1
|
Jędruch A, Bełdowski J, Bełdowska M. Mercury dynamics at the base of the pelagic food web of the Gulf of Gdańsk, southern Baltic Sea. MARINE POLLUTION BULLETIN 2024; 202:116363. [PMID: 38621354 DOI: 10.1016/j.marpolbul.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdańsk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.
Collapse
Affiliation(s)
- Agnieszka Jędruch
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, 81-712 Sopot, Poland; University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Jacek Bełdowski
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Bełdowska
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
2
|
Alowaifeer AM, Clingenpeel S, Kan J, Bigelow PE, Yoshinaga M, Bothner B, McDermott TR. Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:225-241. [PMID: 36349954 PMCID: PMC10753857 DOI: 10.1002/etc.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-μm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-μm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-μm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-μm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.
Collapse
Affiliation(s)
- Abdullah M. Alowaifeer
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Clingenpeel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Washington River Protection Solutions, Richland, Washington, USA
| | - Jinjun Kan
- Microbiology Department, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Patricia E. Bigelow
- US National Park Service, Center for Resources, Fisheries and Aquatic Sciences Program, Yellowstone National Park, Wyoming, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Timothy R. McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
3
|
Galvao P, Sus B, Lailson-Brito J, Azevedo A, Malm O, Bisi T. An upwelling area as a hot spot for mercury biomonitoring in a climate change scenario: A case study with large demersal fishes from Southeast Atlantic (SE-Brazil). CHEMOSPHERE 2021; 269:128718. [PMID: 33189394 DOI: 10.1016/j.chemosphere.2020.128718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Data concerning the monomethylmercury (MeHg) bioaccumulation in marine biota from Southeast Atlantic Ocean are scarce. This study purchased large specimens of demersal fishes from an upwelling region: Warsaw grouper (Epinephelus nigritus), Dusky grouper (Epinephelus marginatus) and Namorado sandperch (Pseudopercis numida). The authors addressed the bioaccumulation and toxicokinetic of mercury in fish organs, and the toxicological risk for human consumption of this metal in the muscle tissues accessed. Additionally, the present study discussed the possible implications of shifts in key variables of the environment related to a climate-changing predicted scenario, to the mercury biomagnification in a tropical upwelling system. The muscle was the main stock of MeHg, although the highest THg concentrations have been found in liver tissue. Regarding the acceptable maximum level (ML = 1 mg kg-1), E. nigritus and E. marginatus showed 22% of the samples above this limit. Concerning P. numida, 77% were above 0.5 mg kg-1, but below the ML. The %MeHg in liver and muscle showed no significative correlations, which suggest independent biochemical pathways to the toxicokinetic of MeHg, and constrains the indirect assessment of the mercury contamination in the edible tissue by the liver analyses. The present study highlights the food web features of a tropical upwelling ecosystem that promote mercury biomagnification. Additionally, recent studies endorse the enhancement of upwelling phenomenon due to the climate global changes which boost the pumping of mercury enriched water to the oceanic upper layer. Therefore, the upwelling areas might be hot spots for MeHg monitoring in marine biota.
Collapse
Affiliation(s)
- Petrus Galvao
- Programa de Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Bruna Sus
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| | - Alexandre Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| | - Olaf Malm
- Programa de Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Tatiana Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Chiang G, Kidd KA, Díaz-Jaramillo M, Espejo W, Bahamonde P, O'Driscoll NJ, Munkittrick KR. Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. CHEMOSPHERE 2021; 262:128360. [PMID: 33182080 DOI: 10.1016/j.chemosphere.2020.128360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a global pollutant of concern because its organic and more toxic form, methylHg (MeHg), bioaccumulates and biomagnifies through aquatic food webs to levels that affect the health of fish and fish consumers, including humans. Although much is known about trophic transfer of MeHg in aquatic food webs at temperate latitudes in the northern hemisphere, it is unclear whether its fate is similar in biota from coastal zones of the southeastern Pacific. To assess this gap, MeHg, total Hg and food web structure (using δ13C and δ15N) were measured in marine macroinvertebrates, fishes, birds, and mammals from Patagonian fjords and the Antarctic Peninsula. Trophic magnification slopes (TMS; log MeHg versus δ15N) for coastal food webs of Patagonia were high when compared with studies in the northern hemisphere, and significantly higher near freshwater inputs as compared to offshore sites (0.244 vs 0.192). Similarly, in Antarctica, the site closer to glacial inputs had a significantly higher TMS than the one in the Southern Shetland Islands (0.132 vs 0.073). Composition of the food web also had an influence, as the TMS increased when mammals and seabirds were excluded (0.132-0.221) at a coastal site. This study found that both the composition of the food web and the proximity to freshwater outflows are key factors influencing the TMS for MeHg in Patagonian and Antarctic food webs.
Collapse
Affiliation(s)
- Gustavo Chiang
- CAPES, Center for Applied Ecology & Sustainability, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile.
| | - Karen A Kidd
- Department of Biology and School of Earth, Environment and Society, McMaster University, 1280, Main Street W., Hamilton, ON, L8S 4K1, Canada
| | - Mauricio Díaz-Jaramillo
- IIMyC, Estresores Múltiples en El Ambiente (EMA), FCEyN UNMdP CONICET, Funes 3350 (B7602AYL), Mar Del Plata, 7600, Argentina
| | - Winfred Espejo
- Department of Animal Science, Faculty of Veterinarian Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Paulina Bahamonde
- Núcleo Milenio INVASAL, Concepción, Chile; HUB AMBIENTAL UPLA - Centro de Estudios Avanzado, Universidad de Playa Ancha, Valparaíso, Chile
| | - Nelson J O'Driscoll
- Department of Earth & Environmental Sciences, Acadia University, Wolfville, NS, Canada
| | | |
Collapse
|
5
|
do Nascimento EL, Miyai RK, de Oliveira Gomes JP, de Almeida R, de Carvalho DP, Manzatto ÂG, Bernardi JVE, da Silveira EG, Bastos WR. Dynamics of mercury in the plankton of a hydroelectric reservoir, Western Amazon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:647. [PMID: 32948923 DOI: 10.1007/s10661-020-08600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The energy transfer in the aquatic food chain is an important way for mercury (Hg) to enter other trophic levels. The objective of this work was to evaluate the Hg concentrations in plankton upstream and downstream of the Samuel Hydroelectric Reservoir, Rondônia, Brazil. Phytoplankton and zooplankton samples were collected with 20-μm and 68-μm nylon nets. An aliquot was removed for taxonomic analysis and another for total mercury determination, performed by cold vapor atomic absorption spectroscopy. Water physical-chemical parameters were also measured. The Hg concentrations in total plankton (phytoplankton and zooplankton samples) obtained at the three sampling upstream stations showed the same behavior, with the highest values registered in June 2005 (232 μg kg-1, 118 μg kg-1, 128 μg kg-1). The lowest values at stations J1 and M1 were recorded in November 2005 (4 μg kg-1 and 22 μg kg-1, respectively), while the lowest values at stations M4 and M8 were recorded in October 2005 (22 μg kg-1 and 5 μg kg-1, respectively). The Hg results found in the plankton in this study corroborate the results of other recent studies in the same region. The statistical analyses revealed that Hg concentrations in plankton do not explain the distribution of these organisms at the four sampling stations of Samuel Reservoir. Graphical Abstract.
Collapse
Affiliation(s)
- Elisabete Lourdes do Nascimento
- Grupo de Pesquisa em Águas Superficiais e Subterrâneas-GPEASS. Laboratório de Limnologia e Microbiologia-LABLIM. Departamento Acadêmico de Engenharia Ambiental-DAEA, Fundação Universidade Federal de Rondônia-UNIR, Rua Rio Amazonas, 351, Jardins dos Migrantes, Ji-Paraná, CEP: 76900-726, Brazil.
| | - Roberto Keidy Miyai
- Centrais Elétricas do Norte do Brasil S/A, Rua Major Amarante, 513, Arigolândia, Porto Velho, CEP: 76801-180, Brazil
| | - João Paulo de Oliveira Gomes
- Instituto Chico Mendes de Conservação da Biodiversidade-ICMBio, Rua São Cristovão, 903 - Bairro Jardim Presidencial, Ji-Paraná, CEP:76901-038, Brasil
| | - Ronado de Almeida
- Departamento de Ciências Sociais e Ambientais, Fundação Universidade Federal de Rondônia-UNIR, Rodovia 425 - km 2,5 - Jardim das Esmeraldas, Guajara-Mirim, CEP: 76850-000, Brazil
| | - Dario Pires de Carvalho
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer. Departamento de Ciências Biológicas, Fundação Universidade Federal de Rondônia-UNIR, Av. Presidente Dutra, 2967, Porto Velho, CEP: 76801-016, Brazil
| | - Ângelo Gilberto Manzatto
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer. Departamento de Ciências Biológicas, Fundação Universidade Federal de Rondônia-UNIR, Av. Presidente Dutra, 2967, Porto Velho, CEP: 76801-016, Brazil
| | - José Vicente Elias Bernardi
- Departamento de Química, Laboratório de Ciências da Vida e da Terra (campus Planaltina), Universidade de Brasília-UNB, Brasilia, CEP: 70910-900, Brazil
| | - Ene Glória da Silveira
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer. Departamento de Ciências Biológicas, Fundação Universidade Federal de Rondônia-UNIR, Av. Presidente Dutra, 2967, Porto Velho, CEP: 76801-016, Brazil
| | - Wanderley Rodrigues Bastos
- Grupo de Pesquisa em Águas Superficiais e Subterrâneas-GPEASS. Laboratório de Limnologia e Microbiologia-LABLIM. Departamento Acadêmico de Engenharia Ambiental-DAEA, Fundação Universidade Federal de Rondônia-UNIR, Rua Rio Amazonas, 351, Jardins dos Migrantes, Ji-Paraná, CEP: 76900-726, Brazil
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer. Departamento de Ciências Biológicas, Fundação Universidade Federal de Rondônia-UNIR, Av. Presidente Dutra, 2967, Porto Velho, CEP: 76801-016, Brazil
| |
Collapse
|
6
|
Soto Cárdenas C, Queimaliños C, Ribeiro Guevara S, Gerea M, Diéguez MC. The microbial mercury link in oligotrophic lakes: Bioaccumulation by picocyanobacteria in natural gradients of dissolved organic matter. CHEMOSPHERE 2019; 230:360-368. [PMID: 31108447 DOI: 10.1016/j.chemosphere.2019.04.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Andean Patagonian lakes are oligotrophic systems characterized by low dissolved organic carbon (DOC) levels and moderate to high Hg concentration that determine naturally high Hg/DOC ratios and bioavailability. In these lakes, microbial food webs are extremely important in Hg trophodynamics, being that the picophytoplankton fraction is a major entrance path of Hg2+ into pelagic food webs. This study analyzed the bioaccumulation of Hg2+ by the picocyanobacteria Synechococcus sp. using the radiotracer 197Hg2+ and water from four Andean Patagonian lakes presenting a natural gradient of DOM concentration and quality. Hg2+ bioaccumulation by Synechococcus was calculated as the uptake of Hg2+ per biovolume unit (volume concentration factor VCF; pL μm-3). Hg uptake showed a wide variation (13 < VCF< 300 pL μm-3) in the natural DOC gradient tested (0.7-4 mg L-1; Hg2+/DOC ratio: 1.8-14 ng mg-1). The bioaccumulation of Hg2+ in Synechococcus decreased exponentially with DOC concentration. Differences in the quality of dissolved organic matter (DOM) among lake water influenced also Hg2+ bioaccumulation. Naturally degraded DOM, with low molecular weight/size, promoted higher Hg uptakes in Synechococcus compared to humic DOM, rich in high molecular weight/size aromatic compounds, that retained Hg in the dissolved phase. In Andean Patagonian lakes picocyanobacteria are pivotal organisms in the Hg cycling, taking dissolved Hg2+ and transferring it to pelagic food webs, as well as fueling the benthic Hg pathway through sedimentation.
Collapse
Affiliation(s)
- Carolina Soto Cárdenas
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - Claudia Queimaliños
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo Km 9.5, 8400 Bariloche, Argentina
| | - Marina Gerea
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - María C Diéguez
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
7
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Soto Cárdenas C, Gerea M, Queimaliños C, Ribeiro Guevara S, Diéguez MC. Inorganic mercury (Hg 2+) accumulation in autotrophic and mixotrophic planktonic protists: Implications for Hg trophodynamics in ultraoligotrophic Andean Patagonian lakes. CHEMOSPHERE 2018; 199:223-231. [PMID: 29438950 DOI: 10.1016/j.chemosphere.2018.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Microbial assemblages are typical of deep ultraoligotrophic Andean Patagonian lakes and comprise picoplankton and protists (phytoflagellates and mixotrophic ciliates), having a central role in the C cycle, primary production and in the incorporation of dissolved inorganic mercury (Hg2+) into lake food webs. In this study we evaluated the mechanisms of Hg2+ incorporation in hetero- and autotrophic bacteria, in the autotrophic dinoflagellate (Gymnodinium paradoxum) and in two mixotrophic ciliates (Stentor araucanus and Ophrydium naumanni) dominating the planktonic microbial assemblage. The radioisotope 197Hg was used to trace the Hg2+ incorporation in microbiota. Hg uptake was analyzed as a function of cell abundance (BCF: bioconcentration factor), cell surface (SCF: surface concentration factor) and cell volume (VCF: volume concentration factor). Overall, the results obtained showed that these organisms incorporate substantial amounts of dissolved Hg2+ passively (adsorption) and actively (bacteria consumption or attachment), displaying different Hg internalization and therefore, varying potential for Hg transfer. Surface area and quality, and surface:volume ratio (S:V) control the passive uptake in all the organisms. Active incorporation depends on bacteria consumption in the mixotrophic ciliates, or on bacteria association to surface in the autotrophic dinoflagellate. Hg bioaccumulated by pelagic protists can be transferred to higher trophic levels through plankton and fish feeding, regenerated to the dissolved phase by excretion, and/or transferred to the sediments by particle sinking. In ultraoligotrophic Andean Patagonian lakes, picoplankton and planktonic protists are key components of lake food webs, linking the pelagic and benthic Hg pathways, and thereby playing a central role in Hg trophodynamics.
Collapse
Affiliation(s)
- Carolina Soto Cárdenas
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - Marina Gerea
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Claudia Queimaliños
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo Km 9.5, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - María C Diéguez
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
9
|
Soto Cárdenas C, Diéguez MDC, Queimaliños C, Rizzo A, Fajon V, Kotnik J, Horvat M, Ribeiro Guevara S. Mercury in a stream-lake network of Andean Patagonia (Southern Volcanic Zone): Partitioning and interaction with dissolved organic matter. CHEMOSPHERE 2018; 197:262-270. [PMID: 29353676 DOI: 10.1016/j.chemosphere.2018.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Lake Nahuel Huapi (NH) is a large, ultraoligotrophic deep system located in Nahuel Huapi National Park (NHNP) and collecting a major headwater network of Northwestern Patagonia (Argentina). Brazo Rincón (BR), the westernmost branch of NH, is close to the active volcanic formation Puyehue-Cordón Caulle. In BR, aquatic biota and sediments display high levels of total Hg (THg), ranging in contamination levels although it is an unpolluted region. In this survey, Hg species and fractionation were assessed in association with dissolved organic matter (DOM) in several aquatic systems draining to BR. THg varied between 16.8 and 363 ng L-1, with inorganic Hg (Hg2+) contributing up to 99.8% and methyl mercury (MeHg) up to 2.10%. DOC levels were low (0.31-1.02 mg L-1) resulting in high THg:DOC and reflecting in high Hg2+ availability for binding particles (partitioning coefficient log Kd up to 6.03). In streams, Hg fractionation and speciation related directly with DOM terrestrial prints, indicating coupled Hg-DOM inputs from the catchment. In the lake, DOM quality and photochemical and biological processing drive Hg fractionation, speciation and vertical levels. Dissolved gaseous Hg (Hg0) reached higher values in BR (up to 3.8%), particularly in upper lake layers where solar radiation enhances the photoreduction of Hg2+ and Hg-DOM complexes. The environmental conditions in BR catchment promote Hg2+ binding to abiotic particles and bioaccumulation and the production of Hg0, features enhancing Hg mobilization among ecosystem compartments. Overall, the aquatic network studied can be considered a "natural Hg hotspot" within NHNP.
Collapse
Affiliation(s)
- Carolina Soto Cárdenas
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue- CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - María Del Carmen Diéguez
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue- CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Claudia Queimaliños
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue- CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Andrea Rizzo
- Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche, Argentina; CCT Patagonia Norte CONICET Av. Pioneros 2350, 8400, Bariloche, Argentina
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche, Argentina
| |
Collapse
|
10
|
Song B, He H, Chen L, Yang S, Yongguang Y, Li Y. Speciation of Mercury in Microalgae by Isotope Dilution-inductively Coupled Plasma Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1269119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Beibei Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Huijun He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lufeng Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Shifeng Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yin Yongguang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Juárez A, Arribére MA, Arcagni M, Williams N, Rizzo A, Ribeiro Guevara S. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17995-18009. [PMID: 27255321 DOI: 10.1007/s11356-016-6811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.
Collapse
Affiliation(s)
- Andrea Juárez
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
| | - María A Arribére
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica, Bariloche, Argentina
| | - Marina Arcagni
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
- Centro Científico Tecnológico CONICET Patagonia Norte, Bariloche, Argentina
| | - Natalia Williams
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
- Centro Científico Tecnológico CONICET Patagonia Norte, Bariloche, Argentina
| | - Andrea Rizzo
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
- Centro Científico Tecnológico CONICET Patagonia Norte, Bariloche, Argentina
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina.
| |
Collapse
|
12
|
Juncos R, Arcagni M, Rizzo A, Campbell L, Arribére M, Guevara SR. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions. CHEMOSPHERE 2016; 144:2277-2289. [PMID: 26598997 DOI: 10.1016/j.chemosphere.2015.10.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes.
Collapse
Affiliation(s)
- Romina Juncos
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina; Centro Científico Tecnológico - CONICET - Patagonia Norte, Av. de los Pioneros 2350, 8400 Bariloche, Argentina.
| | - Marina Arcagni
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina
| | - Andrea Rizzo
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina; Centro Científico Tecnológico - CONICET - Patagonia Norte, Av. de los Pioneros 2350, 8400 Bariloche, Argentina
| | - Linda Campbell
- Department of Environmental Science, Saint Mary's University, 923 Robie St., Halifax, NS B3H 3C3, Canada
| | - María Arribére
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina
| |
Collapse
|