1
|
Li YY, Shi ZY, Xiong YM, Chen XY, Lv L, Huang H, Liu W, Zhao J, Li XH, Qin ZF. Bioaccumulation and Male Reproductive Toxicity of the New Brominated Flame Retardant Tetrabromobisphenol A-Bis(2,3-dibromo-2-methylpropyl ether) in Comparison with Hexabromocyclododecane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4127-4136. [PMID: 38382014 DOI: 10.1021/acs.est.3c10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 μg/kg/d TBBPA-DBMPE as well as 50 μg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 μg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 μg/kg/d TBBPA-DBMPE exerted lower effects than 50 μg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhe-Yuan Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Zhao
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
| | - Xing Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Vinnars MT, Bixo M, Damdimopoulou P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol Cell Endocrinol 2023; 578:112064. [PMID: 37683908 DOI: 10.1016/j.mce.2023.112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Prenatal life represents a susceptible window of development during which chemical exposures can permanently alter fetal development, leading to an increased likelihood of disease later in life. Therefore, it is essential to assess exposure in the fetus. However, direct assessment in human fetuses is challenging, so most research measures maternal exposure. Pregnancy induces a range of significant physiological changes in women that may affect chemical metabolism and responses. Moreover, placental function, fetal sex, and pregnancy complications may further modify these exposures. The purpose of this narrative review is to give an overview of major pregnancy-related physiological changes, including placental function and impacts of pregnancy complications, to summarize existing studies assessing chemical exposure in human fetal organs, and to discuss possible interactions between physiological changes and exposures. Our review reveals major knowledge gaps in factors affecting fetal chemical exposure, highlighting the need to develop more sophisticated tools for chemical health risk assessment in fetuses.
Collapse
Affiliation(s)
- Marie-Therese Vinnars
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Marie Bixo
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
3
|
Emond C, DeVito MJ, Birnbaum LS. A PBPK model describing the pharmacokinetics of γ-HBCD exposure in mice. Toxicol Appl Pharmacol 2021; 428:115678. [PMID: 34390738 PMCID: PMC8674938 DOI: 10.1016/j.taap.2021.115678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
The brominated flame retardant, hexabromocyclododecane (HBCD), is added-but not bound-to consumer products and is eventually found in the environment and human tissues. Commercial-grade HBCD mixtures contain three major stereoisomers, alpha (α), beta (β), and gamma (γ), that are typically at a ratio of 12%:6%:82%, respectively. Although HBCD is widely used, the toxicological effects from its exposure in humans are not clearly understood. Using a physiologically based pharmacokinetic (PBPK) model could help improve our understanding of the toxicity of HBCD. The aim of this work was to develop a PBPK model, consisting of five permeability limited compartments (i.e., brain, liver, adipose tissue, blood, and rest of the body), to evaluate the pharmacokinetics of γ-HBCD in C57BL/6 mice. Physiological parameters related to body size, organ weights, and blood flow were taken from the literature. All partition coefficients were calculated based on the log Kow. The elimination in urine and feces was optimized to reflect the percent dose eliminated, as published in the literature. Compared with data from the literature for brain, liver, blood, and adipose tissue, the model simulations accurately described the mouse data set within 1.5-fold of the data points. Also, two examples showing the utility of the PBPK model supplement the information regarding the internal dose that caused the health effects observed during these studies. Although this version of the PBPK model expressly describes γ-HBCD, more efforts are needed to clarify and improve the model to discriminate between the α, β, and γ stereoisomers.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Newark, DE, USA; School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Quebec, Canada.
| | - Michael J DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | | |
Collapse
|
4
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
6
|
Dai W, Tang T, Dai Z, Shi D, Mo L, Zhang Y. Probing the Mechanism of Hepatotoxicity of Hexabromocyclododecanes through Toxicological Network Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15235-15245. [PMID: 33190479 DOI: 10.1021/acs.est.0c03998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The prediction and mechanism analysis of hepatotoxicity of contaminants, because of their various phenotypes and complex mechanisms, is still a key problem in environmental research. We applied a toxicological network analysis method to predict the hepatotoxicity of three hexabromocyclododecane (HBCD) diastereoisomers (α-HBCD, β-HBCD, and γ-HBCD) and explore their potential mechanisms. First, we collected the hepatotoxicity related genes and found that those genes were significantly localized in the human interactome. Therefore, these genes form a disease module of hepatotoxicity. We also collected targets of α-, β-, and γ-HBCD and found that their targets overlap with the hepatotoxicity disease module. Then, we trained a model to predict hepatotoxicity of three HBCD diastereoisomers based on the relationship between the hepatotoxicity disease module and targets of compounds. We found that 593 genes were significantly located in the hepatotoxicity disease module (Z = 11.9, p < 0.001) involved in oxidative stress, cellular immunity, and proliferation, and the accuracy of hepatotoxicity prediction of HBCD was 0.7095 ± 0.0193 and the recall score was 0.8355 ± 0.0352. HBCD mainly affects the core disease module genes to mediate the adenosine monophosphate-activated kinase, p38MAPK, PI3K/Akt, and TNFα pathways to regulate the immune reaction and inflammation. HBCD also induces the secretion of IL6 and STAT3 to lead hepatotoxicity by regulating NR3C1. This approach is transferable to other toxicity research studies of environmental pollutants.
Collapse
Affiliation(s)
- Weina Dai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tiantian Tang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghua Dai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Lingyun Mo
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Technical Innovation Center for Mine Geological Environment Restoration Engineering in Shishan Area of South China, Ministry of Natural Resources, Nanning 530028, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Yang K, Zhong Q, Qin H, Long Y, Ou H, Ye J, Qu Y. Molecular response mechanism in Escherichia coli under hexabromocyclododecane stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135199. [PMID: 31780180 DOI: 10.1016/j.scitotenv.2019.135199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
The effects of hexabromocyclododecane (HBCD) on the relationship between physiological responses and metabolic networks remains unclear. To this end, cellular growth, apoptosis, reactive oxygen species, exometabolites and the proteome of Escherichia coli were investigated following exposure to 0.1 and 1 μM HBCD. The results showed that although there were no significant changes in the pH value, apoptosis and reactive oxygen species under HBCD stress, cell growth was inhibited. The metabolic network formed by glycolysis, oxidative phosphorylation, amino acids biosynthesis, membrane proteins biosynthesis, ABC transporters, glycogen storage, cell recognition, compound transport and nucleotide excision repair was disrupted. Cell chemotaxis and DNA damage repair were the effective approaches to alleviate HBCD stress. This work improves our understanding of HBCD toxicity and provides insight into the toxicological mechanism of HBCD at the molecular and network levels.
Collapse
Affiliation(s)
- Kunliang Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qiao Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Yanfen Qu
- Zhongji Ecological Science & Technology Co., Ltd., Guangzhou 511443, Guangdong, China
| |
Collapse
|
8
|
Shi X, Zha J, Wen B, Zhang S. Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:893-902. [PMID: 31200309 DOI: 10.1016/j.scitotenv.2019.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Hexabromocyclododecane (HBCD) is a widely applied brominated flame retardant (BFR) and is regarded as a persistent organic pollutant. It has been found in human tissues and has the potential to cause neurological disorders. However, our understanding of HBCD neurotoxicity at the diastereoisomer level remains lacking. Here, we investigated the neurotoxicity of three HBCD diastereoisomers, i.e., α-, β-, and γ-HBCD, in SH-SY5Y human neuroblastoma cells. Results showed that the HBCD diastereoisomers decreased cell viability, increased lactate dehydrogenase (LDH) release, and impaired cytoskeleton development. Typical morphological features and apoptosis rates showed that the HBCD diastereoisomers induced SH-SY5Y cell apoptosis. The expression levels of several cell apoptosis-related genes and proteins, including Bax, caspase-3, caspase-9, cytochrome c, Bcl-2, and X-linked inhibitor of apoptosis (XIAP), as well as the cell cycle arrest, DNA damage, adenosine triphosphate (ATP) consumption, reactive oxygen species (ROS) levels, and intracellular calcium ion (Ca2+) levels, were examined. Results showed that the HBCD diastereoisomer neurotoxicity was ranked β-HBCD > γ-HBCD > α-HBCD. The cell apoptosis and caspase expression levels of the three HBCD diastereoisomers followed the same order, suggesting that caspase-dependent apoptosis may be one mechanism responsible for the structure-selective HBCD diastereoisomer neurotoxicity. The levels of intracellular Ca2+ and ROS increased significantly. The ROS levels were ordered β-HBCD > γ-HBCD > α-HBCD, whereas those of intracellular Ca2+ were γ-HBCD > β-HBCD > α-HBCD. Thus, ROS may be a key factor regulating the neurotoxicity of HBCD diastereoisomers. To the best of our knowledge, this is the first study to report on the diastereoisomer-specific toxicity of HBCD in human neural cells and on the possible mechanisms responsible for the selective neurotoxicity of HBCD diastereoisomers.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmiao Zha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Hexabromocyclododecane (HBCD): A case study applying tiered testing for human health risk assessment. Food Chem Toxicol 2019; 131:110581. [DOI: 10.1016/j.fct.2019.110581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
|
10
|
Rat strain response differences upon exposure to technical or alpha hexabromocyclododecane. Food Chem Toxicol 2019; 130:284-307. [DOI: 10.1016/j.fct.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
|
11
|
Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, Caudle WM, Miller GW, Chan AWS, Easley CA. Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. iScience 2018; 3:161-176. [PMID: 29901031 PMCID: PMC5994764 DOI: 10.1016/j.isci.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Sperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis. Using a human stem cell-based model of spermatogenesis, we evaluated two major flame retardants, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), under acute conditions simulating occupational-level exposures. Here we show that HBCDD and TBBPA are human male reproductive toxicants in vitro. Although these toxicants do not specifically affect the survival of haploid spermatids, they affect spermatogonia and primary spermatocytes through mitochondrial membrane potential perturbation and reactive oxygen species generation, ultimately causing apoptosis. Taken together, these results show that HBCDD and TBBPA affect human spermatogenesis in vitro and potentially implicate this highly prevalent class of toxicants in the decline of Western males' sperm counts.
Collapse
Affiliation(s)
- Alyse N Steves
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Danielle Clarkson-Townsend
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brittany J Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Adam C Turry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - W Michael Caudle
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA.
| |
Collapse
|
12
|
Abdallah MAE, Sharkey M, Berresheim H, Harrad S. Hexabromocyclododecane in polystyrene packaging: A downside of recycling? CHEMOSPHERE 2018; 199:612-616. [PMID: 29459351 DOI: 10.1016/j.chemosphere.2018.02.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
While there are no regulatory fire safety obligations for polystyrene (PS) when used as packaging material, concerns exist that such packaging material may contain the flame retardant hexabromocyclododecane (HBCDD) as a result of uncontrolled recycling activities. To evaluate these concerns, we collected 50 samples of PS packaging materials from the UK and 20 from Ireland. HBCDD was detected in 63 (90%) of samples, with concentrations in 4 samples from Ireland exceeding the EU's low POP concentration limit (LPCL) of 0.1% above which articles may not be recycled. Moreover, 2 further samples contained HBCDD >0.01%. While our samples were obtained in the 12 month period prior to the March 2016 introduction of the EU's 0.01% concentration limit above which articles may not be placed on the market, our data suggest that continued monitoring is required to assess compliance with this limit value. Ratios of α vs. γ-HBCDD in our EPS packaging samples (average = 0.63) exceeded significantly (p = 0.025) those in EPS building insulation material samples (average = 0.24) reported previously for Ireland. This shift towards α-HBCDD in packaging EPS is consistent with the additional thermal processing experienced by recycled PS and suggests the source of HBCDD in PS packaging is recycled PS insulation foam. This is of concern owing to the higher bioavailability and lower metabolic clearance of α-HBCDD compared to the β- and γ-isomers.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, UK; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Martin Sharkey
- School of Physics, National University of Ireland Galway, Ireland
| | | | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, UK.
| |
Collapse
|
13
|
Parallel in vivo and in vitro transcriptomics analysis reveals calcium and zinc signalling in the brain as sensitive targets of HBCD neurotoxicity. Arch Toxicol 2017; 92:1189-1203. [PMID: 29177809 PMCID: PMC5866835 DOI: 10.1007/s00204-017-2119-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/18/2017] [Indexed: 11/04/2022]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant (BFR) that accumulates in humans and affects the nervous system. To elucidate the mechanisms of HBCD neurotoxicity, we used transcriptomic profiling in brains of female mice exposed through their diet to HBCD (199 mg/kg body weight per day) for 28 days and compared with those of neuronal N2A and NSC-19 cell lines exposed to 1 or 2 µM HBCD. Similar pathways and functions were affected both in vivo and in vitro, including Ca2+ and Zn2+ signalling, glutamatergic neuron activity, apoptosis, and oxidative stress. Release of cytosolic free Zn2+ by HBCD was confirmed in N2A cells. This Zn2+ release was partially quenched by the antioxidant N-acetyl cysteine indicating that, in accordance with transcriptomic analysis, free radical formation is involved in HBCD toxicity. To investigate the effects of HBCD in excitable cells, we isolated mouse hippocampal neurons and monitored Ca2+ signalling triggered by extracellular glutamate or zinc, which are co-released pre-synaptically to trigger postsynaptic signalling. In control cells application of zinc or glutamate triggered a rapid rise of intracellular [Ca2+]. Treatment of the cultures with 1 µM of HBCD was sufficient to reduce the glutamate-dependent Ca2+ signal by 50%. The effect of HBCD on zinc-dependent Ca2+ signalling was even more pronounced, resulting in the reduction of the Ca2+ signal with 86% inhibition at 1 µM HBCD. Our results show that low concentrations of HBCD affect neural signalling in mouse brain acting through dysregulation of Ca2+ and Zn2+ homeostasis.
Collapse
|
14
|
Han T, Wu MH, Zang C, Sun R, Tang L, Liu N, Lei JQ, Shao HY, Gu JZ, Xu G. Hexabromocyclododecane and tetrabromobisphenol A in tree bark from different functional areas of Shanghai, China: levels and spatial distributions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1346-1354. [PMID: 28892110 DOI: 10.1039/c7em00275k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The concentrations and spatial distributions of hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) were measured in tree bark from different functional areas of Shanghai. ΣHBCDD (sum of α-, β-, and γ-HBCDD) concentrations ranged from 1.2 × 102 to 6.6 × 103 ng g-1 lw (median 5.7 × 102 ng g-1 lw) and TBBPA concentrations ranged from 48 to 7.2 × 104 ng g-1 lw (median 2.8 × 102 ng g-1 lw). The concentrations of ΣHBCDD and TBBPA all followed the order of industrial areas > commercial areas > residential areas. The mean percentage of α-HBCDD in bark samples (44%) from Shanghai was higher than that in technical HBCDD products, but comparable with that in air. The concentrations of TBBPA and individual HBCDD diastereoisomers between industrial areas and commercial areas were correlated. Based on the concentrations of HBCDD in the bark, the corresponding atmospheric HBCDD concentrations were estimated. Compared with the published data for HBCDD in urban air, the estimated atmospheric HBCDD concentrations in Shanghai had a relatively high level, and more attention should be paid to the pollution status of HBCDD in Shanghai.
Collapse
Affiliation(s)
- Tao Han
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Szabo DT, Pathmasiri W, Sumner S, Birnbaum LS. Serum Metabolomic Profiles in Neonatal Mice following Oral Brominated Flame Retardant Exposures to Hexabromocyclododecane (HBCD) Alpha, Gamma, and Commercial Mixture. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:651-659. [PMID: 27814246 PMCID: PMC5381977 DOI: 10.1289/ehp242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/30/2015] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant added to building insulation foams, electronics, and textiles. HBCD is a commercial mixture (CM-HBCD) composed of three main stereoisomers: α-HBCD (10%), β-HBCD (10%), and γ-HBCD (80%). A shift from the dominant stereoisomer γ-HBCD to α-HBCD is detected in humans and wildlife. OBJECTIVES Considering CM-HBCD has been implicated in neurodevelopment and endocrine disruption, with expected metabolism perturbations, we performed metabolomics on mice serum obtained during a window-of-developmental neurotoxicity to draw correlations between early-life exposures and developmental outcomes and to predict health risks. METHODS Six female C57BL/6 mice at postnatal day (PND) 10 were administered a single gavage dose of α-, γ-, or CM-HBCD at 3, 10, and 30 mg/kg. Nuclear magnetic resonance metabolomics was used to analyze 60 μL serum aliquots of blood collected 4 days post-oral exposure. RESULTS Infantile mice exposed to α-, γ-, or CM-HBCD demonstrated differences in endogenous metabolites by treatment and dose groups, including metabolites involved in glycolysis, gluconeogenesis, lipid metabolism, citric acid cycle, and neurodevelopment. Ketone bodies, 3-hydroxybutyrate, and acetoacetate, were nonstatistically elevated, when compared with mean control levels, in all treatment and dose groups, while glucose, pyruvate, and alanine varied. Acetoacetate was significantly increased in the 10 mg/kg α-HBCD and was nonsignificantly decreased with CM-HBCD. A third ketone body, acetone, was significantly lower in the 30 mg/kg α-HBCD group with significant increases in pyruvate at the same treatment and dose group. Metabolites significant in differentiating treatment and dose groups were also identified, including decreases in amino acids glutamate (excitatory neurotransmitter in learning and memory) and phenylalanine (neurotransmitter precursor) after α-HBCD and γ-HBCD exposure, respectively. CONCLUSIONS We demonstrated that 4 days following a single neonatal oral exposure to α-, γ-, and CM-HBCD resulted in different serum metabolomic profiles, indicating stereoisomer- and mixture-specific effects and possible mechanisms of action.
Collapse
Affiliation(s)
- David T. Szabo
- National Human Environmental Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
- Curriculum in Toxicology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
- Address correspondence to D.T. Szabo, U.S. Environmental Protection Agency, National Human Environmental Exposure Research Laboratory; and University of North Carolina–Chapel Hill, Curriculum in Toxicology, 130 Finsbury Street, Durham, NC 27703 USA. Telephone: (352) 615-2415. E-mail:
| | - Wimal Pathmasiri
- Discovery Sciences, Research Triangle Institute International, Research Triangle Park, North Carolina, USA
| | - Susan Sumner
- Discovery Sciences, Research Triangle Institute International, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Abstract
The global prevalence of obesity has been increasing at a staggering pace, with few indications of any decline, and is now one of the major public health challenges worldwide. While obesity and metabolic syndrome (MetS) have historically thought to be largely driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. There is now increasing evidence to suggest that exposure to synthetic chemicals in our environment may also play a key role in the etiology and pathophysiology of metabolic diseases. Importantly, exposures occurring in early life (in utero and early childhood) may have a more profound effect on life-long risk of obesity and MetS. This narrative review explores the evidence linking early-life exposure to a suite of chemicals that are common contaminants associated with food production (pesticides; imidacloprid, chlorpyrifos, and glyphosate) and processing (acrylamide), in addition to chemicals ubiquitously found in our household goods (brominated flame retardants) and drinking water (heavy metals) and changes in key pathways important for the development of MetS and obesity.
Collapse
Affiliation(s)
- Nicole E De Long
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- Correspondence: Alison C Holloway, Department of Obstetrics and Gynecology, McMaster University, RM HSC-3N52, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada, Tel +1 905 525 9140 ext 22130, Fax +1 905 524 2911, Email
| |
Collapse
|
17
|
Marine fatty acids aggravate hepatotoxicity of α-HBCD in juvenile female BALB/c mice. Food Chem Toxicol 2016; 97:411-423. [DOI: 10.1016/j.fct.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
|
18
|
Wu MH, Han T, Xu G, Zang C, Li YJ, Sun R, Xu BT, Sun Y, Chen FF, Tang L. Occurrence of Hexabromocyclododecane in soil and road dust from mixed-land-use areas of Shanghai, China, and its implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 559:282-290. [PMID: 27065447 DOI: 10.1016/j.scitotenv.2016.03.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Herein, the occurrence of three Hexabromocyclododecane (HBCDD) diastereoisomers in soil and road dust from the mixed-land-use areas in Shanghai was investigated. The total concentrations of HBCDDs (∑HBCDDs) in soil ranged from 0.30 to 249ngg(-1)dw, with a median level of 5.14ngg(-1)dw. For the road dust samples, the ΣHBCDD concentrations varied from 4.11 to 508ngg(-1)dw, with a median level of 23.4ngg(-1)dw. The levels of HBCDDs varied in different mixed-land-use areas. In soil, the levels of HBCDDs increased in the following sequence: residential area & agricultural area (R&A)<agricultural area & industrial area (A&I)<residential area & commercial area (R&C)<residential area & industrial area (R&I); the levels for the road dust were A&I<R&A<R&C<R&I. The proportions of α-HBCDD in road dust samples were significantly higher than those of α-HBCDD in the soil. For soil, the portion of α-HBCDD increased in the following sequence: R&I<A&I≈R&A<R&C, while that for the road dust was R&C<R&A<R&I<A&I. Significant correlations in the concentrations of HBCDDs between soil and road dust from R&C and R&I were found, which suggested that they may share similar sources in these regions. On the basis of the HBCDD concentrations of road dust and soil, the contributions of ingestion, dermal contact absorption and inhalation intake to total estimated daily intakes (EDIs) were estimated. The highest total EDIs of ∑HBCDDs (sum of ingestion, dermal contact absorption and inhalation intake) were 0.154, 7.5×10(-2)ngkg(-1)d(-1) for infants from road dust and soil in R&I, respectively.
Collapse
Affiliation(s)
- Ming-Hong Wu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Tao Han
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Gang Xu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Chao Zang
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yi-Jie Li
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Rui Sun
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Ben-Tuo Xu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yan Sun
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Fen-Fen Chen
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Liang Tang
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
19
|
Abstract
Industrial and consumer product chemicals are widely used, leading to ubiquitous human exposure to the most common classes. Because these chemicals may affect developmental milestones, exposures in pregnant women and developing fetuses are of particular interest. In this review, we discuss the prevalence of chemical exposures in pregnant women, the chemical class-specific relationships between maternal and fetal exposures, and the major sources of exposures for six chemical classes of concern: phthalates, phenols, perfluorinated compounds (PFCs), flame retardants, polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCs). Additionally, we describe the current efforts to characterize cumulative exposures to synthetic chemicals during pregnancy. We conclude by highlighting gaps in the literature and discussing possible applications of the findings to reduce the prevalence of cumulative exposures during pregnancy.
Collapse
|
20
|
Zhang J, Abdallah MAE, Williams TD, Harrad S, Chipman JK, Viant MR. Gene expression and metabolic responses of HepG2/C3A cells exposed to flame retardants and dust extracts at concentrations relevant to indoor environmental exposures. CHEMOSPHERE 2016; 144:1996-2003. [PMID: 26551197 DOI: 10.1016/j.chemosphere.2015.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/28/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Humans are routinely exposed to mixtures of flame retardants (FRs) from multiple sources including indoor dust. As a model to explore the potential effects of FR exposure from indoor dust on human health, the molecular responses of human hepatoma cells (HepG2/C3A cells) to a defined mixture of FRs and to a dust extract were investigated using multiple non-targeted omics approaches. A solvent extract of an indoor dust standard reference material SRM2585 was used as the surrogate dust sample, while a mixture of four FRs (TCEP, TCIPP, TDCIPP and HBCD) was used to mimic the FR mixture in the indoor dust. Cytotoxicity tests indicated there were no significant changes to cell viability or cell integrity after a 24- or 72-h exposure of HepG2/C3A cells to the FR mixture or to the dust extract. However, transcriptomics revealed changes in gene expression associated with the metabolism of xenobiotics (e.g. CYP1A1, CYP1A2, CYP2B6) in the dust extract group but not in the FR mixture group after a 72-h exposure. Few metabolic or lipidomic changes were detected in response to either the FR mixture or to the dust extract group. Given that the dust extract contained components that elicited a biological response, in contrast to the lack of response induced by the FR mixture, our findings suggest that the most likely causes of the molecular responses to indoor dust exposure lie in components other than the four FRs investigated, e.g. caused by PAHs or PCBs.
Collapse
Affiliation(s)
- Jinkang Zhang
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526, Assiut, Egypt
| | - Timothy D Williams
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - James K Chipman
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD). Toxicol In Vitro 2015; 29:2116-23. [DOI: 10.1016/j.tiv.2015.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 02/02/2023]
|
22
|
Koch C, Schmidt-Kötters T, Rupp R, Sures B. Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:26-34. [PMID: 25618363 DOI: 10.1016/j.envpol.2015.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
In this paper, we review recent publications regarding the toxicokinetics and -dynamics of the flame retardant Hexabromocyclododecane (HBCD). HBCD has recently been listed as a persistent organic pollutant, which therefore influenced the legislation concerning its manufacturing and formulation. However, under specific circumstances it may still be used until 2024. Early toxicity studies have only focussed on HBCD itself, which is a mixture of different isomers with different physical and toxicological characteristics. Here we take a more differentiated look at the three diastereomers α-, β- and γ-HBCD. We also address the different enantiomers to give an overview of the toxicity of HBCD to identify present gaps in our knowledge about this chemical, especially with respect to its possible formulation until 2024.
Collapse
Affiliation(s)
- Christoph Koch
- Aquatische Ökologie und Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, 45141, Essen, Germany; Deutsche Rockwool Mineralwoll GmbH & Co. OHG, 45966, Gladbeck, Germany.
| | | | - Roman Rupp
- Deutsche Rockwool Mineralwoll GmbH & Co. OHG, 45966, Gladbeck, Germany
| | - Bernd Sures
- Aquatische Ökologie und Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
23
|
Cooke GM. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:205-24. [PMID: 24828452 DOI: 10.1080/10937404.2014.898167] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.
Collapse
Affiliation(s)
- Gerard M Cooke
- a Toxicology Research Division, Bureau of Chemical Safety, Food Directorate , Health Products and Food Branch, Health Canada, Sir Frederick G. Banting Research Centre , Tunney's Pasture, Ottawa , Ontario , Canada
| |
Collapse
|