1
|
Liu J, Yang G, Gao Y, Li X, Long Y, Wei S, Zhao Y, Sun S, Gao S. Transcriptome analysis reveals the mechanisms of hepatic injury caused by long-term environmental exposure to atrazine in juvenile common carp (Cyprinus carpio L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36545-36556. [PMID: 36564684 DOI: 10.1007/s11356-022-24933-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is the second most commonly used herbicide worldwide, resulting in the pollution of water bodies and affecting the economic benefits of aquaculture. ATZ is known to cause liver damage in the common carp, Cyprinus carpio L., one of the most widely cultivated fish in China, but the underlying mechanisms are poorly understood. In this study, juvenile common carp Cyprinus carpio L. were exposed to three different environmental levels (0.4, 0.8, and 1.2 μg/L) of ATZ for 12 weeks and changes in the liver transcriptomes between the high-dose group and the control group were analyzed. The data showed that different levels of ATZ exposure caused hepatotoxicity in juvenile carp, shown by biochemical parameters and histopathological changes. Comparative transcriptomics showed that high-dose ATZ exposure led to alterations in the expression of various lipid metabolism-related gene changes, including genes associated with metabolic pathways, fatty acid metabolism, and fatty acid elongation. Furthermore, a connection network analysis of the top 100 differentially expressed genes (DEGs) showed a variety of associations between high-dose ATZ-induced liver damage and the principal DEGs, indicating the complexity of hepatotoxicity induced by ATZ. In conclusion, the molecular mechanisms underlying ATZ-triggered hepatotoxicity in juvenile carp are primarily related to impaired lipid metabolism.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, 271000, Shandong Province, China
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, 271000, Shandong Province, China
| | - Yanxia Gao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China.
| | - Xinran Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Yuting Long
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Shuling Wei
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Yuxin Zhao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Shanshan Sun
- Tai'an City Central Hospital, 29 Longtan Road, Tai'an City, 271000, Shandong Province, China
| | - Shujuan Gao
- Daiyue District Service Center of Animal Husbandry and Veterinary Business Development, 379 Leigu Street, Tai'an City, 271000, Shandong Province, China
| |
Collapse
|
2
|
Smith PN, Armbrust KL, Brain RA, Chen W, Galic N, Ghebremichael L, Giddings JM, Hanson ML, Maul J, Van Der Kraak G, Solomon KR. Assessment of risks to listed species from the use of atrazine in the USA: a perspective. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:223-306. [PMID: 34219616 DOI: 10.1080/10937404.2021.1902890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atrazine is a triazine herbicide used predominantly on corn, sorghum, and sugarcane in the US. Its use potentially overlaps with the ranges of listed (threatened and endangered) species. In response to registration review in the context of the Endangered Species Act, we evaluated potential direct and indirect impacts of atrazine on listed species and designated critical habitats. Atrazine has been widely studied, extensive environmental monitoring and toxicity data sets are available, and the spatial and temporal uses on major crops are well characterized. Ranges of listed species are less well-defined, resulting in overly conservative designations of "May Effect". Preferences for habitat and food sources serve to limit exposure among many listed animal species and animals are relatively insensitive. Atrazine does not bioaccumulate, further diminishing exposures among consumers and predators. Because of incomplete exposure pathways, many species can be eliminated from consideration for direct effects. It is toxic to plants, but even sensitive plants tolerate episodic exposures, such as those occurring in flowing waters. Empirical data from long-term monitoring programs and realistic field data on off-target deposition of drift indicate that many other listed species can be removed from consideration because exposures are below conservative toxicity thresholds for direct and indirect effects. Combined with recent mitigation actions by the registrant, this review serves to refine and focus forthcoming listed species assessment efforts for atrazine.Abbreviations: a.i. = Active ingredient (of a pesticide product). AEMP = Atrazine Ecological Monitoring Program. AIMS = Avian Incident Monitoring SystemArach. = Arachnid (spiders and mites). AUC = Area Under the Curve. BE = Biological Evaluation (of potential effects on listed species). BO = Biological Opinion (conclusion of the consultation between USEPA and the Services with respect to potential effects in listed species). CASM = Comprehensive Aquatic System Model. CDL = Crop Data LayerCN = field Curve Number. CRP = Conservation Reserve Program (lands). CTA = Conditioned Taste Avoidance. DAC = Diaminochlorotriazine (a metabolite of atrazine, also known by the acronym DACT). DER = Data Evaluation Record. EC25 = Concentration causing a specified effect in 25% of the tested organisms. EC50 = Concentration causing a specified effect in 50% of the tested organisms. EC50RGR = Concentration causing a 50% reduction in relative growth rate. ECOS = Environmental Conservation Online System. EDD = Estimated Daily Dose. EEC = Expected Environmental Concentration. EFED = Environmental Fate and Effects Division (of the USEPA). EFSA = European Food Safety Agency. EIIS = Ecological Incident Information System. ERA = Environmental Risk Assessment. ESA = Endangered Species Act. ESU = Evolutionarily Significant UnitsFAR = Field Application RateFIFRA = Federal Insecticide, Fungicide, and Rodenticide Act. FOIA = Freedom of Information Act (request). GSD = Genus Sensitivity Distribution. HC5 = Hazardous Concentration for ≤ 5% of species. HUC = Hydrologic Unit Code. IBM = Individual-Based Model. IDS = Incident Data System. KOC = Partition coefficient between water and organic matter in soil or sediment. KOW = Octanol-Water partition coefficient. LC50 = Concentration lethal to 50% of the tested organisms. LC-MS-MS = Liquid Chromatograph with Tandem Mass Spectrometry. LD50 = Dose lethal to 50% of the tested organisms. LAA = Likely to Adversely Affect. LOAEC = Lowest-Observed-Adverse-Effect Concentration. LOC = Level of Concern. MA = May Affect. MATC = Maximum Acceptable Toxicant Concentration. NAS = National Academy of Sciences. NCWQR = National Center of Water Quality Research. NE = No Effect. NLAA = Not Likely to Adversely Affect. NMFS = National Marine Fisheries Service. NOAA = National Oceanic and Atmospheric Administration. NOAEC = No-Observed-Adverse-Effect Concentration. NOAEL = No-Observed-Adverse-Effect Dose-Level. OECD = Organization of Economic Cooperation and Development. PNSP = Pesticide National Synthesis Project. PQ = Plastoquinone. PRZM = Pesticide Root Zone Model. PWC = Pesticide in Water Calculator. QWoE = Quantitative Weight of Evidence. RGR = Relative growth rate (of plants). RQ = Risk Quotient. RUD = Residue Unit Doses. SAP = Science Advisory Panel (of the USEPA). SGR = Specific Growth Rate. SI = Supplemental Information. SSD = Species Sensitivity Distribution. SURLAG = Surface Runoff Lag Coefficient. SWAT = Soil & Water Assessment Tool. SWCC = Surface Water Concentration Calculator. UDL = Use Data Layer (for pesticides). USDA = United States Department of Agriculture. USEPA = United States Environmental Protection Agency. USFWS = United States Fish and Wildlife Service. USGS = United States Geological Survey. WARP = Watershed Regressions for Pesticides.
Collapse
Affiliation(s)
- Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Kevin L Armbrust
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Wenlin Chen
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | | | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ont, Canada
| | - Keith R Solomon
- Centre for Toxicology, University of Guelph, Guelph, Ont, Canada
| |
Collapse
|
3
|
Hanson ML, Brain RA. A Method to Screen for Consistency of Effect in Laboratory Toxicity Tests: A Case Study with Anurans and the Herbicide Atrazine. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:123-132. [PMID: 33891147 DOI: 10.1007/s00244-021-00847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This paper presents a semiquantitative method to help ecotoxicologists evaluate the consistency of data within the available peer-reviewed literature. In this case study, we queried whether there is consistent evidence of direct toxicity in Anurans exposed to atrazine at concentrations ≤ 100 μg/L under laboratory conditions. Atrazine was selected because of the relatively large repository of Anuran toxicity data. To accomplish this, we interrogated available data found in recent quantitative weight-of-evidence risk assessments for atrazine with a series of yes or no questions developed a priori. The questions examined consistency of reported effects within and between studies, within and between species, and across a wide range of endpoints categories (e.g., survivorship, growth and development, reproduction). The analysis found no compelling evidence of a consistent direct effect in Anurans around growth and development, reproduction, or survivorship at concentrations of up to at least 100 μg/L atrazine in laboratory studies. Further work is needed to refine the approach, including accounting for the magnitude of the reported effects. However, we recommend that ecotoxicologists employ some method of formal consistency of effects assessment method routinely before performing toxicity tests, in the contextualizing of new data, and in reviews of contaminants.
Collapse
Affiliation(s)
- Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| | | |
Collapse
|
4
|
Dionne E, Hanson ML, Anderson JC, Brain RA. Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142589. [PMID: 33065508 DOI: 10.1016/j.scitotenv.2020.142589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Fathead minnows (Pimephales promelas) were continuously exposed to the herbicide atrazine (0.15, 0.25, 0.46, 0.99, and 2.0 mg a.i./L, plus dilution water and solvent controls) for a complete life cycle (274 days). Concentrations of atrazine up to 2.0 mg a.i./L did not significantly reduce hatching success, larval survival at 30 or 60 days post-hatch, or reproduction (eggs/spawn, total eggs, spawns/female, or eggs/female) in the F0 generation. However, at 60 days of exposure, total length and total survival to study completion were significantly reduced in ≥0.46 mg a.i./L and ≥ 0.99 mg a.i./L treatments, respectively. In the F1 generation, hatchability of embryos at ≥0.25 mg a.i./L (range 74-82%) was significantly less than that of pooled control organisms (86%). Following 30 days' post-hatch exposure, F1 survival was not significantly different from pooled control for any treatment. Finally, tissues representing major life stages had bioconcentration factors ranging from 3.7× (F1 embryos, <24 h) to 8.5× (F0 adults), indicating little to no evidence of bioconcentration. We developed a series of questions to assess the consistency of observed responses in order to place the data in context with the wider available and relevant literature (e.g., Observed between studies? Observed between species? Observed at lower levels of biological organization?). The analysis for consistency supports the conclusion that atrazine does not pose a significant chronic risk to freshwater fish in terms of growth, reproduction, or survivorship at concentrations of up to at least 100 μg/L.
Collapse
Affiliation(s)
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Julie C Anderson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
5
|
Brain RA, Schneider SZ, Anderson JC, Knopper LD, Wolf JC, Hanson ML. Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine. CHEMOSPHERE 2018; 205:126-136. [PMID: 29689526 DOI: 10.1016/j.chemosphere.2018.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Short-term reproduction assays were conducted with fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes) to evaluate responses from atrazine exposure at environmentally relevant concentrations and above. Breeding groups of fish with multiple males and females were exposed to atrazine under flow-through conditions. Fathead minnows were exposed to mean measured concentrations of 1.0, 10, 26, 52, and 105 μg atrazine/L for 28 days. Medaka were exposed to mean measured concentrations of 9.4, 48, 74, 97, and 244 μg atrazine/L for 28 or 29 days. Fish were evaluated for survival, fecundity, fertility, total length, wet weight, secondary sex characteristics, gonadosomatic index (GSI) (P. promelas only), plasma or hepatic vitellogenin (VTG), and histopathology of gonads. General observations of health and behaviour were also conducted. There were no statistically significant effects (i.e., p < 0.05) of atrazine on survival, size, reproduction, behaviour, GSI, VTG, or secondary sex characteristics in either species at any exposure level. In fathead minnows, there were no histopathological findings associated with atrazine exposure in male fish, but there was an increased proportion of Stage 4.0 ovaries accompanied by an increase in proportion of Grade 3 post-ovulatory follicles in females of the 105 μg/L treatment group. Without a concomitant increase in oocyte atresia, neither of these findings are considered adverse for the health of the fish. In medaka, there were no significant effects of atrazine exposure on histopathology in either sex. These data support current weight-of-evidence assessments that atrazine does not cause direct adverse effects on fish reproduction at environmentally realistic concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories Inc., Sterling, VA, USA
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Challis JK, Hanson ML, Wong CS. Pharmaceuticals and pesticides archived on polar passive sampling devices can be stable for up to 6 years. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:762-767. [PMID: 29064592 DOI: 10.1002/etc.4012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
In the present study, we report the freezer storage stability of pharmaceuticals and pesticides for the organic-diffusive gradients in thin-films (o-DGT) passive sampler and the polar organic chemical integrative sampler (POCIS). The average change on o-DGT after approximately 18 mo was 9 ± 9% across 30 compounds. For POCIS, the average change after approximately 6 yr was 14 ± 14% for the same compounds. Our data suggest that analytes stored on these samplers are stable and appropriate for archival purposes. Environ Toxicol Chem 2018;37:762-767. © 2017 SETAC.
Collapse
Affiliation(s)
- Jonathan K Challis
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles S Wong
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment, The University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Muenich RL, Chaubey I, Pyron M. Evaluating potential water quality drivers of a fish regime shift in the Wabash River using the SWAT model. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Baxter L, Brain RA, Lissemore L, Solomon KR, Hanson ML, Prosser RS. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:250-259. [PMID: 27340884 DOI: 10.1016/j.ecoenv.2016.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.
Collapse
Affiliation(s)
- Leilan Baxter
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Linda Lissemore
- University of Guelph Laboratory Services Division, Guelph, Ontario, Canada
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
9
|
Belanger RM, Mooney LN, Nguyen HM, Abraham NK, Peters TJ, Kana MA, May LA. Acute Atrazine Exposure has Lasting Effects on Chemosensory Responses to Food Odors in Crayfish (Orconectes virilis). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:289-300. [PMID: 26487338 DOI: 10.1007/s00244-015-0234-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
The herbicide atrazine is known to impact negatively olfactory-mediated behaviors in aquatic animals. We have shown that atrazine exposure has deleterious effects on olfactory-mediated behavioral responses to food odors in crayfish; however, recovery of chemosensory abilities post-atrazine exposure has not been investigated. We examined whether crayfish (Orconectes virilis) recovered chemosensory abilities after a 96-h exposure to sublethal, environmentally relevant concentrations of 80 ppb (µg/L) atrazine. Following treatment, we analyzed the ability of the crayfish to locate a food source using a Y-maze with one arm containing fish-flavored gelatin and the other containing unflavored gelatin. We compared the time spent in the food arm of the Y-maze, near the food source, as well as moving and walking speed of control and atrazine-treated crayfish. We also compared the number of crayfish that handled the food source and the amount of food consumed. Following 24-, 48-, and 72-h recovery periods in fresh water, behavioral trials were repeated to determine if there was any observable recovery of chemosensory-mediated behaviors. Atrazine-treated crayfish spent less time in the food arm, at the odor source, and were less successful at finding the food odor source than control crayfish for all times tested. Additionally, atrazine-treated crayfish consumed less fish-flavored than control crayfish; however, treatment did not affect locomotion. Overall, we found that crayfish are not able to recover chemosensory abilities 72 h post-atrazine exposure. Because crayfish rely heavily on their chemosensory abilities to acquire food, the negative impacts of atrazine exposure could affect population size in areas where atrazine is heavily applied.
Collapse
Affiliation(s)
- Rachelle M Belanger
- Biology Department, University of Detroit Mercy, 4001 W. McNichols, Detroit, MI 48221, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nair SK, Bartell SM, Brain RA. A comparative study of the modeled effects of atrazine on aquatic plant communities in midwestern streams. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2590-2602. [PMID: 26053173 DOI: 10.1002/etc.3096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/07/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Potential effects of atrazine on the nontarget aquatic plants characteristic of lower-order streams in the Midwestern United States were previously assessed using the Comprehensive Aquatic System Model (CASMATZ ). Another similar bioenergetics-based, mechanistic model, AQUATOX, was examined in the present study, with 3 objectives: 1) to develop an AQUATOX model simulation similar to the CASMATZ model reference simulation in describing temporal patterns of biomass production by modeled plant populations, 2) to examine the implications of the different approaches used by the models in deriving plant community-based levels of concern (LOCs) for atrazine, and 3) to determine the feasibility of implementing alternative ecological models to assess ecological impacts of atrazine on lower-order Midwestern streams. The results of the present comparative modeling study demonstrated that a similar reference simulation to that from the CASMATZ model could be developed using the AQUATOX model. It was also determined that development of LOCs and identification of streams with exposures in excess of the LOCs were feasible with the AQUATOX model. Compared with the CASMATZ model results, however, the AQUATOX model consistently produced higher estimates of LOCs and generated non-monotonic variations of atrazine effects with increasing exposures. The results of the present study suggest an opportunity for harmonizing the treatments of toxicity and toxicity parameter estimation in the CASMATZ and the AQUATOX models. Both models appear useful in characterizing the potential impacts of atrazine on nontarget aquatic plant populations in lower-order Midwestern streams. The present model comparison also suggests that, with appropriate parameterization, these process-based models can be used to assess the potential effects of other xenobiotics on stream ecosystems.
Collapse
Affiliation(s)
- Shyam K Nair
- E2 Consulting Engineers, Emeryville, California, USA
| | | | | |
Collapse
|
11
|
Prosser RS, Brain RA, Malia Andrus J, Hosmer AJ, Solomon KR, Hanson ML. Assessing temporal and spatial variation in sensitivity of communities of periphyton sampled from agroecosystem to, and ability to recover from, atrazine exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:204-216. [PMID: 25957082 DOI: 10.1016/j.ecoenv.2015.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Lotic systems in agriculturally intensive watersheds can experience short-term pulsed exposures of pesticides as a result of runoff associated with rainfall events following field applications. Of special interest are herbicides that could potentially impair communities of primary producers, such as those associated with periphyton. Therefore, this study examined agroecosystem-derived lotic periphyton to assess (1) variation in community sensitivity to, and ability to recover from, acute (48h) exposure to the photosystem II (PSII)-inhibiting herbicide atrazine across sites and time, and (2) attempt to determine the variables (e.g., community structure, hydrology, water quality measures) that were predictive for observed differences in sensitivity and recovery. Periphyton were sampled from six streams in the Midwestern U.S. on four different dates in 2012 (April to August). Field-derived periphyton were exposed in the laboratory to concentrations of atrazine ranging from 10 to 320μg/L for 48h, followed by untreated media for evaluation of recovery for 48h. Effective quantum yield of PSII was measured after 24h and 48h exposure and 24h and 48h after replacement of media. Inhibition of PSII EC50 values ranged from 53 to >320µg/L. The majority of periphyton samples (16 out of 22) exposed to atrazine up to 320µg/L recovered completely by 48h after replacement of media. Percent inhibition of effective quantum yield of PSII in periphyton (6 of 22 samples) exposed to 320µg/L atrazine that were significantly lower than controls after 48h ranged from 2% to 24%. No distinct spatial or temporal trends in sensitivity and recovery potential were observed over the course of the study. Conditional inference forest analysis and variation partitioning were used to investigate potential associations between periphyton sensitivity to and ability to recover from exposure to atrazine. Although certain environmental variables (i.e., proximity of high flow/velocity events and dissolved solutes) were significantly associated with sensitivity to atrazine, recovery was not significantly associated with any variables, which is predicted by the rapid reversible binding at PSII. Consistent and rapid recovery of effective quantum yield of PSII across sites and sampling dates indicates that acute exposure to atrazine is unlikely to adversely affect function of these communities in their current state in intensive agroecosystems.
Collapse
Affiliation(s)
- Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Dalton RL, Boutin C, Pick FR. Determining in situ periphyton community responses to nutrient and atrazine gradients via pigment analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 515-516:70-82. [PMID: 25700361 DOI: 10.1016/j.scitotenv.2015.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/31/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
Agrochemicals, including fertilizers and herbicides, are significant contributors of non-point source pollution to surface waters and have the potential to negatively affect periphyton. We characterized periphyton communities using pigment markers to assess the effects of nutrient enrichment and the herbicide atrazine with in situ experimental manipulations and by examining changes in community structure along existing agrochemical gradients. In 2008, the addition of nutrients (20 mg/L nitrate and 1.25 mg/L reactive phosphate), atrazine (20 μg/L) and a combination of both nutrients and atrazine had no significant effect on periphyton biomass or community structure in a stream periphytometer experiment. In 2009, similar experiments with higher concentrations of atrazine (200 μg/L) at two stream sites led to some minor effects. In contrast, at the watershed scale (2010) periphyton biomass (mg/m(2) chlorophyll a) increased significantly along correlated gradients of nitrate and atrazine but no direct effects of reactive phosphate were observed. Across the watershed, the average periphyton community was composed of Bacillariophyceae (60.9%), Chlorophyceae (28.1%), Cryptophyceae (6.9%) and Euglenophyceae (4.1%), with the Bacillariophyceae associated with high turbidity and the Chlorophyceae with nitrate enrichment. Overall, effects of nitrate on periphyton biomass and community structure superseded effects of reactive phosphate and atrazine.
Collapse
Affiliation(s)
- Rebecca L Dalton
- Ottawa-Carleton Institute of Biology, 30 Marie Curie, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Céline Boutin
- Ottawa-Carleton Institute of Biology, 30 Marie Curie, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Science and Technology Branch, Environment Canada, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada.
| | - Frances R Pick
- Ottawa-Carleton Institute of Biology, 30 Marie Curie, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|