1
|
Chen Z, Zhao C, Luo X, Liu G, Hou S. Hydrogel immobilized bacteria@metal-organic-frameworks composite augmented bisphenol A removal from activated sludge and its regulation behavior on sludge community. BIORESOURCE TECHNOLOGY 2025; 426:132372. [PMID: 40064452 DOI: 10.1016/j.biortech.2025.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Improving degradation efficiency of activated sludge towards bisphenol A (BPA) is related to water safety. A hydrogel immobilized bacteria@metal-organic-frameworks (im-SQ-2@MOFs) was synthesized previously, which was a composite formed by metal organic frameworks adhering to BPA degrading bacteria. Accordingly, this study added im-SQ-2@MOFs as enhancer to augment the BPA degradation ability of activated sludge. Results indicated that after the addition of im-SQ-2@MOFs, the augmented activated sludge system maintained 90 % BPA degradation rate for 10 mg/L BPA. Meanwhile, the system also presented 80-97 % degradation effect for other phenolic pollutants. Augmentation mechanism was revealed through multi-omics analysis. Firstly, im-SQ-2@MOFs enriched the degradation functional microorganisms in activated sludge, and microbial communication was further prompted. Besides, organic compounds degrading enzymes were upregulated to intensify BPA hydrolysis. Furthermore, electron transfer during BPA degradation was accelerated. Results provide new perspective on the development of bio-augmented materials to improve the efficiency of sewage treatment plants. TAKE HOME MESSAGE.
Collapse
Affiliation(s)
| | | | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan 610015, China.
| | - Guotao Liu
- Chengdu Medical College, Chengdu 610500, China.
| | - Siyu Hou
- Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
2
|
Yang R, Sha Y, Sun Z, Yang B, Solangi F. Role of Microbial Communities and Their Functional Gene in Anammox Process for Biodegradation of Bisphenol A and S in Pharmaceutical Wastewater. TOXICS 2025; 13:252. [PMID: 40278568 PMCID: PMC12031610 DOI: 10.3390/toxics13040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Substantial amounts of nitrogenous (N) compounds, as well as bisphenol A (BPA) and bisphenol S (BPS), contribute to the impurities of pharmaceutical contamination (PC) in wastewater, which have detrimental effects on the environment, humans, and aquaculture. The anammox processes is primarily used to treat wastewater contamination, in which certain microbial communities play a crucial role. In this regard, the present study focuses on microbial communities and the functional genes involved in the anammox process. Further, the current study highlights the secondary (biological) and tertiary (advanced) methods; these techniques are more effective solutions for PC treatment. Anammox bacteria are the primary drivers of the wastewater's ammonium and nitrite removal process. However, overall, 25 anammox species have been recognized between five important genera, including Anammoxoglobus, Anammoximicrobium, Brocadia, Kuenenia, and Jettenia, which are mainly found in activated sludge and marine environments. The group of bacteria called anammox has genes that encode enzymes such as hydrazine synthase (HZS), hydrazine dehydrogenase (HDH), nitrite oxidoreductase reductase (NIR), hydroxylamine oxidoreductase (HAO), and ammonium monooxygenase (AMO). The anammox process is responsible for developing about 30% to 70% N gases worldwide, making it a critical component of the nitrogen cycle as well. Therefore, this review paper also investigates the pathways of hydrazine, an intermediate in the anammox process, and discusses the potential way to significantly decrease the N-compound contamination from wastewater systems and the environmental effects of determined organic contaminants of BPA and BPS.
Collapse
Affiliation(s)
- Ruili Yang
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Yonghao Sha
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Zhuqiu Sun
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Bairen Yang
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Farheen Solangi
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
3
|
Waleed S, Haroon M, Ullah N, Tuzen M, Rind IK, Sarı A. A comprehensive review on advanced trends in treatment technologies for removal of Bisphenol A from aquatic media. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:83. [PMID: 39707071 DOI: 10.1007/s10661-024-13460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.
Collapse
Affiliation(s)
- Sangeen Waleed
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Naeem Ullah
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Imran Khan Rind
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Sarı
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
- Interdisciplinary Research Center of Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
5
|
Mayer PM, Moran KD, Miller EL, Brander SM, Harper S, Garcia-Jaramillo M, Carrasco-Navarro V, Ho KT, Burgess RM, Thornton Hampton LM, Granek EF, McCauley M, McIntyre JK, Kolodziej EP, Hu X, Williams AJ, Beckingham BA, Jackson ME, Sanders-Smith RD, Fender CL, King GA, Bollman M, Kaushal SS, Cunningham BE, Hutton SJ, Lang J, Goss HV, Siddiqui S, Sutton R, Lin D, Mendez M. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171153. [PMID: 38460683 PMCID: PMC11214769 DOI: 10.1016/j.scitotenv.2024.171153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.
Collapse
Affiliation(s)
- Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Kelly D Moran
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Ezra L Miller
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211 Kuopio, Finland.
| | - Kay T Ho
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Robert M Burgess
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Leah M Thornton Hampton
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America.
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR 97201, United States of America.
| | - Margaret McCauley
- US Environmental Protection Agency, Region 10, Seattle, WA 98101, United States of America.
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup Research & Extension Center, Washington Stormwater Center, 2606 W Pioneer Ave, Puyallup, WA 98371, United States of America.
| | - Edward P Kolodziej
- Interdisciplinary Arts and Sciences (UW Tacoma), Civil and Environmental Engineering (UW Seattle), Center for Urban Waters, University of Washington, Tacoma, WA 98402, United States of America.
| | - Ximin Hu
- Civil and Environmental Engineering (UW Seattle), University of Washington, Seattle, WA 98195, United States of America.
| | - Antony J Williams
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Computational Chemistry & Cheminformatics Branch, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States of America.
| | - Barbara A Beckingham
- Department of Geology & Environmental Geosciences, College of Charleston, Charleston, SC, 66 George Street Charleston, SC 29424, United States of America.
| | - Miranda E Jackson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rhea D Sanders-Smith
- Washington State Department of Ecology, 300 Desmond Drive SE, Lacey, WA 98503, United States of America.
| | - Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - George A King
- CSS, Inc., 200 SW 35th St, Corvallis, OR 97333, United States of America.
| | - Michael Bollman
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Sujay S Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States of America.
| | - Brittany E Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Sara J Hutton
- GSI Environmental, Inc., Olympia, Washington 98502, USA.
| | - Jackelyn Lang
- Department of Anatomy, Physiology, and Cell Biology, Department of Medicine and Epidemiology and the Karen C. Drayer Wildlife Health Center, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, United States of America.
| | - Heather V Goss
- US Environmental Protection Agency, Office of Water, Office of Wastewater Management, Washington, DC 20004, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Diana Lin
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Miguel Mendez
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| |
Collapse
|
6
|
Palsania P, Singhal K, Dar MA, Kaushik G. Food grade plastics and Bisphenol A: Associated risks, toxicity, and bioremediation approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133474. [PMID: 38244457 DOI: 10.1016/j.jhazmat.2024.133474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Bisphenols' widespread use in day to day life has enabled its existence in various compartments of the environment. Bisphenol A (BPA) is utilized as a monomer in manufacturing polycarbonate plastics, epoxy resins, as well as flame retardants and is also considered as an endocrine disruptor. This study focuses on determining BPA concentration in daily-use food-grade plastic containers, in addition to its toxicity evaluation in environmental samples contaminated by BPA leachates. The highest concentration of BPA was observed in black poly bags (42.78 ppm), followed by slice juice bottles and infant milk bottles. Toxicity tests revealed significant impacts on Rhizobium and Chlorella sp. as a representative species of soil and aquatic environment respectively. To biodegrade the BPA, two potential strains, Brucella sp. and Brevibacillus parabrevis, were isolated from a landfill site. Qualitative and quantitative evaluation of biodegraded BPA through U-HPLC and GC-MSMS showed various metabolites of BPA. Results indicate the native bacterial isolates as potential candidates for BPA degradation while transforming this contaminant to a less toxic and hazardous form. The study also proposes the risk associated with food-grade plastic containers and recommends to establish a sustainable way for plastic waste management.
Collapse
Affiliation(s)
- Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Kirti Singhal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Mohd Ashaf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
7
|
Sawadogo B, Konaté FO, Konaté Y, Traoré O, Sossou SK, Sawadogo E, Sourabié Ouattara PB, Karambiri H. Transfer of Bisphenol A and Trace Metals from Plastic Packaging to Mineral Water in Ouagadougou, Burkina Faso. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6908. [PMID: 37887646 PMCID: PMC10606415 DOI: 10.3390/ijerph20206908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 10/28/2023]
Abstract
The consumption of packaged water is growing rapidly in both urban and rural centres in Burkina Faso. Bisphenol A (BPA) and trace metals are among the compounds used in the manufacture of plastic packaging, and their presence in water can pose a health risk to consumers due to their alleged toxicity. Therefore, this study explores the transfer of these compounds from plastic packaging to mineral water in Sudano-Sahelian climatic conditions. Ten samples of packaged sachet water commercialised in Ouagadougou were studied. An absence of BPA in the borehole water used to produce packaged water has been shown. The transfer of BPA into mineral water increases with storage temperature. The BPA that appears in packaged water degrades over time. BPA concentrations ranged from 0 to 0.38 mg/L after two weeks of storage, 0 to 0.8 mg/L after four weeks of storage and 0 to 0.35 mg/L after 8 weeks of storage. Analysis of the trace metals showed steadily increasing concentrations from the second to the sixth weeks, with concentrations ranging from 0 to 9.7 µg/L for cadmium and from 0 to 0.13 mg/L for iron in the sachet water samples.
Collapse
Affiliation(s)
- Boukary Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International D’Ingénierie de l’Eau et de l’Environnement (2iE), 1 Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (Y.K.); (S.K.S.); (E.S.); (H.K.)
| | - Francis Ousmane Konaté
- Agence Nationale Pour la Sécurité Sanitaire de L’Environnement, de L’Alimentation, du Travail et des Produits de Santé (ANSSEAT), Boulevard des Tensoba, Ouagadougou 09 BP 24, Burkina Faso; (F.O.K.); (O.T.); (P.B.S.O.)
| | - Yacouba Konaté
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International D’Ingénierie de l’Eau et de l’Environnement (2iE), 1 Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (Y.K.); (S.K.S.); (E.S.); (H.K.)
| | - Ousmane Traoré
- Agence Nationale Pour la Sécurité Sanitaire de L’Environnement, de L’Alimentation, du Travail et des Produits de Santé (ANSSEAT), Boulevard des Tensoba, Ouagadougou 09 BP 24, Burkina Faso; (F.O.K.); (O.T.); (P.B.S.O.)
| | - Seyram Kossi Sossou
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International D’Ingénierie de l’Eau et de l’Environnement (2iE), 1 Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (Y.K.); (S.K.S.); (E.S.); (H.K.)
| | - Eric Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International D’Ingénierie de l’Eau et de l’Environnement (2iE), 1 Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (Y.K.); (S.K.S.); (E.S.); (H.K.)
| | - Pane Bernadette Sourabié Ouattara
- Agence Nationale Pour la Sécurité Sanitaire de L’Environnement, de L’Alimentation, du Travail et des Produits de Santé (ANSSEAT), Boulevard des Tensoba, Ouagadougou 09 BP 24, Burkina Faso; (F.O.K.); (O.T.); (P.B.S.O.)
| | - Harouna Karambiri
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International D’Ingénierie de l’Eau et de l’Environnement (2iE), 1 Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (Y.K.); (S.K.S.); (E.S.); (H.K.)
| |
Collapse
|
8
|
Wang Q, Wang H, Lv M, Wang X, Chen L. Sulfamethoxazole degradation by Aeromonas caviae and co-metabolism by the mixed bacteria. CHEMOSPHERE 2023; 317:137882. [PMID: 36657578 DOI: 10.1016/j.chemosphere.2023.137882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Sulfamethoxazole (SMX) is a frequently detected antibiotic in the environment and has attracted much attention. Aeromonas caviae strain GLB-10 was isolated, which could degrade SMX to Aniline and 3-Amino-5-methylisoxazole. Compared to the single bacteria, the mixed bacteria including stain GLB-10, Vibrio diabolicus strain L2-2, Zobellella taiwanensis, Microbacterium testaceum, Methylobacterium, etc, had an ultrahigh degradation efficiency to SMX, with 250 mg/L SMX being degraded in 3 days. In addition to bioproducts of single bacteria, SMX bioproducts by the mixed bacteria also included acetanilide and hydroquinone which were not detected in the single bacteria. The SMX degradation mechanism of the mixed bacteria was more complicated including acetylation, sulfur reduction 4S pathway, and ipso-hydrolysis. The molecular mechanism of the mixed bacteria degrading SMX was also investigated, revealing that the resistance mechanism related to protein outer membrane protein and catalase peroxidase were overexpressed, meanwhile, 6-hydroxynicotinate 3-monooxygenase and ammonia monooxygenase might be the key proteins in SMX degradation. The mixed bacteria could efficiently degrade SMX in different real environments including tap water, river water, artificial lake water, estuary, and, marine water, and have very great research value in bacterial co-metabolism and biodegradation of sulfonamides antibiotics in the environment.
Collapse
Affiliation(s)
- Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
Fu W, Li X, Yang Y, Song D. Enhanced degradation of bisphenol A: Influence of optimization of removal, kinetic model studies, application of machine learning and microalgae-bacteria consortia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159876. [PMID: 36334662 DOI: 10.1016/j.scitotenv.2022.159876] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), a typical endocrine disruptor and a contaminant of emerging concern (CECs), has detrimental impacts not only on the environment and ecosystems, but also on human health. Therefore, it is essential to investigate the degrading processes of BPA in order to diminish its persistent effects on ecological environmental safety. With this objective, the present study reports on the effectiveness of biotic/abiotic factors in optimizing BPA removal and evaluates the kinetic models of the biodegradation processes. The results showed that BPA affected chlorophyll a, superoxide dismutase (SOD) and peroxidase (POD) activities, malondialdehyde (MDA) content, and photosystem intrinsic PSII efficiency (Fv/Fm) in the microalga Chlorella pyrenoidosa, which degraded 43.0 % of BPA (8.0 mg L-1) under general experimental conditions. The bacteria consortium AEF21 could remove 55.4 % of BPA (20 mg L-1) under orthogonal test optimization (temperature was 32 °C, pH was 8.0, inoculum was 6.0 %) and the prediction of artificial neural network (ANN) of machine learning (R2 equal to 0.99 in training, test, and validation phase). The microalgae-bacteria consortia have a high removal rate of 57.5 % of BPA (20.0 mg L-1). The kinetic study revealed that the removal processes of BPA by microalgae, bacteria, and microalgae-bacteria consortia all followed the Monod's kinetic model. This work provided a new perspective to apply artificial intelligence to predict the degradation of BPA and to understand the kinetic processes of BPA biodegradation by integrated biological approaches, as well as a novel research strategy to achieve environmental CECs elimination for long-term ecosystem health.
Collapse
Affiliation(s)
- Wenxian Fu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiong'e Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuru Yang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Donghui Song
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, China.
| |
Collapse
|
10
|
Yang L, Yang Q, Lin L, Luan T, Tam NFY. Characterization of benthic biofilms in mangrove sediments and their variation in response to nutrients and contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159391. [PMID: 36240915 DOI: 10.1016/j.scitotenv.2022.159391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Diatom-dominated biofilms and associated extracellular polymeric substances (EPS) may adapt to the stress of long-term exposure to nutrients and anthropogenic contaminants. However, such interactions in contaminated mangrove sediments have rarely been reported. Based on the in situ characterization of biofilm components and environmental factors, the present study aimed to explore the key factors involved in shaping sediment biofilms through correlational and multivariate analyses. The pennate diatom Navicula is the core taxon that plays a crucial role in balancing the abundance of Nitzschia and Cyclotella, and is the main producer of bound-polysaccharides. The taxa composition shifts in a high N/P matrix, with the populations of pennate diatoms increasing but that of centric diatoms decreasing. High nutrient concentrations yield more number of diatoms and elevated levels of EPS. Bacteria are the main consumers of EPS and tend to be more symbiotic with Nitzschia than the other two diatom taxa. Some bound-polysaccharides dominated by arabinose and glucose units are transformed into the colloidal fraction, whereas other conservative ones serve as structural materials in concert with the bound-proteins. The planktonic phase of Cyclotella breaks down the structural EPS secreted by pennate diatoms in a process that directly affects the dynamic renewal of benthic biofilms. Most heavy metals as well as bisphenol A inhibit the abundance of bacteria and diatoms but enhance most EPS fractions except bound-polysaccharides. The response of structural EPS to specific contaminants varies, exhibiting increases in Co and Ni levels but decreases in nonylphenol and methylparaben levels. The present study improves our understanding of the microbial carbon loop of benthic biofilms in mangrove ecosystems under stress by nutrients and mixed contaminants.
Collapse
Affiliation(s)
- Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qian Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510600, China
| | - Li Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Nora F Y Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Fu W, Chen X, Zheng X, Liu A, Wang W, Ji J, Wang G, Guan C. Phytoremediation potential, antioxidant response, photosynthetic behavior and rhizosphere bacterial community adaptation of tobacco (Nicotiana tabacum L.) in a bisphenol A-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84366-84382. [PMID: 35780263 DOI: 10.1007/s11356-022-21765-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is an emerging organic pollutant, widely distributed and frequently detected in soil in recent years. BPA toxicity is a problem that needs to be solved in terms of both human health and agricultural production. Up to now, the toxic effect of BPA and its mechanism of action on plants, as well as the possibility of using plants to remediate BPA-contaminated soil, remain to be explored. In this study, six treatment groups were set up to evaluate the effects of different concentrations of BPA on the germination and growth of tobacco (Nicotiana tabacum L.) by medium experiments. Furthermore, the representative indexes of photosynthetic and antioxidant system were determined. Meanwhile, tobacco seedlings were cultivated in soil to further explore the effects of BPA on rhizosphere soil enzyme activity and bacterial community structure with or without 100 mg/kg BPA exposure. The enhancement of BPA removal efficiency from soil by phytoremediation using tobacco plants would also be estimated. Our results showed that high doses of BPA in solid medium remarkably inhibited tobacco seedling growth, and its toxicology effect was positively correlated with BPA concentration, while lower BPA exposure (< 20 mg/L) had little limitation on tobacco growth and induced hormesis effect, which was reflected mainly in the increase of root length. In pot experiments, the reducing of chlorophyll content (36.4%) and net photosynthetic rate (41.2%) meant the inhibition of tobacco photosynthetic process due to high concentration of BPA exposure (100 mg/kg) in soil. The increase of H2O2 and O2- content suggested that BPA could destroy the balance of reactive oxygen species (ROS) in plants. However, tobacco plants still presented a high removal efficiency of BPA at the concentration of 100 mg/kg in soil, which could reach to 80% within 30 days. Furthermore, it was indicated that tobacco cultivation changed the structure of rhizosphere soil bacterial communities and the relative abundance of some valuable strains, including Proteobacteria, Acidobacteria and other strains, which might be participated in the BPA removal process. In addition, the tobacco-soil microbial system had the potential to reverse the negative effects caused by BPA through stimulating microorganism associated with soil nutrient cycling. In summary, tobacco is a competitive plant in phytoremediation of BPA-contaminated soil, though the growth of tobacco could be inhibited at high concentration of BPA. Moreover, tobacco might promote the removal efficiency of BPA by regulating the rhizosphere bacteria communities.
Collapse
Affiliation(s)
- Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
12
|
Chen J, Tong T, Yang Y, Ke Y, Chen X, Xie S. In-situ active Bisphenol A-degrading microorganisms in mangrove sediments. ENVIRONMENTAL RESEARCH 2022; 206:112251. [PMID: 34695429 DOI: 10.1016/j.envres.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), as both an endocrine disrupting compound and an important industrial material, is broadly distributed in coastal regions and may cause adverse effects on mangrove ecosystems. Although many BPA degraders have been isolated from various environments, the in-situ active BPA-degrading microorganisms in mangrove ecosystem are still unknown. In this study, DNA-based stable isotope probing in combination with high-throughput sequencing was adopted to pinpoint the microbes actually involved in BPA metabolism in mangrove sediments. Five bacterial genera were speculated to be associated with BPA degradation based on linear discriminant analysis (LDA) effect size (LEfSe) analysis, including Truepera, Methylobacterium, Novosphingobium, Rhodococcus and Rhodobacter. The in-situ BPA degraders were different between mudflat and forest sediments. The Shannon index of microbes in heavy fractions was significantly lower than that in light fractions. Besides, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) demonstrated that the functional genes relevant to cytochrome P450, benzoate degradation, bisphenol degradation and citrate cycle were up-regulated significantly in in-situ BPA-degrading microbes. These findings greatly expanded the knowledge of indigenous BPA metabolic microorganisms in mangrove ecosystems.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Shi Q, Xiong Y, Kaur P, Sy ND, Gan J. Contaminants of emerging concerns in recycled water: Fate and risks in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152527. [PMID: 34953850 DOI: 10.1016/j.scitotenv.2021.152527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Recycled water (RW) has been increasingly recognized as a valuable source of water for alleviating the global water crisis. When RW is used for agricultural irrigation, many contaminants of emerging concern (CECs) are introduced into the agroecosystem. The ubiquity of CECs in field soil, combined with the toxic, carcinogenic, or endocrine-disrupting nature of some CECs, raises significant concerns over their potential risks to the environment and human health. Understanding such risks and delineating the fate processes of CECs in the water-soil-plant continuum contributes to the safe reuse of RW in agriculture. This review summarizes recent findings and provides an overview of CECs in the water-soil-plant continuum, including their occurrence in RW and irrigated soil, fate processes in agricultural soil, offsite transport including runoff and leaching, and plant uptake, metabolism, and accumulation. The potential ecological and human health risks of CECs are also discussed. Studies to date have shown limited accumulation of CECs in irrigated soils and plants, which may be attributed to multiple attenuation processes in the rhizosphere and plant, suggesting minimal health risks from RW-fed food crops. However, our collective understanding of CECs is rather limited and knowledge of their offsite movement and plant accumulation is particularly scarce for field conditions. Given a large number of CECs and their occurrence at trace levels, it is urgent to develop strategies to prioritize CECs so that future research efforts are focused on CECs with elevated risks for offsite contamination or plant accumulation. Irrigating specific crops such as feed crops and fruit trees may be a viable option to further minimize potential plant accumulation under field conditions. To promote the beneficial reuse of RW in agriculture, it is essential to understand the human health and ecological risks imposed by CEC mixtures and metabolites.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Tong T, Li R, Chai M, Wang Q, Yang Y, Xie S. Metagenomic analysis of microbial communities continuously exposed to Bisphenol A in mangrove rhizosphere and non-rhizosphere soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148486. [PMID: 34465064 DOI: 10.1016/j.scitotenv.2021.148486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is widely distributed in littoral zones and may cause adverse impacts on mangrove ecosystem. Biodegradation and phytoremediation are two primary processes for BPA dissipation in mangrove soils. However, the rhizosphere effects of different mangrove species on BPA elimination are still unresolved. In this study, three typical mangrove seedlings, namely Avicennia marina, Bruguiera gymnorrhiza (L.) and Aegiceras corniculatum, were cultivated in soil microcosms for four months and then subjected to 28-day continuous BPA amendment. Un-planted soil microcosms (as control) were also set up. The BPA residual rates and root exudates were monitored, and the metabolic pathways as well as functional microbial communities were also investigated to decipher the rhizosphere effects based on metagenomic analysis. The BPA residual rates in all planted soils were significantly lower than that in un-planted soil on day 7. Both plantation and BPA dosage had significant effects on bacterial abundance. A distinct separation of microbial structure was found between planted and un-planted soil microcosms. Genera Pseudomonas and Lutibacter got enriched with BPA addition and may play important roles in BPA biodegradation. The shifts in bacterial community structure upon BPA addition were different among the microcosms with different mangrove species. Genus Novosphingobium increased in Avicennia marina and Bruguiera gymnorrhiza (L.) rhizosphere soils but decreased in Aegiceras corniculatum rhizosphere soil. Based on KEGG annotation and binning analysis, the proposal of BPA degradation pathways and the quantification of relevant functional genes were achieved. The roles of Pseudomonas and Novosphingobium may differ in lower BPA degradation pathways. The quantity variation patterns of functional genes during the 28-day BPA amendment were different among soil microcosms and bacterial genera.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruili Li
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| | - Minwei Chai
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Qian Wang
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
15
|
Kyrila G, Katsoulas A, Schoretsaniti V, Rigopoulos A, Rizou E, Doulgeridou S, Sarli V, Samanidou V, Touraki M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125363. [PMID: 33592490 DOI: 10.1016/j.jhazmat.2021.125363] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol-A (BPA) is a constituent of polycarbonate plastics and epoxy resins, widely applied on food packaging materials. As BPA exposure results in health hazards, its efficient removal is of crucial importance. In our study five potentially probiotic microorganisms, namely Lactococcus lactis, Bacillus subtilis, Lactobacillus plantarum, Enterococcus faecalis, and Saccharomyces cerevisiae, were tested for their toxicity tolerance to BPA and their BPA removal ability. Although BPA toxicity, evident on all microorganisms, presented a correlation to both BPA addition time and its concentration, all strains exhibited BPA-removal ability with increased removal rate between 0 and 24 h of incubation. BPA degradation resulted in the formation of two dimer products in cells while the compounds Hydroquinone (HQ), 4-Hydroxyacetophenone (HAP), 4-Hydroxybenzoic acid (HBA) and 4-Isopropenylphenol (PP) were identified in the culture medium. In the proposed BPA degradation pathways BPA adducts formation appears as a common pattern, while BPA decomposition as well as the formation, and the levels of its end products present differences among microorganisms. The BPA degradation ability of the tested beneficial microorganisms demonstrates their potential application in the bioremediation of BPA contaminated foods and feeds and provides a means to suppress the adverse effects of BPA on human and animal health.
Collapse
Affiliation(s)
- Gloria Kyrila
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonis Katsoulas
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Schoretsaniti
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angelos Rigopoulos
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Rizou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvoula Doulgeridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Sarli
- Organic Chemistry Laboratory, Department of Organic Chemistry and Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Physical, Analytical and Environmental Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
16
|
Zhang P, Lu G, Liu J, Yan Z, Dong H, Zhou R. Biodegradation of 2-ethylhexyl-4-methoxycinnamate in river sediments and its impact on microbial communities. J Environ Sci (China) 2021; 104:307-316. [PMID: 33985734 DOI: 10.1016/j.jes.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms, but little is known about their biodegradation in river sediments and their impact on microorganisms. We have set up the sterile and microbiological systems in the laboratory, adding 2-ethylhexyl-4-methoxycinnamate (EHMC), one of organic UV filters included in the list of high yield chemicals, at concentrations of 2, 20 and 200 μg/L, and characterized the microbial community composition and diversity in sediments. Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system (3.49 days) was much shorter than that in the sterile system (7.55 days). Two potential degradation products, 4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system. Furthermore, high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi, Acidobacteria, Bacteroidetes and Nitrospirae; Eukaryota_uncultured fungus dominated the sediment fungal assemblages. Correlation analysis demonstrated that two bacterium genera (Anaerolineaceae_uncultured and Burkholderiaceae_uncultured) were significantly correlated with the biodegradation of EHMC. These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities, which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agriculture and Animal Husbandry College, Linzhi 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
17
|
Tong T, Li R, Chen J, Ke Y, Xie S. Bisphenol A biodegradation differs between mudflat and mangrove forest sediments. CHEMOSPHERE 2021; 270:128664. [PMID: 33757276 DOI: 10.1016/j.chemosphere.2020.128664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the widely detected endocrine disrupting chemicals in coastal sediment. Biodegradation is a vital pathway of BPA elimination in sediment. However, the impact of vegetation on BPA degradation in coastal sediment is still unclear. In this study, the differences of BPA biodegradation and the functional microbial community and metabolic pathway were explored between mangrove forest and mudflat sediments. A nearly complete BPA attenuation was detected in 4 days in mudflat sediment but 8 days in forest sediment. Bacterial abundance varied greatly in different sediment types. Bacterial community structure changed with BPA biodegradation, dependent on sediment type. During the degradation, the proportions of Alphaproteobacteria and Gammaproteobacteria were higher in BPA amended microcosms than in un-amended microcosms. With BPA biodegradation, a substantial increase in Novosphingobium and Croceicoccus occurred in forest sediment and mudflat sediment, respectively. Additionally, two divergent BPA biodegradation pathways were proposed based on functional annotation and KEGG pathway database. The abundance of functional genes also varied with BPA biodegradation, dependent on sediment type. Gene pcaGH decreased, while genes ligK and pcaD increased in both sediment types. Gene pcaB showed a remarkable increase in forest sediment but a decrease in mudflat sediment. Therefore, BPA degradation and the associated microbial community and metabolic pathway differed between mudflat and mangrove forest sediments.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ruili Li
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
18
|
Zan F, Guo G, Zheng T, Chen G. Biofilm development in a pilot-scale gravity sewer: Physical characteristics, microstructure, and microbial communities. ENVIRONMENTAL RESEARCH 2021; 195:110838. [PMID: 33581085 DOI: 10.1016/j.envres.2021.110838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The existence of abundant biofilms on sewer pipeline walls can lead to negative environmental impacts, such as poisonous gas release and pipe corrosions through transforming various pollutants. Investigating the formation process of sewer biofilms is of importance in advancing knowledge of sewer operation and maintenance. In this study, the changes in physical characteristics, microstructure, and microbial communities of sewer biofilm were analyzed in-depth in a pilot-scale gravity sewer during a 45-day operation. The results show that a high specific surface area at the early stage could channel the substrates for stimulating the primary colonizers (e.g., Cytophagia, Sphingobacteriia, Alpha-, and Betaproteobacteria), which could excrete an extracellular matrix to facilitate biofilm growth. The sewer biofilms were gradually formed with 62 g VS/m2 organic content, 1.2 mm biofilm thickness, and 89 mg/cm3 dry density after 45 days operation. Moreover, the biofilm growth promoted the emergence of facultative bacteria and anaerobes (affiliated with Flavobacteriia, Gemmatimonadetes, Deltaproteobacteria, and Epsilonproteobacteria). Microelectrode analysis further verified that an anaerobic zone existed in mature biofilm with a negative oxidation-reduction potential (-105 mV), where approximately 0.1 μmol/L of sulfide was produced. Our results suggest that the migration of the microbial community correlated with the changes in the evolved physical characteristics and microstructure of sewer biofilm, and this can contribute to the strategies for sulfide control for improving sewer maintenance.
Collapse
Affiliation(s)
- Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Tianlong Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
19
|
Shi C, Xu Y, Liu M, Chen X, Fan M, Liu J, Chen Y. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124053. [PMID: 33265058 DOI: 10.1016/j.jhazmat.2020.124053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
As a substitute for bisphenol A (BPA), bisphenol S (BPS) has a longer half-life, higher chemical inertness and better skin permeability than BPA, and it also has a strong endocrine disruption effect. Relatively few studies have focused on the main processing technology for BPS biodegradation, and the findings indicate that the biodegradation efficiency of BPS was relatively low. Therefore, this paper used an NZVI-HA composite-modified bio-anode to enhance the anaerobic degradation of BPS in a Bioelectrochemical Systems (BES). The results showed that the degradation efficiency of BPS was improved from 31.1% to 92.2% with the NZVI-HA modification compared with the control group (CC-BES). FTIR and XPS analyzes demonstrated that HA can accelerate the reduction rate of Fe3+ and increase the ratio of Fe2+/Fe3+. In addition, HA can form Fe-O-HA complexes with NZVI to promote electron transfer. An analysis of the NZVI-HA-BES intermediate metabolites revealed that complex modification properties altered the BPS degradation pathway. An analysis of microbial diversity indicated that the bacteria related to the degradation of BPS may be Terrimonas, Lysobacter, and Acidovorax.
Collapse
Affiliation(s)
- Chenyi Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mingqing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiujuan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengjie Fan
- College of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Zhao C, Zhang G, Jiang J. Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020810. [PMID: 33477860 PMCID: PMC7832867 DOI: 10.3390/ijerph18020810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/20/2022]
Abstract
Bisphenol A (BPA) is a typical endocrine disruptor that causes problems in waters all around the world. In this study, the effects of submerged macrophytes (Ceratophyllum demersum and Myriophyllum spicatum) cultured in vitro on the removal of BPA at two initial concentrations (0.5 mg L−1 vs. 5.0 mg L−1) from Donghu lake water were investigated, using different biomass densities (2 g L−1 vs. 10 g L−1) under different nutrient conditions (1.85 mg L−1 and 0.039 mg L−1 vs. 8.04 mg L−1 and 0.175 mg L−1 of the total nitrogen and phosphorus concentration, respectively), together with the effect of indigenous microorganisms in the water. The results showed that indigenous microorganisms had limited capacity for BPA removal, especially at higher BPA initial concentration when its removal rate amounted to about 12% in 12 days. Addition with plant seedlings (5 cm in length) greatly enhanced the BPA removal, which reached 100% and over 50% at low and high BPA initial concentration in 3 days, respectively. Higher biomass density greatly favored the process, resulting in 100% of BPA removal at high BPA initial concentration in 3 days. However, increases in nutrient availability had little effect on the BPA removal by plants. BPA at 10.0 mg L−1 significantly inhibited the growth of M. spicatum. Therefore, C. demersum may be a candidate for phytoremediation due to greater efficiency for BPA removal and tolerance to BPA pollution. Overall, seedlings of submerged macrophytes from in vitro culture showed great potential for use in phytoremediation of BPA in natural waters, especially C. demersum.
Collapse
Affiliation(s)
- Chong Zhao
- School of Life Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China; (C.Z.); (G.Z.)
- The College of Urban & Environmental Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China
| | - Guosen Zhang
- School of Life Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China; (C.Z.); (G.Z.)
| | - Jinhui Jiang
- School of Life Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China; (C.Z.); (G.Z.)
- Correspondence: ; Tel./Fax: +86-27-67861233
| |
Collapse
|
21
|
Xu X, Feng Y, Chen Z, Wang S, Wu G, Huang T, Ma J, Wen G. Activation of peroxymonosulfate by CuCo2O4-GO for efficient degradation of bisphenol A from aqueous environment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Yang L, Xiao S, Yang Q, Luan T, Tam NFY. Recovery of subtropical coastal intertidal system prokaryotes from a destruction event and the role of extracellular polymeric substances in the presence of endocrine disrupting chemicals. ENVIRONMENT INTERNATIONAL 2020; 144:106023. [PMID: 32822926 DOI: 10.1016/j.envint.2020.106023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Intertidal sediments constitute the micro-environment for the co-existence of endocrine disrupting chemicals (EDCs) and biofilms consisting of the microbial community and extracellular polymeric substances (EPS). However, the interactions and the resulting eco-function of this community are complex and poorly characterized, especially after a destruction event. This study evaluates the re-construction of biofilms in terms of the abundance of prokaryotic cells and related EPS characterization in two destroyed sedimentary matrices from subtropical environments simulated by sterilization in the presence of EDCs and investigates the role of EPS. The results show that benthic prokaryotes recover from the deposition of active prokaryotes in natural seawater and form biofilms after sterilization. Sterilization triggers the release of polysaccharides and protein from lysed native microbial cells and bound EPS in sedimentary organic matter, thus increasing their concentrations. The increased portion of EPS also acts as a persistent stress on re-colonizing prokaryotes and leads to the overproduction of sedimentary EPS. Due to the protective role mediated by EPS, the effect of EDCs on biofilm composition in sterilized sediment is not significant. The sedimentary matrix is the most important determinant of the composition of the biofilm and the occurrence of EDCs. At the end of an 84-day experiment, the abundance of prokaryotic cells and the concentrations of polysaccharides and protein in mangrove sediment are 1.6-1.8 times higher than those in sandflat sediment, regardless of EDCs. Sandflat sediment exhibits higher concentrations of nonylphenol and bisphenol A but a lower concentration of 17α-ethinylestradiol than mangrove sediment. This study enhances our understanding of the role of sedimentary biofilms and the fate of EDCs in intertidal systems and highlights the benefit of a destructive event in enhancing ecosystem function, particularly tolerance to EDC adversity due to EPS production.
Collapse
Affiliation(s)
- Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Sirui Xiao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qian Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
23
|
Measurement, Analysis, and Remediation of Bisphenol-A from Environmental Matrices. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-0540-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils. 3 Biotech 2019; 9:228. [PMID: 31139543 DOI: 10.1007/s13205-019-1756-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/11/2019] [Indexed: 12/07/2022] Open
Abstract
The endocrine-disrupting chemical bisphenol A (BPA) has attracted much attention because of its estrogenic activity and widespread environmental contamination. In this study, we investigated the BPA biodegradation abilities of various bacterial strains isolated from deserts and arid soils from southern Tunisia. Ten bacterial strains that belong to Pseudomonas putida, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella sp. and Pantoea sp. showed high BPA removal potential in mineral salt medium (MSM) containing 1 mM BPA. BPA removal rates varied between strains and ranged from 36 to 97%. The strain G320 (P. putida) presented the highest BPA removal rate with 97% within 4 days at 30 °C. The half-life when increasing the BPA concentration to 3 mM was 2 days for strain G320, while total degradation was achieved within 8 days. BPA biodegradation products were identified by GC-MS, and their toxicity was assessed by an algal toxicity test. BPA detoxification was confirmed by evaluating the effect of its biodegradation metabolites on algal growth (dry weight), cells morphology and chlorophylls levels of Tetraselmis sp. strain V2. Results showed the interesting potential of desert soil's bacteria in BPA detoxification as well as the eventual use of the algal specie in toxicity assessment.
Collapse
|
25
|
Huang WC, Jia X, Li J, Li M. Dynamics of microbial community in the bioreactor for bisphenol S removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:15-21. [PMID: 30684898 DOI: 10.1016/j.scitotenv.2019.01.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol S is one of the alternative substitutes of Bisphenol A, a chemical widely recognized as an endocrine disrupting compound. In the past few years, a variety of studies on degradation of BPA demonstrated that microorganisms play important roles in the degradation process. However, the fate of BPS during wastewater treatment processes and the composition of microorganisms that functionalize BPS degradation remain to be explored. In this study, three bioreactors, R-BPS (amended with Bisphenol S), R-BPSHA (amended with Bisphenol S and humic acid) and Con (control bioreactor), were set up to investigate the fate of BPS and the microbial compositions and dynamics in the bioreactors, especially for the microorganisms associated with BPS removal. Results showed that a complete removal was achieved within 24 days. The addition of humic acid accelerated the elimination of BPS in both effluent and sludge. The results of 16S rRNA gene ampilicon sequencing revealed that the most abundant bacteria in all samples were affiliated to Proteobacteria, Bacteroidetes, Acidobacteria and Chloroflexi. Seven major genera were likely associated with BPS removal, including Pseudomonas, Azospira, Hydrogenophaga, Devosia, Delftia, Acidovorax and Rhodobacter. Among them, humic acid increased relative abundance of some bacteria, such as Pseudomonas, Hydrogenophaga and Acidovorax. These findings would give valuable information on the microbial community composition associated with BPS removal, providing biological background for bioremediation of BPS-contaminated environment.
Collapse
Affiliation(s)
- Wen-Cong Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Xiaofan Jia
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
26
|
Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. WATER 2019. [DOI: 10.3390/w11030526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stormwater retention ponds commonly receive some wastewater through misconnections, sewer leaks, and sewer overloads, all of which leads to unintended loads of organic micropollutants, including pharmaceuticals. This study explores the role of pond sediment in removing pharmaceuticals (naproxen, carbamazepine, sulfamethoxazole, furosemide, and fenofibrate). It quantifies their sorption potential to the sediments and how it depends on pH. Then it addresses the degradability of the pharmaceuticals in microcosms holding sediment beds and pond water. The sediment-water partitioning coefficient of fenofibrate varied little with pH and was the highest (average log Kd: 4.42 L kg−1). Sulfamethoxazole had the lowest (average log Kd: 0.80 L kg−1), varying unsystematically with pH. The coefficients of naproxen, furosemide and carbamazepine were in between. The degradation by the sediments was most pronounced for sulfamethoxazole, followed by naproxen, fenofibrate, furosemide, and carbamazepine. The first three were all removed from the water phase with half-life of 2–8 days. Over the 38 days the experiment lasted, they were all degraded to near completion. The latter two were more resistant, with half-lives between 1 and 2 months. Overall, the study indicated that stormwater retention ponds have the potential to remove some but not all pharmaceuticals contained in wastewater contributions.
Collapse
|
27
|
Zhang H, Wang L, Li Y, Wang P, Wang C. Background nutrients and bacterial community evolution determine 13C-17β-estradiol mineralization in lake sediment microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2304-2311. [PMID: 30332663 DOI: 10.1016/j.scitotenv.2018.10.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Microbial biodegradation plays a key role in determining the fate of estrogens and can be affected by the background nutrients in natural environments. However, information on how microbial community and nutrient conditions influence estrogen biodegradation is very limited. In this study, 13C-17β-estradiol (13C-E2) was supplied to sediments from the Central Area (CA), Gonghu (GH), Meiliang (ML), and Zhushan (ZS) Bays of Taihu Lake to investigate shifts in bacterial community structure associated with 13C-E2 mineralization over a 30-day incubation period, and the relationships between the background nutrients and cumulative 13C-E2 mineralization rates. The cumulative 13C-E2 mineralization rate for ZS Bay was 87.40% on Day 30, which was significantly greater (P < 0.05) than the rates for ML Bay (67.74%), GH Bay (62.79%), and the CA (52.60%). A correlation analysis suggested that the cumulative 13C-E2 mineralization rate was significantly and positively related to the concentrations of total organic carbon (P < 0.01), nitrate-nitrogen (P < 0.05), ammonia-nitrogen (P < 0.001), and dissolved phosphorus (P < 0.001) in the sediments. Although the highest relative abundances of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes (contain most estrogen-degrading bacteria) were not initially in the ZS Bay sediment, the addition of 13C-E2 stimulated their growth in all sediments, with the greatest increases observed for ZS Bay. At the genus level, the cumulative increases of seven genera (Nitrosomonas, Bacillus, Pseudomonas, Sphingomonas, Novosphingobium, Alcaligenes and Mycobacterium) considered to be associated with E2 degradation were also highest for ZS Bay (80.2 times), followed by ML Bay (39.8 times), GH Bay (28.1 times), and CA (19.0 times). Besides the higher nutrient concentrations, the responses of bacteria to 13C-E2 addition in ZS Bay could also explain it having the highest cumulative 13C-E2 mineralization rate. These results indicate both the background nutrients and bacterial community evolution in the sediments determined the 13C-E2 mineralization rates.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
28
|
Li H, Zhang S, Yang XL, Yang YL, Xu H, Li XN, Song HL. Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. CHEMOSPHERE 2019; 217:599-608. [PMID: 30445405 DOI: 10.1016/j.chemosphere.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
This study aims to demonstrate that an up-flow microbial fuel cell-coupled constructed wetland (UCW-MFC) can effectively treat synthetic wastewater that contains a high concentration of pharmaceutical and personal care products (PPCPs, 10 mg L-1 level), such as ibuprofen (IBP) and bisphenol A (BPA). A significant decline in chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal was observed when BPA was added, which indicated that BPA was more toxic to bacteria. The closed circuit operation of UCW-MFC performed better than the open circuit mode for COD and NH4+-N removal. Similarly, the removal rates of IBP and BPA were increased by 9.3% and 18%, respectively, compared with the open circuit mode. The majority of PPCPs were removed from the bottom and anode layer, which accounted for 63.2-78.7% of the total removal. The main degradation products were identified. The removal rates of IBP and BPA decreased by 14.6% and 23.7% due to a reduction in the hydraulic detention times (HRTs) from 16 h to 4 h, respectively. Electricity generation performance, including voltage and maximum power density, initially increased and then declined with a decrease in the HRT. Additionally, both the current circuit operation mode and the HRT have an impact on the bacterial community diversity of the anode according to the results of high-throughput sequencing. The possible bacterial groups involved in PPCP degradation were identified. In summary, UCW-MFC is suitable for enabling the simultaneous removal of IBP and BPA and successful electricity production.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Shuai Zhang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing, 210023, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing, 210023, China; School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Han Xu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xian-Ning Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
29
|
Ferro Orozco AM, Contreras EM, Zaritzky NE. Interdependence between the aerobic degradation of BPA and readily biodegradable substrates by activated sludge in semi-continuous reactors. Biodegradation 2018; 29:579-592. [PMID: 30242540 DOI: 10.1007/s10532-018-9854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/17/2018] [Indexed: 11/29/2022]
Abstract
The objective of the present work was to analyze the interrelationship between the aerobic degradation of BPA and readily biodegradable substrates by activated sludge (AS) in semi-continuous reactors (SCRs). AS were obtained from three SCRs fed with glucose, acetate or peptone. AS from these reactors were used as inocula for three SCRs that were fed with each biogenic substrate, and for three SCRs that were fed with the biogenic substrate and BPA. In all cases, dissolved organic carbon (DOC), BPA, total suspended solids (TSS) and respirometric measurements were performed. Although BPA could be removed in the presence of all the tested substrates, AS grown on acetate exhibited the longest acclimation to BPA. Reactors fed with peptone attained the lowest TSS concentration; however, these AS had the highest specific BPA degradation rate. Specific DOC removal rates and respirometric measurements demonstrated that the presence of BPA had a negligible effect on the removal of the tested substrates. A mathematical model was developed to represent the evolution of TSS and DOC in the SCRs as a function of the operation cycle. Results suggest that the main effect of BPA on AS was to increase the generation of microbial soluble products. This work helps to understand the relationship between the biodegradation of BPA and readily biodegradable substrates.
Collapse
Affiliation(s)
- A M Ferro Orozco
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) CCT Mar del Plata CONICET - Fac. de Ing, UNMdP, J.B. Justo 4302, B7608FDQ, Mar Del Plata, Argentina.
| | - E M Contreras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) CCT Mar del Plata CONICET - Fac. de Ing, UNMdP, J.B. Justo 4302, B7608FDQ, Mar Del Plata, Argentina
| | - N E Zaritzky
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP, 47 y 116, B1900AJJ, La Plata, Argentina.,Fac. de Ingeniería, UNLP, 47 y 1, B1900AJJ, La Plata, Argentina
| |
Collapse
|
30
|
Wang Y, Rui M, Nie Y, Lu G. Influence of gastrointestinal tract on metabolism of bisphenol A as determined by in vitro simulated system. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:111-118. [PMID: 29778027 DOI: 10.1016/j.jhazmat.2018.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Oral exposure is a major route of human bisphenol A (BPA) exposure. However, influence of gastrointestinal tract on BPA metabolism is unavailable. In this study, in vitro simulator of the human intestinal microbial ecosystem (SHIME) was applied to investigate the changes in bioaccessibility and metabolism of BPA in different parts of gastrointestinal tract (stomach, small intestine and colon). Then the human hepatoma cell line HepG2 was employed to compare toxic effects of BPA itself and effluents of SHIME system on hepatic gene expression profiles. Results showed that level of bioaccessible BPA decreased with the process of gastrointestinal digestion. But the gastrointestinal digestion could not completely degrade BPA. Then, BPA exposure significantly changed microbial community in colons and increased the percentage of microbes shared in ascending, transverse and descending colons. Abundances of BPA-degradable bacteria, such as Microbacterium and Alcaligenes, were up-regulated. Further, SHIME effluents significantly up-regulated expressions of genes related to estrogenic effect and oxidative stress compared to BPA itself, but reduced or had little change on the risk of cell apoptosis and fatty deposits. This study sheds new lights on influence of gastrointestinal digestion on bioaccessibility and toxic effects of BPA.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Min Rui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yang Nie
- Hangzhou Hydrology and Water Resources Monitoring Central Station, Hangzhou, 310016, Zhejiang, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
31
|
Noszczyńska M, Piotrowska-Seget Z. Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. CHEMOSPHERE 2018; 201:214-223. [PMID: 29524822 DOI: 10.1016/j.chemosphere.2018.02.179] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Numerous data indicate that most of bisphenols (BPs) are endocrine disrupters and exhibit cytotoxicity, neurotoxicity, genotoxicity and reproductive toxicity against vertebrates. Nevertheless, they are widely applied in material production what result in their ubiquitous occurrence in ecosystems. While BPA is the most frequently detected in environment, BPAF, BPF and BPS are also often found. Ecosystem particularly exposed to BPs pollution is industrial and municipal wastewater being a common source of BPA in river waters. Different techniques to remove BPs from these ecosystems have been applied, among which biodegradation seems to be the most effective. In this review the current state of knowledge in the field of BPs application, distribution in the environment, effects on animal and human health, and biodegradation mediated by bacterial populations in wastewater treatment plants and rivers is presented.
Collapse
Affiliation(s)
- Magdalena Noszczyńska
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Zofia Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
32
|
Yang L, Xiao S, Luan T, Tam NFY. Overproduction of microbial extracellular polymeric substances in subtropical intertidal sediments in response to endocrine disrupting chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:673-682. [PMID: 29272836 DOI: 10.1016/j.scitotenv.2017.12.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Microorganisms and their extracellular polymeric substances (EPS) in sediments are important in sediment stabilization and the fate of pollutants. However, how toxic organic pollutants affect bacteria and EPS in sediments, particularly in subtropical intertidal zones is poorly known. The present study aims to investigate the bacterial abundance and related EPS in simulated intertidal sandflat and mangrove sediments under the stress of endocrine disrupting chemicals (EDCs). Results showed that the temporal changes of the bacterial number in both sandflat and mangrove sediments were similar, increased from days 0 to 56 then became steady during the 84-days incubation. Bacteria exhibited an important role in the production of high molecular weight (HMW) EPS protein and the degradation of the low molecular weight (LMW) EPS protein. During incubation, the EPS polysaccharides changed from a colloidal-LMW fraction at the beginning to a more complex-HMW fraction at the end of the experiment. The increases in the concentration of HMW polysaccharides might contribute to sediment stabilization. Among different spiked EDCs, nonylphenol (NP) and 17α-ethinylestradiol (EE2) tended to accumulate in both sandflat and mangrove sediments and posed stresses to bacterial growth, especially the latter sediment. The persistent EDCs promoted a higher production of EPS polysaccharides and proteins in both sediments when compared to the respective control, but the EPS in the sandflat sediment was mainly in the colloidal fraction while the bound fraction was more abundant in the mangrove sediment. The present results enhance our understanding of the effects of EDCs on sediment biofilms in intertidal systems. This study also demonstrates the significance of EPS polysaccharides and proteins in sediment stabilization and provides a fundamental basis for future microbiology studies.
Collapse
Affiliation(s)
- Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Sirui Xiao
- Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nora F Y Tam
- Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
33
|
Xu P, Lai C, Zeng G, Huang D, Chen M, Song B, Peng X, Wan J, Hu L, Duan A, Tang W. Enhanced bioremediation of 4-nonylphenol and cadmium co-contaminated sediment by composting with Phanerochaete chrysosporium inocula. BIORESOURCE TECHNOLOGY 2018; 250:625-634. [PMID: 29220806 DOI: 10.1016/j.biortech.2017.11.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Composting is identified as an effective approach for solid waste disposal. The bioremediation of 4-nonylphenol (4NP) and cadmium (Cd) co-contaminated sediment was investigated by composting with Phanerochaete chrysosporium (P. chrysosporium) inocula. P. chrysosporium inocula and proper C/N ratios (25.51) accelerated the composting process accompanied with faster total organic carbon loss, 4NP degradation and Cd passivation. Microbiological analysis demonstrated that elevated activities of lignocellulolytic enzymes and sediment enzymes was conducive to organic chemical transformation. Bacterial community diversity results illustrated that Firmicutes and Proteobacteria were predominant species during the whole composting process. Aerobic cellulolytic bacteria and organic degrading species played significant roles. Toxicity characteristic leaching procedure (TCLP) extraction and germination indices results indicated the efficient detoxification of 4NP and Cd co-contaminated sediment after 120 days of composting. Overall, results demonstrated that P. chrysosporium enhanced composting was available for the bioremediation of 4NP and Cd co-contaminated sediment.
Collapse
Affiliation(s)
- Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Xin Peng
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
34
|
Shen J, Wang XZ, Zhang Z, Sui YM, Wu HL, Feng JM, Tong XN, Zhang ZY. Adsorption and degradation of 14C-bisphenol A in a soil trench. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:676-682. [PMID: 28709102 DOI: 10.1016/j.scitotenv.2017.06.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) has caused widespread concern among scholars as a result of its estrogenic toxicity. It exists mainly in natural waters, sediments, and soil, as well as sewage and wastewater sludge. Considering that BPA is a common environmental pollutant that is removed along with chemical oxygen demand (COD), nitrogen, and phosphorus in drainage treatment systems, it is important to research the fate of BPA in sewage treatment systems. In this research, laboratory batch experiments on soil degradation and adsorption were conducted with 14C-BPA, aiming to discuss the transport and degradation characteristics of BPA in both simulated facilities and a soil trench. Based on the experimental results, the Freundlich model could be applied to fit the isothermal adsorption curve of the BPA in soil. A low mobility characteristic of BPA was discovered. The mineralization rate of BPA was fast and that of the reaction showed small fluctuations. After degradation, 21.3 and 17.7% of the BPA groups (the experimental group treated with ammonia oxidase (AMO) inhibitor and the control group) were converted into 14CO2, respectively. This indicates that the nitrification and degradation of BPA had a certain competitive relationship. Besides, nitrification did not significantly affect the soil residue of BPA. Through the soil trench test, the average removal rate of BPA in the soil trench was 85.5%. 14CO2 was discharged via the mineralization of BPA, accounting for 2.5% of the initial input. BPA easily accumulated in the bottom soil of the soil trench. BPA and its metabolites in the effluent accounted for 14.5% of the initial dosage. The residual extractable BPA and its metabolites in the soil accounted for 51.3%, and the remaining part of the unextractable residue represented 19.8% of the initial radioactive dosage.
Collapse
Affiliation(s)
- Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Ze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhen Zhang
- Environmental Health Science Department, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Yan-Ming Sui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Lu Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Meng Feng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Nan Tong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen-Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
The rapid degradation of bisphenol A induced by the response of indigenous bacterial communities in sediment. Appl Microbiol Biotechnol 2017; 101:3919-3928. [DOI: 10.1007/s00253-017-8154-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 01/30/2023]
|
36
|
Koumaki E, Mamais D, Noutsopoulos C. Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:233-241. [PMID: 27021262 DOI: 10.1016/j.jhazmat.2016.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/25/2023]
Abstract
Laboratory tests were conducted with four non-steroidal anti-inflammatory drugs (naproxen, ibuprofen, diclofenac and ketoprofen) under different redox conditions (aerobic, anoxic, anaerobic and sulfate-reducing conditions) in order to assess abiotic and biotic degradation in a river water/sediment system. The river water was sampled from Sperchios River and the sediment was collected from the banks of a rural stream where the discharge point of a wastewater treatment plant is located. To quantitatively describe degradation kinetics of the selected compounds, pseudo first-order kinetics were adopted. According to the results, it can be stated that the concentration of the substances remained constant or decreased only marginally (p≥0.05) in the sterile experiments and this excludes abiotic processes such as hydrolysis or sorption as major removal mechanisms of the target compounds from the water phase and assign their removal to microbial action. Results showed that the removal rate of the compounds decreases as dissolved oxygen concentration in the river water/sediment system decreases. All compounds were found to be biodegradable under aerobic conditions at dissipation half-lives between 1.6 and 20.1days, while dissipation half-lives for naproxen and ketoprofen increase by a factor of 2 under all tested conditions in the absence of oxygen.
Collapse
Affiliation(s)
- Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece.
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece
| |
Collapse
|
37
|
Xiong J, Li G, An T. The microbial degradation of 2,4,6-tribromophenol (TBP) in water/sediments interface: Investigating bioaugmentation using Bacillus sp. GZT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:573-580. [PMID: 27613672 DOI: 10.1016/j.scitotenv.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The substance 2,4,6-Tribromophenol (TBP) is used as a flame retardant in electronic and electric devices, and is a replacement for pentachlorophenol in wood preservation. TBP is a contaminant in different environmental matrices, at levels where treatment is required. This study examined the relationship between the bioaugmention of TBP degradation and the evolution of the microbial community in river water/sediment microcosms. When compared with unamended controls, bioaugmentation with Bacillus sp. GZT effectively enhanced TBP biodegradation, with approximately 40.7% of the TBP removal after a 7-week incubation period, without a lag phase (p<0.01). Amendments with 2-bromophenol, 2,6-dibromophenol, and 2,4-dibromophenol did not promote TBP biodegradation in river water/sediments (p>0.05). However, TBP biodegradation was enhanced by adding other additives, including NaCl, humic acid, sodium lactate, and sodium propionate alone, especially glucose and yeast extract. A metagenomics analysis of the total 16S rRNA genes from the treatment system with bioaugmentation showed that four microbial phyla were dominant: Proteobacteria (52.08-66.22%), Actinobacteria (20.03-5.47%), Bacteroidetes (6.68-13.68%), and Firmicutes (4.53-20.83%). This study highlights the possible benefits using bioaugmentation with GZT to remediate TBP-polluted water and sediments.
Collapse
Affiliation(s)
- Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiying Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
38
|
Harb M, Wei CH, Wang N, Amy G, Hong PY. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression. BIORESOURCE TECHNOLOGY 2016; 218:882-891. [PMID: 27441825 DOI: 10.1016/j.biortech.2016.07.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.
Collapse
Affiliation(s)
- Moustapha Harb
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Chun-Hai Wei
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Nan Wang
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Gary Amy
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
39
|
Cai W, Li Y, Wang P, Niu L, Zhang W, Wang C. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15727-15738. [PMID: 27146525 DOI: 10.1007/s11356-016-6757-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on bacterial group changes in polluted urban rivers.
Collapse
Affiliation(s)
- Wei Cai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| |
Collapse
|
40
|
Chen Y, Dai Y, Wang Y, Wu Z, Xie S, Liu Y. Distribution of bacterial communities across plateau freshwater lake and upslope soils. J Environ Sci (China) 2016; 43:61-69. [PMID: 27155410 DOI: 10.1016/j.jes.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/23/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Microorganisms are involved in a variety of biogeochemical processes in natural environments. The differences between bacterial communities in freshwaters and upslope soils remain unclear. The present study investigated the bacterial distribution in a plateau freshwater lake, Erhai Lake (southwestern China), and its upslope soils. Illumina MiSeq sequencing illustrated high bacterial diversity in lake sediments and soils. Sediment and soil bacterial communities were mainly composed of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Planctomycetes. However, a distinctive difference in bacterial community structure was found between soil and sediment ecosystems. Water content, nitrogen and pH affected the distribution of the bacterial community across Erhai Lake and its upslope soils. Moreover, the soil bacterial community might also be shaped by plant types. This work could provide some new insights into plateau aquatic and terrestrial microbial ecology.
Collapse
Affiliation(s)
- Yihui Chen
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China.
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yilin Wang
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhen Wu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7911-7918. [PMID: 26762935 DOI: 10.1007/s11356-016-6054-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.
Collapse
Affiliation(s)
- Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Bingxin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Rusen Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China.
| |
Collapse
|
42
|
Antibiotic sulfanilamide biodegradation by acclimated microbial populations. Appl Microbiol Biotechnol 2015; 100:2439-47. [DOI: 10.1007/s00253-015-7133-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/27/2022]
|
43
|
Yang Y, Wang Z, He T, Dai Y, Xie S. Sediment bacterial communities associated with anaerobic biodegradation of bisphenol A. MICROBIAL ECOLOGY 2015; 70:97-104. [PMID: 25501890 DOI: 10.1007/s00248-014-0551-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Bisphenol A (BPA) is one of the endocrine-disrupting chemicals that are ubiquitous in aquatic environments. Biodegradation is a major way to clean up the BPA pollution in sediments. However, information on the effective BPA biodegradation in anaerobic sediments is still lacking. The present study investigated the biodegradation potential of BPA in river sediment under nitrate- or sulfate-reducing conditions. After 120-day incubation, a high removal of BPA (93 or 89%) was found in sediment microcosms (amended with 50 mg kg(-1) BPA) under these two anaerobic conditions. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Actinobacteria were the major bacterial groups in BPA-degrading sediments. The shift in bacterial community structure could occur with BPA biodegradation.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
44
|
Ma W, Nie C, Chen B, Cheng X, Lun X, Zeng F. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater. J Environ Sci (China) 2015; 31:154-163. [PMID: 25968269 DOI: 10.1016/j.jes.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Chao Nie
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bin Chen
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Xiang Cheng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fangang Zeng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| |
Collapse
|
45
|
Peng YH, Chen YJ, Chang YJ, Shih YH. Biodegradation of bisphenol A with diverse microorganisms from river sediment. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:285-290. [PMID: 25590822 DOI: 10.1016/j.jhazmat.2014.12.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/17/2014] [Accepted: 12/28/2014] [Indexed: 06/04/2023]
Abstract
The wide distribution of bisphenol A (BPA) in the environment is problematic because of its endocrine-disrupting characteristics and toxicity. Developing cost-effective remediation methods for wide implementation is crucial. Therefore, this study investigated the BPA biodegradation ability of various microorganisms from river sediment. An acclimated microcosm completely degraded 10 mg L(-1) BPA within 28 h and transformed the contaminant into several metabolic intermediates. During the degradation process, the microbial compositions fluctuated and the final, predominant microorganisms were Pseudomonas knackmussii and Methylomonas clara. From the original river sediment, we isolated four distinct strains, which deplete the BPA over 7-9 days. They were all genetically similar to P. knackmussii. The degradation ability of mixed strains was higher than that of single strain but was far less than that of the microbial consortium. The novel BPA degradation ability of P. knackmussii and its role in the decomposing microcosm were first demonstrated. Our results revealed that microbial diversity plays a crucial role in pollutant decomposition.
Collapse
Affiliation(s)
- Yu-Huei Peng
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan.
| | - Ya-Jou Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Ying-Jie Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Yang-hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan.
| |
Collapse
|
46
|
Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5711-41. [PMID: 25548011 PMCID: PMC4381092 DOI: 10.1007/s11356-014-3974-5] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/08/2014] [Indexed: 04/15/2023]
Abstract
Contaminants of emerging concern (CECs) are not commonly monitored in the environment, but they can enter the environment from a variety of sources. The most worrying consequence of their wide use and environmental diffusion is the increase in the possible exposure pathways for humans. Moreover, knowledge of their behavior in the environment, toxicity, and biological effects is limited or not available for most CECs. The aim of this work is to edit the state of the art on few selected CECs having the potential to enter the soil and aquatic systems and cause adverse effects in humans, wildlife, and the environment: bisphenol A (BPA), nonylphenol (NP), benzophenones (BPs), and benzotriazole (BT). Some reviews are already available on BPA and NP, reporting about their behavior in surface water and sediments, but scarce and scattered information is available about their presence in soil and groundwater. Only a few studies are available about BPs and BT in the environment, in particular in soil and groundwater. This work summarizes the information available in the literature about the incidence and behavior of these compounds in the different environmental matrices and food. In particular, the review focuses on the physical-chemical properties, the environmental fate, the major degradation byproducts, and the environmental evidence of the selected CECs.
Collapse
Affiliation(s)
- Alessando Careghini
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Filippo Mastorgio
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Sabrina Saponaro
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Elena Sezenna
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
47
|
Liao X, Chen C, Zhang J, Dai Y, Zhang X, Xie S. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter. CHEMOSPHERE 2015; 119:935-940. [PMID: 25280176 DOI: 10.1016/j.chemosphere.2014.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/26/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization.
Collapse
Affiliation(s)
- Xiaobin Liao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingxu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaojian Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Wang Z, Yang Y, He T, Xie S. Change of microbial community structure and functional gene abundance in nonylphenol-degrading sediment. Appl Microbiol Biotechnol 2014; 99:3259-68. [DOI: 10.1007/s00253-014-6222-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/07/2022]
|
49
|
Wang Z, Yang Y, Sun W, Xie S, Liu Y. Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:1-5. [PMID: 24836870 DOI: 10.1016/j.ecoenv.2014.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Nonylphenol (NP) is one of commonly detected contaminants in the environment. Biological degradation is mainly responsible for remediation of NP-contaminated site. Knowledge about the structure of NP-degrading microbial community is still very limited. Microcosms were constructed to investigate the structure of microbial community in NP-contaminated river sediment and its change with NP biodegradation. A high level of NP was significantly dissipated in 6-9 days. Bacteria and ammonia-oxidizing archaea (AOA) were more responsive to NP amendment compared to ammonia-oxidizing bacteria (AOB). Gammaproteobacteria, Alphaproteobacteria and Bacteroidetes were the largest bacterial groups in NP-degrading sediment. Microorganisms from bacterial genera Brevundimonas, Flavobacterium, Lysobacter and Rhodobacter might be involved in NP degradation in river sediment. This study provides some new insights towards NP biodegradation and microbial ecology in NP-contaminated environment.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Yuyin Yang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Weimin Sun
- Department of Environmental Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| | - Yong Liu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|