1
|
Xu F, Bao J, Liu Q, He X, Zhou Y, Wang H, Xing J, Zhou L, Yuan J. Simultaneous natural attenuation of Cr(VI) and nitrate in the hyporheic zone sediments from an upstream tributary of the Jinsha River in the Sichuan Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174145. [PMID: 38909795 DOI: 10.1016/j.scitotenv.2024.174145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The coexistence of hexavalent chromium (Cr(VI)) and nitrate (NO3-) in groundwater and surface water presents a considerable challenge for the natural attenuation of these two contaminants because their interactions in nature remain contentious. This study investigated the interplay between Cr(VI) and NO3- in hyporheic zone (HZ) sediments by integrating Cr(VI) reduction kinetics, NO3- transformation, microbial community structure, and a three-rate model. The concurrent natural attenuation of Cr(VI) and NO3- in the sediments was significantly influenced by their initial concentrations and redox conditions. The reduction of low concentrations of Cr(VI) (37.1 and 96.2 μM) was slightly enhanced by NO3-, while inhibitory effects were observed at high concentrations of Cr(VI) (200.0 μM). However, except for an initial low concentration of Cr(VI) (37.1 μM) and NO3- (450 μM), the reduction of NO3- was adversely affected by Cr(VI). The reduction rates and efficiencies of Cr(VI) and NO3- were noticeably lower under aerobic conditions than under anaerobic conditions. This phenomenon can be attributed to the presence of O2, which decreased the selectivity of sediments-associated Fe(II) towards Cr(VI) and NO3- and induced alterations in the microbial community structure, leading to subsequent changes in NO3- transformation. Furthermore, the three-rate model represents a robust approach for elucidating the reduction of Cr(VI) in the presence of co-contaminants, such as NO3- contamination under diverse redox conditions. This study provides further insights into the interaction mechanism between Cr(VI) and NO3- within the HZ, necessitating the consideration of the microbial toxicity of Cr(VI) and electron competition among Cr(VI), NO3-, and O2.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Junqin Bao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Xiaoxia He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yaqian Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Hong Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jiamin Xing
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Lun Zhou
- Zhongshan Public Water Investment Co., Ltd, Zhongshan 528403, People's Republic of China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610218, People's Republic of China.
| |
Collapse
|
2
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
3
|
Wang M, Jiang D, Yang L, Wei J, Kong L, Xie W, Ding D, Fan T, Deng S. Natural attenuation of BTEX and chlorobenzenes in a formerly contaminated pesticide site in China: Examining kinetics, mechanisms, and isotopes analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170506. [PMID: 38307285 DOI: 10.1016/j.scitotenv.2024.170506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Groundwater contamination from abandoned pesticide sites is a prevalent issue in China. To address this problem, natural attenuation (NA) of pollutants has been increasingly employed as a management strategy for abandoned pesticide sites. However, limited studies have focused on the long-term NA process of co-existing organic pollutants in abandoned pesticide sites by an integrated approach. In this study, the NA of benzene, toluene, ethylbenzene, and xylene (BTEX), and chlorobenzenes (CBs) in groundwater of a retired industry in China was systematically investigated during the monitoring period from June 2016 to December 2021. The findings revealed that concentrations of BTEX and CBs were effectively reduced, and their NA followed first-order kinetics with different rate constants. The sulfate-reducing bacteria, nitrate-reducing bacteria, fermenting bacteria, aromatic hydrocarbon metabolizing bacteria, and reductive dechlorinating bacteria were detected in groundwater. It was observed that distinct environmental parameters played a role in shaping both overall and key bacterial communities. ORP (14.72%) and BTEX (12.89%) were the main drivers for variations of the whole and key functional microbial community, respectively. Moreover, BTEX accelerated reductive dechlorination. Furthermore, BTEX and CBs exhibited significant enrichment of 13C, ranging from +2.9 to +27.3‰, demonstrating their significance in situ biodegradation. This study provides a scientific basis for site management.
Collapse
Affiliation(s)
- Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Wenyi Xie
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| |
Collapse
|
4
|
Ojha M, Goswami S, Sahu PC, Ojha C. Identifying susceptible groundwater contamination zones in western Odisha of India using hydro-geochemical and geospatial approaches. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104302. [PMID: 38246087 DOI: 10.1016/j.jconhyd.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Nuapada is one of the most drought-affected and fluoride-contaminated districts in Odisha, India. The presence of various dissolved substances, evapotranspiration, and lowering water table during pre- and post-monsoon (PRM and POM) seasons are responsible for declining groundwater (GW) quality over the Nuapada region. To comprehend the contaminated GW zones over the Nuapada and Komna blocks of the northern Nuapada district during the seasons, integration of hydrogeochemistry and statistical approaches using GW sample data on a geospatial platform have been done. The analysis exhibits that the major source of groundwater contamination is mostly geogenic with little anthropogenic impact. The cumulative impact of fluoride (F-), iron (Fe2+), and nitrate (NO₃-) contents are noticed in great-depth zones of the water table in the north and south parts of Nuapada and Komna blocks, respectively. The dominant hydro facies, such as Na-Cl (41.77%) and Ca-Cl (25.31%) types exist over both blocks during PRM and POM seasons, respectively. Demarcation of contaminant and susceptible zones over the study area using geospatial analysis and groundwater quality indices (GWQI) were done. About 3% of the total area, in the north and middle parts of the Nuapada and Komna blocks, falls under contamination zones and is unfit for drinking purposes, and about 35% of the region is susceptible to future contamination. The outcome of the result analysis will enhance the scope for researchers, policymakers, and water managers to regulate emerging health, agricultural, and industrial issues in the stressed aquifer system in India and the world.
Collapse
Affiliation(s)
- Madhusmita Ojha
- Maharaja Sriram Chandra Bhanja Deo University, Odisha 757003, India.
| | | | | | - Chandrakanta Ojha
- Indian Institute of Science Education and Research (IISER) Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Nickels JL, Genereux DP, Knappe DRU. Improved Darcian streambed measurements to quantify flux and mass discharge of volatile organic compounds from a contaminated aquifer to an urban stream. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 253:104124. [PMID: 36603303 DOI: 10.1016/j.jconhyd.2022.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Quantifying VOC transport from contaminated groundwater to streams is challenging and important for understanding off-site migration of VOCs, cross-media contamination (groundwater to surface water and eventually air), and potential impacts on downstream ecosystems and human populations. A streambed point sampling approach was used to quantify fluxes of water and 14 VOCs from groundwater to an urban stream in North Carolina, USA, during summer (June 2015) and winter (January 2016). The approach is unique in coupling measurements of vertical hydraulic conductivity, vertical hydraulic head gradient, and groundwater VOC concentration at each individual sampling point, reducing or eliminating some potential concerns with other Darcian methods for quantifying VOC inputs to streams. Most results were consistent with discharge of two main VOC plumes on opposite sides of the stream. Plume 1 from the west side was dominated by cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) at mean concentrations of 19 and 11 μg L-1, respectively. Plume 2 from the east side was dominated by benzene (mean concentration 56 μg L-1). Plume 2 was not previously known, and the improved sampling approach allowed VOC discharge from both plumes to be quantified simultaneously. For 13 of the 14 detected VOCs, the mean VOC flux from groundwater to the stream (fVOC) was higher in January 2016 than in June 2015, mainly because groundwater flux was higher in January. The only exception was cDCE, the most abundant VOC in Plume 1, which had mean fVOC values of 9.8 and 9.5 mg m-2 d-1 in June 2015 and January 2016, respectively. Benzene was the most abundant VOC in Plume 2 and had mean fVOC values of 11 and 37 mg m-2 d-1 in June 2015 and January 2016, respectively. High groundwater flux drove almost all the occurrences of high VOC flux. For a given VOC, the flow-weighted mean concentration (with each VOC concentration weighted by the upward groundwater flux at the VOC sampling point) was generally larger than the unweighted mean concentration. Thus, flow-weighting of concentrations gave a more accurate indication of the average VOC concentration in net groundwater discharge to the stream. An estimate of total VOC mass discharge from groundwater to the study reach of the stream, 3.6 kg of VOC per year, was based on the fVOC results and streambed area in the reach. The bulk of this discharge was due to benzene, cDCE, and VC, with individual mass discharges of 2.1, 0.83, and 0.40 kg yr-1, respectively. Estimates of maximum potential VOC degradation in the streambed suggest that the 3.6 kg yr-1 estimate of mass discharge was not sensitive to potential degradation of VOCs in the streambed sediments above the groundwater sampling depth.
Collapse
Affiliation(s)
- J L Nickels
- Department of Marine, Earth, and Atmospheric Sciences, NC State University, Raleigh, NC, United States of America
| | - D P Genereux
- Department of Marine, Earth, and Atmospheric Sciences, NC State University, Raleigh, NC, United States of America.
| | - D R U Knappe
- Department of Civil, Construction, and Environmental Engineering, NC State University, Raleigh, NC, United States of America
| |
Collapse
|
6
|
Santizo KY, Widdowson MA, Hester ET. Numerical modeling of an abiotic hyporheic mixing-dependent reaction: Chemical evolution of mixing and reactant production zones. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104066. [PMID: 36054959 DOI: 10.1016/j.jconhyd.2022.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Mixing-dependent reactions occur where groundwater and surface water mix in shallow sediments (hyporheic zone) and can attenuate contaminants along upwelling flowpaths, thus reducing transport to surface water. Here we used MODFLOW/SEAM3D to numerically simulate prior laboratory observations of a mixing-dependent reaction between sodium sulfite (Na2SO3) and dissolved oxygen (DO) to produce sodium sulfate (Na2SO4). This reaction is not common in nature but is used as a surrogate for mixing-dependent DO consuming reactions of environmental significance. We evaluated how location and thickness of mixing zones and reaction product production zones dynamically respond to variations in hydraulic and chemical boundary conditions and reaction kinetic rate. Sensitivity analysis showed that location and thickness of mixing zones and reactant production zones were most sensitive to changes in the balance of hydrologic inflow from groundwater and surface water (inflow ratio). Mixing zone thickness for reactive DO calibrated to experimental data was thinner than that for the "DO tracer" (identical source location and concentration as DO but conservative tracer), indicating that as DO is consumed its mixing zone narrows. The SO4 production zone was consistently thicker than the DO mixing zone. Small changes in mixing/production zone thicknesses were linked to large changes in mass consumed and produced, indicating the potential for simpler field metrics like thickness to act as surrogates for more challenging measurements such as contaminant flux or consumption in monitoring natural attenuation. This study improves understanding of the evolution of hyporheic mixing-dependent reaction zones that occur even under steady state hydraulics, emphasizing their complex controls.
Collapse
Affiliation(s)
- Katherine Y Santizo
- Charles E. Via Jr. Department of Civil and Environmental Engineering, Virginia Tech, United States of America
| | - Mark A Widdowson
- Charles E. Via Jr. Department of Civil and Environmental Engineering, Virginia Tech, United States of America
| | - Erich T Hester
- Charles E. Via Jr. Department of Civil and Environmental Engineering, Virginia Tech, United States of America.
| |
Collapse
|
7
|
Fan T, Yang M, Li Q, Zhou Y, Xia F, Chen Y, Yang L, Ding D, Zhang S, Zhang X, Yu R, Deng S. A new insight into the influencing factors of natural attenuation of chlorinated hydrocarbons contaminated groundwater: A long-term field study of a retired pesticide site. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129595. [PMID: 35850066 DOI: 10.1016/j.jhazmat.2022.129595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Natural attenuation of contaminants has been increasingly applied as a strategy to manage the retired pesticide manufacturing sites due to the increasing restrictions on the reuse of contaminated sites in China. However, the influencing factors to enhance natural attenuation for chlorinated hydrocarbons in retired pesticide sites were not well studied. In this paper, monitoring of pollutants, environmental factors and microbial community was conducted from 2016 to 2021 in a retired pesticide site in Jiangsu Province undergoing natural attenuation, where the groundwater was severely contaminated with chlorinated hydrocarbons. The spatial variation of main pollutants, including chlorinated ethenes and ethanes, indicated that the site could be divided into the source area, diffusion area, and the end of diffusion area, where organohalide-respiring bacteria (OHRB) were detected. Pollutants and environmental factors influenced the OHRB community structure, which explained 7.6% and 33.2% of the variation, respectively. The abundances of obligate and facultative OHRB were affected in opposite ways by pollutants and environmental factors. Dehalococcoides and Dehalogenimonas in obligate OHRB were significantly inhibited by sulfate (r = -0.448, p < 0.05). The spatial-temporal characteristics of pollutants and the reveal of microbial community structure and its restricting factors in different areas make the foundation for strengthening the implementation of natural attenuation.
Collapse
Affiliation(s)
- Tingting Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Yang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Qun Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Feiyang Xia
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yun Chen
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lu Yang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, No.2 Sipailou Street, Nanjing 210096, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, No.2 Sipailou Street, Nanjing 210096, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
8
|
Liu Y, Yu J, Sun H, Li T, He X, Lin Z. Screening and prioritizing substances in groundwater in the Beijing-Tianjin-Hebei region of the North China Plain based on exposure and hazard assessments. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127142. [PMID: 34537636 DOI: 10.1016/j.jhazmat.2021.127142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Screening and prioritizing hazardous substances in groundwater is crucial to monitor and control groundwater quality. Total of 283 substances were determined in 213 groundwater samples from the Beijing-Tianjin-Hebei region during 2019-2020. 184 substances were screened as candidates. 22 prioritizing indicators were evaluated and scored for the candidates to reflect their occurrence, mobility, persistence, bioaccumulation, acute and chronic ecotoxicities with different trophic levels, and long-term human health effects. Multi-attribute decision-making technologies were applied to prioritize these candidates, including analytic hierarchy process (AHP), TOPSIS and VIKOR. Greater weightings in AHP were assigned to attributes of occurrence and acute toxicity by experts' judgment. Hierarchical cluster analysis and principal component analysis were used to transform initial matrix with the 22 indicators into an orthogonalized matrix with 6 principal components, which represented general toxicity to aquatic organism and mammal, bioaccumulation, carcinogenicity & mutagenicity, persistence, and teratogenicity & endocrine, respectively. VIKOR and TOPSIS results were similar, but different from the AHP ranking. Two filter criteria harmonized their difference. Twenty-three substances were proposed as the priority substance with high hazard and potential exposure, and nitrate-nitrogen and ammonia-nitrogen were selected as additional priority substance frequently and extensively exceeding official groundwater quality standard on the regional scale.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Junyi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tongtong Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhifen Lin
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
10
|
Hester ET, Santizo KY, Nida AA, Widdowson MA. Hyporheic transverse mixing zones and dispersivity: Laboratory and numerical experiments of hydraulic controls. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103885. [PMID: 34488177 DOI: 10.1016/j.jconhyd.2021.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Mixing of surface water and groundwater in shallow sediments is important to biogeochemical cycling and contaminant migration, and is often used to define the hyporheic zone. Yet knowledge of mixing processes in hyporheic zones is supported by surprisingly few rigorous lab or field observations, and differ from those in deeper groundwater by presence of enhanced head gradients, sediment heterogeneity, and temporal fluctuations. In a laboratory sediment (sand) tank we photographed a conservative dye to analyze transverse mixing zones between upwelling groundwater and bidirectional hyporheic exchange flows. We then conducted numerical modeling to investigate processes behind observed phenomena and estimate dispersivities. We found that transverse mixing zones were thin (i.e. mixing thickness measured in direction of steepest concentration gradient, δ, less than 5 cm), consistent with a small calibrated transverse dispersivity (~0.1 mm) and prior lab studies conducted at similar scales. In steady-state experiments and simulations, δ and estimated dispersion coefficients increased with the surface water head drop driving exchange flows. Given relatively constant deeper groundwater heads, increased Δh led to increased mixing zone length for both steady-state and transient conditions, indicating larger bedforms or weaker gaining conditions enhance subsurface mixing. However, Peclet number and flux-related dilution index simultaneously increased and decreased, respectively, indicating that enhancement of subsurface advection outpaced that of dispersion. In transient experiments and simulations, δ was greater than for steady-state, probably from temporary addition of longitudinal dispersion. During transient experiments, δ exhibited temporal noise, perhaps due to the mixing zone moving past varying patterns of sediment packing. Our results provide basic knowledge of mixing zone behavior in hyporheic zones with implications for hyporheic zone definitions, solute transport, mixing-dependent reaction, and water quality.
Collapse
Affiliation(s)
- Erich T Hester
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, Blacksburg, VA 24061, United States of America.
| | - Katherine Y Santizo
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, Blacksburg, VA 24061, United States of America
| | - Abenezer A Nida
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, Blacksburg, VA 24061, United States of America
| | - Mark A Widdowson
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, Blacksburg, VA 24061, United States of America
| |
Collapse
|
11
|
Ottosen CB, Rønde V, McKnight US, Annable MD, Broholm MM, Devlin JF, Bjerg PL. Natural attenuation of a chlorinated ethene plume discharging to a stream: Integrated assessment of hydrogeological, chemical and microbial interactions. WATER RESEARCH 2020; 186:116332. [PMID: 32871289 DOI: 10.1016/j.watres.2020.116332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Attenuation processes of chlorinated ethenes in complex near-stream systems result in site-specific outcomes of great importance for risk assessment of contaminated sites. Additional interdisciplinary and comprehensive field research is required to enhance process understanding in these systems. In this study, several methods were combined in a multi-scale interdisciplinary in-situ approach to assess and quantify the near-stream attenuation of a chlorinated ethene plume, mainly consisting of cis-dichloroethene (cis-DCE) and vinyl chloride (VC), discharging to a lowland stream (Grindsted stream, Denmark) over a monitoring period of seven years. The approach included: hydrogeological characterisation, reach scale contaminant mass balance analysis, quantification of contaminant mass discharge, streambed fluxes of chlorinated ethenes quantified using Sediment Bed Passive Flux Meters (SBPFMs), assessment of redox conditions, temporal assessment of contaminant concentrations, microbial analysis, and compound-specific isotope analysis (CSIA). This study site exhibits a special attenuation behaviour not commonly encountered in field studies: the conversion from an initially limited degradation case (2012-16), despite seemingly optimal conditions, to one presenting notable levels of degradation (2019). Hence, this study site provides a new piece to the puzzle, as sites with different attenuation behaviours are required in order to acquire the full picture of the role groundwater-surface water interfaces have in risk mitigation. In spite of the increased degradation in the near-stream plume core, the contaminant attenuation was still incomplete in the discharging plume. A conceptualization of flow, transport and processes clarified that hydrogeology was the main control on the natural attenuation, as short residence times of 0.5-37 days restricted the time in which dechlorination could occur. This study reveals the importance of: taking an integrated approach to understand the influence of all attenuation processes in groundwater - surface water interactions; considering the scale and domain of interest when determining the main processes; and monitoring sufficiently both spatially and temporally to cover the transient conditions.
Collapse
Affiliation(s)
- Cecilie B Ottosen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Vinni Rønde
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ursula S McKnight
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael D Annable
- Department of Environmental Engineering Sciences, University of Florida, FL, United States
| | - Mette M Broholm
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - John F Devlin
- Department of Geology, University of Kansas, Lawrence, KS, United States
| | - Poul L Bjerg
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Zhao B, Huang F, Zhang C, Huang G, Xue Q, Liu F. Pollution characteristics of aromatic hydrocarbons in the groundwater of China. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 233:103676. [PMID: 32599464 DOI: 10.1016/j.jconhyd.2020.103676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Much of the world's groundwater supply has been contaminated by aromatic hydrocarbons originating from anthropogenic sources. To study the occurrence and distribution characteristics of aromatic hydrocarbons in groundwater, 24 aromatic hydrocarbon compounds were selected: Five BTEX compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene), 10 alkyl-substituted benzene, and 9 halogenated aromatics. These aromatic hydrocarbons were then analyzed from 355 samples collected from across China. Results indicated that aromatic hydrocarbons were detected in 59 out of 355 samples. Of the selected aromatic hydrocarbons, BTEX compounds were detected with high frequency and at low concentrations; comparatively, halogenated aromatics were detected with low frequency and at high concentrations. The aromatic hydrocarbon characteristics found in both karst and pore groundwater samples were then determined using their respective hydrogeological conditions and corresponding human activities. In karst groundwater, BTEX compounds were the most frequently detected aromatic hydrocarbon. The high detection frequencies of aromatic hydrocarbons were caused by their rapid migration, owing to the developed conduit system in the sampled karst area. The low concentrations of aromatic hydrocarbons in karst groundwater samples were caused by low-intensity human activity along with special hydrogeological conditions with higher redox potential and the unique compositions of aromatic hydrocarbons. Alkyl-substituted aromatics and halogenated aromatics were detected at higher concentrations in pore groundwater, owing to high-intensity human activity. Aromatic hydrocarbon pollution was gradually decreased along piedmont-alluvial plain-coast line, owing to a decrease in aquifer vulnerability. These were positively correlated with the size of the aquifer's particles. Samples with a high accumulative concentration of these aromatic hydrocarbons tended to occur in pore groundwater with a high concentration of either SO42- or Cl-.
Collapse
Affiliation(s)
- Bei Zhao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fuyang Huang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chong Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Guoxin Huang
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Qiang Xue
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
13
|
Balbarini N, Frederiksen M, Rønde V, Møller I, Sonne AT, McKnight US, Pedersen JK, Binning PJ, Bjerg PL. Assessing the Transport of Pharmaceutical Compounds in a Layered Aquifer Discharging to a Stream. GROUND WATER 2020; 58:208-223. [PMID: 31081137 DOI: 10.1111/gwat.12904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
A groundwater plume containing high concentrations of pharmaceutical compounds, mainly sulfonamides, barbiturates, and ethyl urethane, in addition to chlorinated ethenes and benzene was investigated. The contamination originating from a former pharmaceutical industry discharges into a multilayered aquifer system and a downgradient stream. In this study, geological and hydrogeological data were integrated into a numerical flow model to examine identified trends using statistical approaches, including principal component analysis and hierarchal cluster analysis. A joint interpretation of the groundwater flow paths and contaminant concentrations in the different compartments (i.e., groundwater and hyporheic zone) provided insight on the transport processes of the different contaminant plumes to the stream. The analysis of historical groundwater concentrations of pharmaceutical compounds at the site suggested these compounds are slowly degrading. The pharmaceutical compounds migrate in both a deep semiconfined aquifer, as well as in the shallow unconfined aquifer, and enter the stream along a 2-km stretch. This contrasted with the chlorinated ethenes, which mainly discharge to the stream as a focused plume from the unconfined aquifer. The integrated approach developed here, combining groundwater flow modeling and statistical analyses of the contaminant concentration data collected in groundwater and the hyporheic zone, lead to an improved understanding of the observed distribution of contaminants in the unconfined and semiconfined aquifers, and thus to their discharge to the stream. This approach is particularly relevant for large and long-lasting contaminant sources and plumes, such as abandoned landfills and industrial production sites, where field investigations may be very expensive.
Collapse
Affiliation(s)
| | - Majken Frederiksen
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Lyngby, Denmark
| | - Vinni Rønde
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Lyngby, Denmark
| | - Ingelise Møller
- Department of Groundwater and Quaternary Geology Mapping, Geological Survey of Denmark and Greenland (GEUS), Bygning 1110, C. F. Møllers Allé 8, 8000 Aarhus, Denmark
| | - Anne T Sonne
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Lyngby, Denmark
| | - Ursula S McKnight
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Lyngby, Denmark
| | - Jørn K Pedersen
- Department of Environment and Raw materials, Region of Southern Denmark, Regionshuset, Damhaven 12, 7100 Vejle, Denmark
| | - Philip J Binning
- Office for Study Programmes and Student Affairs, Technical University of Denmark, Anker Engelunds Vej, Building 101, Room 1.212, 2800 Kgs. Lyngby, Denmark
| | - Poul L Bjerg
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Lyngby, Denmark
| |
Collapse
|
14
|
Burri NM, Weatherl R, Moeck C, Schirmer M. A review of threats to groundwater quality in the anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:136-154. [PMID: 31153063 DOI: 10.1016/j.scitotenv.2019.05.236] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Awareness concerning sustainable groundwater consumption under the context of land use and climate change is gaining traction, raising the bar for adequate understanding of the complexities of natural and anthropogenic processes and how they affect groundwater quality. The heterogeneous characteristics of aquifers have hampered comprehensive source, transport and contaminant identification. As questions remain about the behavior and prediction of well-known groundwater contaminants, new concerns around emerging contaminants are on the increase. This review highlights some of the key contaminants that originate from anthropogenic activities, organized based on land use categories namely agricultural, urban and industrial. It further highlights the extensive overlap, in terms of both provenance as well as contaminant type, between the different land use sectors. A selection of case studies from literature that describe the continued concern of established contaminants, as well as new and emerging compounds, are presented to illustrate the many qualitative threats to global groundwater resources. In some cases, the risk of groundwater contamination lacks adequate gravity, while in others the underlying physical and societal processes are not fully understood and activities may commence without adequately considering potential impacts. In the agricultural context, the historic and current application of fertilizers and plant protectants, use of veterinary pharmaceuticals and hormones, strives to safeguard the growing food demands. In the context of a sprawling urban environment, waste, human pharmaceuticals, and urban pesticide outputs are increasing, with adequate runoff and sanitation infrastructure often lagging. Finally, industrial activities are associated with accidental leaks and spills, while the large-scale storage of industrial byproducts has led to legacy contaminants such as those stemming from raw mineral extraction. With this review paper, we aim to underscore the need for transdisciplinary research, along with transboundary communication, using sound science and adaptive policy and management practice in order to procure sustainable groundwater quality.
Collapse
Affiliation(s)
- Nicole M Burri
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland; University of Neuchâtel, Centre of Hydrogeology and Geothermics (CHYN), Neuchâtel, Switzerland.
| | - Robin Weatherl
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland; University of Neuchâtel, Centre of Hydrogeology and Geothermics (CHYN), Neuchâtel, Switzerland
| | - Christian Moeck
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland
| | - Mario Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, Dübendorf, Switzerland; University of Neuchâtel, Centre of Hydrogeology and Geothermics (CHYN), Neuchâtel, Switzerland
| |
Collapse
|
15
|
Weatherill JJ, Krause S, Ullah S, Cassidy NJ, Levy A, Drijfhout FP, Rivett MO. Revealing chlorinated ethene transformation hotspots in a nitrate-impacted hyporheic zone. WATER RESEARCH 2019; 161:222-231. [PMID: 31200219 DOI: 10.1016/j.watres.2019.05.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate in hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20-60 cm thick hypoxic zones (<2 mg O2 L-1) within which most reactive transport was observed. A 33% reduction of nitrate concentrations coincided with elevated pore water nitrous oxide concentrations as well as the appearance of manganese and the TCE metabolite cis-1,2-dichloroethene (cDCE). Elevated groundwater nitrate concentrations (>50 mg L-1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation.
Collapse
Affiliation(s)
- John J Weatherill
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
| | - Stefan Krause
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | | | - Amir Levy
- Lattey Group, Gisborne, Hawkes Bay, New Zealand
| | | | - Michael O Rivett
- GroundH2O plus Ltd., Quinton, Birmingham, UK; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
16
|
Cremeans MM, Devlin JF, McKnight US, Bjerg PL. Application of new point measurement device to quantify groundwater-surface water interactions. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 211:85-93. [PMID: 29605159 DOI: 10.1016/j.jconhyd.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 02/01/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The streambed point velocity probe (SBPVP) measures in situ groundwater velocities at the groundwater-surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient information. The tool operates on the basis of a mini-tracer test that occurs on the probe surface. The SBPVP was used in a meander of the Grindsted Å (stream), Denmark, to determine the distribution of flow through the streambed. These data were used to calculate the contaminant mass discharge of chlorinated ethenes into the stream. SBPVP data were compared with velocities estimated from hydraulic head and temperature gradient data collected at similar scales. Spatial relationships of water flow through the streambed were found to be similar by all three methods, and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes of estimated flow varied to a greater degree. It was found that pollutants enter the stream in localized regions of high flow which do not always correspond to the locations of highest pollutant concentration. The results show the combined influence of flow and concentration on contaminant discharge and illustrate the advantages of adopting a flux-based approach to risk assessment at the groundwater-surface water interface. Chlorinated ethene mass discharges, expressed in PCE equivalents, were determined to be up to 444 kg/yr (with SBPVP data) which compared well with independent estimates of mass discharge up to 438 kg/yr (with mini-piezometer data from the streambed) and up to 372 kg/yr crossing a control plane on the streambank (as determined in a previous, independent study).
Collapse
Affiliation(s)
- M M Cremeans
- Department of Geology, University of Kansas, Lindley Hall Room 215, 1475 Jayhawk Blvd., Lawrence, KS 66045, United States.
| | - J F Devlin
- Department of Geology, University of Kansas, Lindley Hall Room 215, 1475 Jayhawk Blvd., Lawrence, KS 66045, United States.
| | - U S McKnight
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Building 115, 2800 Kgs. Lyngby, Denmark
| | - P L Bjerg
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. WATER RESEARCH 2018; 128:362-382. [PMID: 29126033 DOI: 10.1016/j.watres.2017.10.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/12/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.
Collapse
Affiliation(s)
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Uwe Schneidewind
- Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | | | - Michael O Rivett
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK; GroundH(2)O Plus Ltd., Quinton, Birmingham, UK
| |
Collapse
|
18
|
Rønde V, McKnight US, Sonne AT, Balbarini N, Devlin JF, Bjerg PL. Contaminant mass discharge to streams: Comparing direct groundwater velocity measurements and multi-level groundwater sampling with an in-stream approach. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 206:43-54. [PMID: 28969865 DOI: 10.1016/j.jconhyd.2017.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Affiliation(s)
- V Rønde
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - U S McKnight
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - A Th Sonne
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - N Balbarini
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J F Devlin
- Department of Geology, University of Kansas, Lawrence, KS, United States
| | - P L Bjerg
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Lu Q, de Toledo RA, Xie F, Li J, Shim H. Reutilization of waste scrap tyre as the immobilization matrix for the enhanced bioremoval of a monoaromatic hydrocarbons, methyl tert-butyl ether, and chlorinated ethenes mixture from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:88-96. [PMID: 28109662 DOI: 10.1016/j.scitotenv.2017.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
BTEX (benzene, toluene, ethylbenzene, ortho-, meta-, and para-xylenes), methyl tert-butyl ether (MTBE), cis-1,2-dichloroethylene (cis-DCE), and trichloroethylene (TCE) are among the major soil and groundwater contaminants frequently co-existing, as a result of their widespread uses. Pseudomonas plecoglossicida was immobilized on waste scrap tyre to remove these contaminants mixture from synthetic contaminated water. The microbial activity was enhanced in the immobilized system, shown by the higher colony forming units (CFUs) (40%), while BTEX were used as growth substrates. The adsorption capacity of tyres toward contaminants reached a maximum within one day, with BTEX (76.3%) and TCE (64.3%) showing the highest sorption removal capacities, followed by cis-DCE (30.0%) and MTBE (11.0%). The adsorption data fitted the Freundlich isotherm with a good linear correlation (0.989-0.999) for the initial contaminants concentration range applied (25-125mg/L). The monoaromatic hydrocarbons were almost completely removed in the immobilized system and the favourable removal efficiencies of 78% and 90% were obtained for cis-DCE and TCE, respectively. The hybrid (biological, immobilization/physical, sorption) system was further evaluated with the contaminants spiked intermittently for the stable performance. The addition of mineral salt medium further enhanced the bioremoval of contaminants by stimulating the microbial growth to some extent.
Collapse
Affiliation(s)
- Qihong Lu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Fei Xie
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China; Shanxi Academy for Environmental Planning, Taiyuan 030002, China
| | - Junhui Li
- College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou 510642, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
20
|
Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Appl Environ Microbiol 2017; 83:AEM.03384-16. [PMID: 28159790 DOI: 10.1128/aem.03384-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/26/2022] Open
Abstract
In order to elucidate interactions between sulfate reduction and dechlorination, we systematically evaluated the effects of different concentrations of sulfate and sulfide on reductive dechlorination by isolates, constructed consortia, and enrichments containing Dehalococcoides sp. Sulfate (up to 5 mM) did not inhibit the growth or metabolism of pure cultures of the dechlorinator Dehalococcoides mccartyi 195, the sulfate reducer Desulfovibrio vulgaris Hildenborough, or the syntroph Syntrophomonas wolfei In contrast, sulfide at 5 mM exhibited inhibitory effects on growth of the sulfate reducer and the syntroph, as well as on both dechlorination and growth rates of D. mccartyi Transcriptomic analysis of D. mccartyi 195 revealed that genes encoding ATP synthase, biosynthesis, and Hym hydrogenase were downregulated during sulfide inhibition, whereas genes encoding metal-containing enzymes involved in energy metabolism were upregulated even though the activity of those enzymes (hydrogenases) was inhibited. When the electron acceptor (trichloroethene) was limiting and an electron donor (lactate) was provided in excess to cocultures and enrichments, high sulfate concentrations (5 mM) inhibited reductive dechlorination due to the toxicity of generated sulfide. The initial cell ratio of sulfate reducers to D. mccartyi (1:3, 1:1, or 3:1) did not affect the dechlorination performance in the presence of sulfate (2 and 5 mM). In contrast, under electron donor limitation, dechlorination was not affected by sulfate amendments due to low sulfide production, demonstrating that D. mccartyi can function effectively in anaerobic microbial communities containing moderate sulfate concentrations (5 mM), likely due to its ability to outcompete other hydrogen-consuming bacteria and archaea.IMPORTANCE Sulfate is common in subsurface environments and has been reported as a cocontaminant with chlorinated solvents at various concentrations. Inconsistent results for the effects of sulfate inhibition on the performance of dechlorination enrichment cultures have been reported in the literature. These inconsistent findings make it difficult to understand potential mechanisms of sulfate inhibition and complicate the interpretation of bioremediation field data. In order to elucidate interactions between sulfate reduction and reductive dechlorination, this study systematically evaluated the effects of different concentrations of sulfate and sulfide on reductive dechlorination by isolates, constructed consortia, and enrichments containing Dehalococcoides sp. This study provides a more fundamental understanding of the competition mechanisms between reductive dechlorination by Dehalococcoides mccartyi and sulfate reduction during the bioremediation process. It also provides insights on the significance of sulfate concentrations on reductive dechlorination under electron donor/acceptor-limiting conditions during in situ bioremediation applications. For example, at a trichloroethene-contaminated site with a high sulfate concentration, proper slow-releasing electron donors can be selected to generate an electron donor-limiting environment that favors reductive dechlorination and minimizes the sulfide inhibition effect.
Collapse
|
21
|
Manamsa K, Lapworth DJ, Stuart ME. Temporal variability of micro-organic contaminants in lowland chalk catchments: New insights into contaminant sources and hydrological processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:566-577. [PMID: 26850859 DOI: 10.1016/j.scitotenv.2016.01.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
This paper explores the temporal variation of a broad suite of micro organic (MO) compounds within hydrologically linked compartments of a lowland Chalk catchment, the most important drinking water aquifer in the UK. It presents an assessment of results from relatively high frequency monitoring at a well-characterised site, including the type and concentrations of compounds detected and how they change under different hydrological conditions including exceptionally high groundwater levels and river flow conditions during 2014 and subsequent recovery. This study shows for the first time that within the Chalk groundwater there can be a greater diversity of the MOs compared to surface waters. Within the Chalk 26 different compounds were detected over the duration of the study compared to 17 in the surface water. Plasticisers (0.06-39μg/L) were found to dominate in the Chalk groundwater on 5 visits (38.4%) accounting for 14.5% of detections but contributing highest concentrations whilst other compounds dominated in the surface water. Trichloroethene and atrazine were among the most frequently detected compounds. The limit for the total pesticide concentration detected did not exceed EU/UK prescribed concentration values for drinking water. Emerging organic compounds such as caffeine, which currently do not have water quality limits, were also detected. The low numbers of compounds found within the hyporheic zone highlight the role of this transient interface in the attenuation and breakdown of the MOs, and provision of an important ecosystem service.
Collapse
Affiliation(s)
- K Manamsa
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - D J Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK.
| | - M E Stuart
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|