Mathematical Modelling , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| |
Collapse
|
13
|
Rychter P, Lewicka K, Rogacz D. Environmental usefulness of PLA/PEG blends for controlled‐release systems of soil‐applied herbicides. J Appl Polym Sci 2019. [DOI: 10.1002/app.47856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Piotr Rychter
- Faculty of Mathematics and Natural ScienceJan Długosz University in Częstochowa 13/15 Armii Krajowej Av., 42‐200 Częstochowa Poland
| | - Kamila Lewicka
- Faculty of Mathematics and Natural ScienceJan Długosz University in Częstochowa 13/15 Armii Krajowej Av., 42‐200 Częstochowa Poland
| | - Diana Rogacz
- Faculty of Mathematics and Natural ScienceJan Długosz University in Częstochowa 13/15 Armii Krajowej Av., 42‐200 Częstochowa Poland
| |
Collapse
|
14
|
Individual-Based Modelling of Invasion in Bioaugmented Sand Filter Communities. Processes (Basel) 2018. [DOI: 10.3390/pr6010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
McManus SL, Coxon CE, Mellander PE, Danaher M, Richards KG. Hydrogeological characteristics influencing the occurrence of pesticides and pesticide metabolites in groundwater across the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:594-602. [PMID: 28577396 DOI: 10.1016/j.scitotenv.2017.05.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Pesticide contamination of water is a potential environmental issue which may impact the quality of drinking water. The full extent of pesticide contamination is not fully understood due to complex fate pathways in the subsurface. Groundwater pesticide occurrence was investigated at seven agricultural sites in different hydrogeological settings to identify where pesticide occurrence dominated in temperate maritime climatic conditions. In Ireland, six cereal dominated sites in the South East and one grassland site in the West were investigated. Soil and subsoils varied from acid brown earths with high permeability to clay and silt rich tills with lower permeability. Over a 2year monitoring period, 730 samples were collected from a network of dedicated wells and springs across the seven sites. Multi-nested piezometers were installed in intergranular, fissured and karstic type aquifers to target shallow, transition and deeper groundwaters. Several springs were also sampled and the network included a confined aquifer. Groundwater was analysed for nine pesticide active ingredients and eight metabolites. Mecoprop and 2,4-D were the most frequently detected active ingredients above the instrument detection limit, accounting for 36% and 26% of the 730 samples collected and analysed. Phenoxyacetic acid was the most frequently detected and widespread metabolite found in 39% of samples collected at all seven sites. Where the European Union drinking water standard of 0.1μg/L was exceeded, metabolites accounted for the majority of exceedances with 3,5-dichlorobenzoic acid (DBA) and phenoxyacetic acid (PAC) dominating. Highest detections were encountered in sites with well drained soils underlain by gravel and limestone aquifers and within gravel lenses in lower permeability subsoil. Across the seven sites pesticide detections were mostly associated with metabolites and the environmental impact of many of these is unknown as they have received little attention in groundwater previously.
Collapse
Affiliation(s)
- Sarah-Louise McManus
- Teagasc Environmental Research Centre, Johnstown Castle, Wexford, Ireland; Centre for the Environment/Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| | - Catherine E Coxon
- Centre for the Environment/Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| | - Per-Erik Mellander
- Teagasc Environmental Research Centre, Johnstown Castle, Wexford, Ireland
| | - Martin Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown Dublin 15, Ireland
| | - Karl G Richards
- Teagasc Environmental Research Centre, Johnstown Castle, Wexford, Ireland.
| |
Collapse
|
16
|
Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal. Appl Microbiol Biotechnol 2017; 101:5235-5245. [PMID: 28616645 DOI: 10.1007/s00253-017-8362-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 01/26/2023]
Abstract
The pesticide metabolite 2,6-dichlorobenzamide (BAM) is very persistent in both soil and groundwater and has become one of the most frequently detected groundwater micropollutants. BAM is not removed by the physico-chemical treatment techniques currently used in drinking water treatment plants (DWTP); therefore, if concentrations exceed the legal threshold limit, it represents a sizeable problem for the stability and quality of drinking water production, especially in places that depend on groundwater for drinking water. Bioremediation is suggested as a valuable strategy for removing BAM from groundwater by deploying dedicated BAM-degrading bacteria in DWTP sand filters. Only a few bacterial strains with the capability to degrade BAM have been isolated, and of these, only three isolates belonging to the Aminobacter genus are able to mineralise BAM. Considerable effort has been made to elucidate degradation pathways, kinetics and degrader genes, and research has recently been presented on the application of strain Aminobacter sp. MSH1 for the purification of BAM-contaminated water. The aim of the present review was to provide insight into the issue of BAM contamination and to report on the current status and knowledge with regard to the application of microorganisms for purification of BAM-contaminated water resources. This paper discusses the prospects and challenges for bioaugmentation of DWTP sand filters with specific BAM-degrading bacteria and identifies relevant perspectives for future research.
Collapse
|
17
|
Genetic (In)stability of 2,6-Dichlorobenzamide Catabolism in Aminobacter sp. Strain MSH1 Biofilms under Carbon Starvation Conditions. Appl Environ Microbiol 2017; 83:AEM.00137-17. [PMID: 28363960 DOI: 10.1128/aem.00137-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
Aminobacter sp. strain MSH1 grows on and mineralizes the groundwater micropollutant 2,6-dichlorobenzamide (BAM) and is of interest for BAM removal in drinking water treatment plants (DWTPs). The BAM-catabolic genes in MSH1 are located on plasmid pBAM1, carrying bbdA, which encodes the conversion of BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) (BbdA+ phenotype), and plasmid pBAM2, carrying gene clusters encoding the conversion of 2,6-DCBA to tricarboxylic acid (TCA) cycle intermediates (Dcba+ phenotype). There are indications that MSH1 easily loses its BAM-catabolic phenotype. We obtained evidence that MSH1 rapidly develops a population that lacks the ability to mineralize BAM when grown on nonselective (R2B medium) and semiselective (R2B medium with BAM) media. Lack of mineralization was explained by loss of the Dcba+ phenotype and corresponding genes. The ecological significance of this instability for the use of MSH1 for BAM removal in the oligotrophic environment of DWTPs was explored in lab and pilot systems. A higher incidence of BbdA+ Dcba- MSH1 cells was also observed when MSH1 was grown as a biofilm in flow chambers under C and N starvation conditions due to growth on nonselective residual assimilable organic carbon. Similar observations were made in experiments with a pilot sand filter reactor bioaugmented with MSH1. BAM conversion to 2,6-DCBA was not affected by loss of the DCBA-catabolic genes. Our results show that MSH1 is prone to BAM-catabolic instability under the conditions occurring in a DWTP. While conversion of BAM to 2,6-DCBA remains unaffected, BAM mineralization activity is at risk, and monitoring of metabolites is warranted.IMPORTANCE Bioaugmentation of dedicated biofiltration units with bacterial strains that grow on and mineralize micropollutants was suggested as an alternative for treating micropollutant-contaminated water in drinking water treatment plants (DWTPs). Organic-pollutant-catabolic genes in bacteria are often easily lost, especially under nonselective conditions, which affects the bioaugmentation success. In this study, we provide evidence that Aminobacter sp. strain MSH1, which uses the common groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C source, shows a high frequency of loss of its BAM-mineralizing phenotype due to the loss of genes that convert 2,6-DCBA to Krebs cycle intermediates when nonselective conditions occur. Moreover, we show that catabolic-gene loss also occurs in the oligotrophic environment of DWTPs, where growth of MSH1 depends mainly on the high fluxes of low concentrations of assimilable organic carbon, and hence show the ecological relevance of catabolic instability for using strain MSH1 for BAM removal in DWTPs.
Collapse
|
18
|
Horemans B, Raes B, Vandermaesen J, Simanjuntak Y, Brocatus H, T'Syen J, Degryse J, Boonen J, Wittebol J, Lapanje A, Sørensen SR, Springael D. Biocarriers Improve Bioaugmentation Efficiency of a Rapid Sand Filter for the Treatment of 2,6-Dichlorobenzamide-Contaminated Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1616-1625. [PMID: 28027645 DOI: 10.1021/acs.est.6b05027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aminobacter sp. MSH1 immobilized in an alginate matrix in porous stones was tested in a pilot system as an alternative inoculation strategy to the use of free suspended cells for biological removal of micropollutant concentrations of 2,6-dichlorobenzamide (BAM) in drinking water treatment plants (DWTPs). BAM removal rates and MSH1 cell numbers were recorded during operation and assessed with specific BAM degradation rates obtained in lab conditions using either freshly grown cells or starved cells to explain reactor performance. Both reactors inoculated with either suspended or immobilized cells showed immediate BAM removal under the threshold of 0.1 μg/L, but the duration of sufficient BAM removal was 2-fold (44 days) longer for immobilized cells. The longer sufficient BAM removal in case of immobilized cells compared to suspended cells was mainly explained by a lower initial loss of MSH1 cells at operational start due to volume replacement and shear. Overall loss of activity in the reactors though was due to starvation, and final removal rates did not differ between reactors inoculated with immobilized and suspended cells. Management of assimilable organic carbon, in addition to cell immobilization, appears crucial for guaranteeing long-term BAM degradation activity of MSH1 in DWTP units.
Collapse
Affiliation(s)
- Benjamin Horemans
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| | - Bart Raes
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| | - Johanna Vandermaesen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| | - Yanti Simanjuntak
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| | - Hannelore Brocatus
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| | - Jeroen T'Syen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| | - Julie Degryse
- De Watergroep , Vooruitgangstraat 189, 1030 Brussels, Belgium
| | - Jos Boonen
- De Watergroep , Vooruitgangstraat 189, 1030 Brussels, Belgium
| | | | - Ales Lapanje
- Josef Stefan Institute , Jamova 49, 1000 Ljubljana, Slovenia
- National Research Saratov State University , Astrakhanskaya 83, 410012 Saratov, Russian Federation
| | - Sebastian R Sørensen
- Department of Geochemistry, Geological Survey of Denmark and Greenland , Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium
| |
Collapse
|
19
|
Vandermaesen J, Horemans B, Degryse J, Boonen J, Walravens E, Springael D. Mineralization of the Common Groundwater Pollutant 2,6-Dichlorobenzamide (BAM) and its Metabolite 2,6-Dichlorobenzoic Acid (2,6-DCBA) in Sand Filter Units of Drinking Water Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10114-22. [PMID: 27533590 DOI: 10.1021/acs.est.6b01352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The intrinsic capacity to mineralize the groundwater pollutant 2,6-dichlorobenzamide (BAM) and its metabolite 2,6-dichlorobenzoic acid (2,6-DCBA) was evaluated in samples from sand filters (SFs) of drinking water treatment plants (DWTPs). Whereas BAM mineralization occurred rarely and only in SFs exposed to BAM, 2,6-DCBA mineralization was common in SFs, including those treating uncontaminated water. Nevertheless, SFs treating BAM contaminated water showed the highest 2,6-DCBA mineralization rates. For comparison, 2,6-DCBA and BAM mineralization were determined in various topsoil samples. As in SF samples, BAM mineralization was rare, whereas 2,6-DCBA mineralization capacity appeared widespread, with high mineralization rates found especially in forest soils. Multivariate analysis showed that in both SF and soil samples, high 2,6-DCBA mineralization correlated with high organic carbon content. Adding a 2,6-DCBA degradation deficient mutant of the BAM mineralizing Aminobacter sp. MSH1 confirmed that 2,6-DCBA produced from BAM is rapidly mineralized by the endogenous microbial community in SFs showing intrinsic 2,6-DCBA mineralization. This study demonstrates that (i) 2,6-DCBA mineralization is widely established in SFs of DWTPs, allowing the mineralization of 2,6-DCBA produced during BAM degradation and (ii) the first metabolic step in BAM mineralization is rare in microbial communities, rather than its further degradation beyond 2,6-DCBA.
Collapse
Affiliation(s)
- Johanna Vandermaesen
- KU Leuven, Division of Soil and Water Management, Kasteelpark Arenberg 20 bus 2459, B-3001 Heverlee, Belgium
| | - Benjamin Horemans
- KU Leuven, Division of Soil and Water Management, Kasteelpark Arenberg 20 bus 2459, B-3001 Heverlee, Belgium
| | - Julie Degryse
- Centraal laboratorium, De Watergroep, Researchpark Haasrode Leuven 1834 - Technologielaan 23, B-3001 Heverlee, Belgium
| | - Jos Boonen
- Centraal laboratorium, De Watergroep, Researchpark Haasrode Leuven 1834 - Technologielaan 23, B-3001 Heverlee, Belgium
| | - Eddy Walravens
- Centraal laboratorium, De Watergroep, Researchpark Haasrode Leuven 1834 - Technologielaan 23, B-3001 Heverlee, Belgium
| | - Dirk Springael
- KU Leuven, Division of Soil and Water Management, Kasteelpark Arenberg 20 bus 2459, B-3001 Heverlee, Belgium
| |
Collapse
|
20
|
Sekhar A, Horemans B, Aamand J, Sørensen SR, Vanhaecke L, Bussche JV, Hofkens J, Springael D. Surface Colonization and Activity of the 2,6-Dichlorobenzamide (BAM) Degrading Aminobacter sp. Strain MSH1 at Macro- and Micropollutant BAM Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10123-33. [PMID: 27537851 DOI: 10.1021/acs.est.6b01978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C and N source and is a potential catalyst for biotreatment of BAM-contaminated groundwater in filtration units of drinking water treatment plants (DWTPs). The oligotrophic environment of DWTPs including trace pollutant concentrations, and the high flow rates impose challenges for micropollutant biodegradation in DWTPs. To understand how trace BAM concentrations affect MSH1 surface colonization and BAM degrading activity, MSH1 was cultivated in flow channels fed continuously with BAM macro- and microconcentrations in a N- and C-limiting medium. At all BAM concentrations, MSH1 colonized the flow channel. BAM degradation efficiencies were concentration-dependent, ranging between 70 and 95%. Similarly, BAM concentration affected surface colonization, but at 100 μg/L BAM and lower, colonization was similar to that in systems without BAM, suggesting that assimilable organic carbon and nitrogen other than those supplied by BAM sustained colonization at BAM microconcentrations. Comparison of specific BAM degradation rates in flow channels and in cultures of suspended freshly grown cells indicated that starvation conditions in flow channels receiving BAM microconcentrations resulted into MSH1 biomasses with 10-100-times reduced BAM degrading activity and provided a kinetic model for predicting BAM degradation under continuous C and N starvation.
Collapse
Affiliation(s)
- Aswini Sekhar
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, BE-3001 Leuven, Belgium
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, BE-3001 Leuven, Belgium
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Greenland and Denmark (GEUS) , DK-1350 Copenhagen, Denmark
| | - Sebastian R Sørensen
- Department of Geochemistry, Geological Survey of Greenland and Denmark (GEUS) , DK-1350 Copenhagen, Denmark
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, UGent , BE-9000 Ghent, Belgium
| | - Julie Vanden Bussche
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, UGent , BE-9000 Ghent, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, KU Leuven , Celestijnenlaan 200 F, BE-3001 Leuven, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, BE-3001 Leuven, Belgium
| |
Collapse
|
21
|
Tao Y, Han L, Li X, Han Y, Liu Z. Molecular structure, spectroscopy (FT-IR, FT-Raman), thermodynamic parameters, molecular electrostatic potential and HOMO-LUMO analysis of 2, 6-dichlorobenzamide. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Study of Cytotoxic Effects of Benzonitrile Pesticides. BIOMED RESEARCH INTERNATIONAL 2015; 2015:381264. [PMID: 26339609 PMCID: PMC4538370 DOI: 10.1155/2015/381264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
The benzonitrile herbicides bromoxynil, chloroxynil, dichlobenil, and ioxynil have been used actively worldwide to control weeds in agriculture since 1970s. Even though dichlobenil is prohibited in EU since 2008, studies addressing the fate of benzonitrile herbicides in the environment show that some metabolites of these herbicides are very persistent. We tested the cytotoxic effects of benzonitrile herbicides and their microbial metabolites using two human cell lines, Hep G2 and HEK293T, representing liver and kidneys as potential target organs in humans. The cell viability and proliferation were determined by MTT test and RTCA DP Analyzer system, respectively. The latter allows real-time monitoring of the effect of added substances. As the cytotoxic compounds could compromise cell membrane integrity, the lactate dehydrogenase test was performed as well. We observed high toxic effects of bromoxynil, chloroxynil, and ioxynil on both tested cell lines. In contrast, we determined only low inhibition of cell growth in presence of dichlobenil and microbial metabolites originating from the tested herbicides.
Collapse
|
23
|
Postigo C, Barceló D. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 503-504:32-47. [PMID: 24974362 DOI: 10.1016/j.scitotenv.2014.06.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Groundwater constitutes the main source of public drinking water supply in many regions. Thus, the contamination of groundwater resources by organic chemicals is a matter of growing concern because of its potential effects on public health. The present manuscript compiles the most recent works related to the study of synthetic organic compounds (SOCs) in groundwater, with special focus on the occurrence of contaminants not or barely covered by previously published reviews, e.g., pesticide and pharmaceutical transformation products, lifestyle products, and industrial chemicals such as corrosion inhibitors, brominated and organophosphate flame retardants, plasticizers, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Moreover, the main challenges in managed aquifer recharge, i.e., reclaimed water injection and infiltration, and riverbank filtration, regarding natural attenuation of organic micropollutants are discussed, and insights into the future chemical quality of groundwater are provided.
Collapse
Affiliation(s)
- Cristina Postigo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
24
|
Uthuppu B, Heiskanen A, Kofoed D, Aamand J, Jørgensen C, Dufva M, Jakobsen MH. Micro-flow-injection analysis (μFIA) immunoassay of herbicide residue 2,6-dichlorobenzamide – towards automated at-line monitoring using modular microfluidics. Analyst 2015; 140:1616-23. [DOI: 10.1039/c4an01576b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A prototype microfluidic immunosensor for detecting 2,6-dichlorobenzamide showing potential for at-line monitoring of ground water.
Collapse
Affiliation(s)
- Basil Uthuppu
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Arto Heiskanen
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Dan Kofoed
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Jens Aamand
- The Geological Survey of Denmark and Greenland (GEUS)
- 1350 Copenhagen
- Denmark
| | | | - Martin Dufva
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | | |
Collapse
|
25
|
Goujon E, Sta C, Trivella A, Goupil P, Richard C, Ledoigt G. Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 113:47-54. [PMID: 25052526 DOI: 10.1016/j.pestbp.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 05/26/2023]
Abstract
Contamination by toxic agents in the environment has become matters of concern to agricultural countries. Sulcotrione, a triketone herbicide used to control dicotyledonous weeds in maize culture is rapidly photolyzed on plant foliage and generate two main photoproducts the xanthene-1,9-dione-3,4-dihydro-6-methylsulfonyl and 2-chloro-4-mesylbenzoic acid (CMBA). The aim of this study was to analyze the potential toxicity of the herbicide and the irradiated herbicide cocktail. Cytotoxicity and genotoxicity of non irradiated and irradiated sulcotrione were investigated in Allium cepa test. The sulcotrione irradiation was monitored under sunlight simulated conditions to reach 50% of phototransformation. Concentrations of sulcotrione in the range 5 × 10(-)(9)-5 × 10(-)(5)M were tested. Cytological analysis of root tips cells showed that both non irradiated and irradiated sulcotrione caused a dose-dependent decrease of mitotic index with higher cytotoxicity for the irradiated herbicide which can lead to 24.2% reduction of mitotic index compared to water control. Concomitantly, chromosomal aberrations were observed in A.cepa root meristems. Both non irradiated sulcotrione and irradiated sulcotrione induced a dose-dependent increase of chromosomal abnormalities frequencies to a maximal value of 33.7%. A saturating effect in anomaly frequencies was observed in meristems treated with high concentrations of non irradiated sulcotrione only. These data suggest that photolyzed sulcotrione cocktail have a greater cytotoxicity and genotoxicity than parent molecule and question about the impact of photochemical process on environment.
Collapse
Affiliation(s)
- Eric Goujon
- Clermont Université, UMR 547-UBP/INRA PIAF, Université Blaise Pascal, Campus Universitaire des Cézeaux, 24, Avenue des Landais, 63177 Aubière cedex, France
| | - Chaima Sta
- Clermont Université, UMR 547-UBP/INRA PIAF, Université Blaise Pascal, Campus Universitaire des Cézeaux, 24, Avenue des Landais, 63177 Aubière cedex, France
| | - Aurélien Trivella
- Clermont Université, CNRS, UMR 6296, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), 24, Avenue des Landais, 63177 Aubière cedex, France
| | - Pascale Goupil
- Clermont Université, UMR 547-UBP/INRA PIAF, Université Blaise Pascal, Campus Universitaire des Cézeaux, 24, Avenue des Landais, 63177 Aubière cedex, France
| | - Claire Richard
- Clermont Université, CNRS, UMR 6296, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF), 24, Avenue des Landais, 63177 Aubière cedex, France
| | - Gérard Ledoigt
- Clermont Université, UMR 547-UBP/INRA PIAF, Université Blaise Pascal, Campus Universitaire des Cézeaux, 24, Avenue des Landais, 63177 Aubière cedex, France.
| |
Collapse
|
26
|
Pukkila V, Kontro MH. Dichlobenil and 2,6-dichlorobenzamide (BAM) dissipation in topsoil and deposits from groundwater environment within the boreal region in southern Finland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2289-2297. [PMID: 24057965 DOI: 10.1007/s11356-013-2164-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/11/2013] [Indexed: 05/12/2023]
Abstract
BAM (2,6-dichlorobenzamide) is a metabolite of pesticide dichlobenil and a common groundwater contaminant. Dichlobenil and BAM half-lives were determined in five Finnish subsurface deposits and in topsoil. Aerobic and anaerobic conditions with sterilized controls were included in this 1.4-year incubation experiment. In subsurface deposits, dichlobenil half-life varied from 157 days to no degradation and that of BAM from 314 days to no degradation. Microbes and oxygen enhanced dichlobenil and BAM dissipation rates in some deposits. However, dichlobenil and BAM concentrations were most significantly affected by deposit characteristics, especially carbon and nitrogen amounts. Also low pH, cadmium, iron, zinc, manganese and lead correlated with low dichlobenil and/or BAM concentrations. In mineral topsoil, dissipation was faster with half-lives of 41-54 days for dichlobenil, and 182-261 days for BAM. Dichlobenil was depleted completely in surface soil, but BAM was not dissipated below 55-81 % of the initial concentration. Generally, dichlobenil and BAM dissipation in samples from the northern boreal region was similar to that reported for the temperate region. BAM was persistent in topsoil and subsurface deposits, indicating long-term persistence problems in groundwater also within the northern boreal region.
Collapse
Affiliation(s)
- Veera Pukkila
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Merja H Kontro
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| |
Collapse
|
27
|
Reemtsma T, Alder L, Banasiak U. Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites. WATER RESEARCH 2013; 47:5535-45. [PMID: 23863396 DOI: 10.1016/j.watres.2013.06.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 05/06/2023]
Abstract
A recently developed multimethod for the determination of 150 pesticide metabolites was exemplarily applied to 58 samples of groundwater and surface water. 37 of these metabolites were detected in at least two samples with a concentration ≥0.025 μg/L. The detected metabolites were ranked according to their concentration and frequency of detection. Findings are clearly dominated by metabolites of chloroacetanilide herbicides, but metabolites of sulfonylurea and thiocarbamate herbicides and other herbicides (dichlobenil) together with metabolites of some fungicides (tolylfluanid, chlorothalonil, trifloxystrobin) were also prominent. A number of 17 of the ranked metabolites are denoted as emerging metabolites because no reports on their previous detection in groundwater or surface water were found. Most of them, however, were correctly predicted to occur in the summary reports of the European pesticide approval process. Median total concentrations of the analysed pesticide metabolites summed up to 0.62 μg/L in groundwater and 0.33 μg/L in surface waters. While the concentration of the individual metabolites is usually low (<0.1 μg/L) the diversity of metabolites found in one sample can be large; between two and six metabolites were detected most frequently (maximum of 12 metabolites). Runoff from urban surfaces was investigated in this study and also here previously undetected pesticide (biocide) metabolites were detected. The emerging pesticide metabolites detected in environmental water samples in this study require more extended monitoring.
Collapse
Affiliation(s)
- Thorsten Reemtsma
- Federal Institute for Risk Assessment (BfR), Department Chemicals Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | |
Collapse
|
28
|
Reemtsma T, Alder L, Banasiak U. A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography–mass spectrometry. J Chromatogr A 2013; 1271:95-104. [DOI: 10.1016/j.chroma.2012.11.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/28/2022]
|
29
|
Björklund E, Styrishave B, Anskjær GG, Hansen M, Halling-Sørensen B. Dichlobenil and 2,6-dichlorobenzamide (BAM) in the environment: what are the risks to humans and biota? THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3732-9. [PMID: 21703663 DOI: 10.1016/j.scitotenv.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 05/22/2023]
Abstract
Dichlobenil is a herbicide widely used for weed control, mainly in non-agricultural areas and in the aquatic environment. When released into the environment, dichlobenil can undergo many processes such as vaporization to air, binding to soil and sediment, as well as degradation to a number of new compounds. The main metabolite is 2,6-dichlorobenzamide (BAM) which is water soluble and causes ground water contamination. It is frequently found in levels exceeding maximum allowed concentrations of pesticides and metabolites in ground water (0.1 μg/L) set by the European Commission. The environmental distribution of both dichlobenil and BAM was outlined and the risk quotients were calculated for biota and for humans. For organisms living in aquatic habitats, risk quotients were low for both dichlobenil and BAM, approximately 0.02 for dichlobenil and 2.4·10(-4) to 1.3·10(-3) for BAM. For humans, a margin of safety above 15,000 was estimated for dichlobenil. The most unusual and extreme concentration of BAM ever found in ground water is 560 μg/L. Even at this concentration, the margin of safety for humans was 313 for a 70 kilo man and 56 for a 25 kilo child. The results clearly demonstrate that the risks to biota and humans are very low.
Collapse
Affiliation(s)
- Erland Björklund
- Section of Toxicology, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|