1
|
Singh H, Bagra K, Dixit S, Singh AK, Singh G. Association of infrastructure and operations with antibiotic resistance potential in the dairy environment in India. Prev Vet Med 2025; 239:106497. [PMID: 40056564 DOI: 10.1016/j.prevetmed.2025.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
The dairy industry in developing countries is often associated with inappropriate use of antibiotics and the subsequent contamination of the environment with co-selectors of antibiotic resistance. However, the specific factors in dairy farm environments that influence antibiotic resistance levels and the subsequent exposure risks to farm workers are unknown. We examined the link between the infrastructure and operations of the dairy farm and the antibiotic resistance potential in India, which is the highest producer and consumer of dairy products globally. We sampled sixteen dairy farms in the Dehradun district, India, that varied in their herd size, infrastructure, and operational features during winter, summer, and monsoon. We collected samples of dung, manure, wastewater, manure-amended, and control soil from these farms. We quantified six antibiotic resistance genes (ARGs) (sul1, sul2, parC, mcr5, ermF, and tetW), an integron integrase gene cassette (intI1), and 16S rRNA gene copies as an indicator for total bacterial count. We observed that the infrastructure and the operations of the dairy farms were significantly associated with antibiotic resistance potential in the dairy environment. For example, with increased ventilation and exposure to external weather, the levels of sul2 (x͂=10-1.63) and parC (x͂=10-4.24) in manure increased. When farmers administered antibiotics without veterinary consultation, the relative levels of intI1 (x͂=10-2.36), sul2 (x͂=10-1.58), and tetW (x͂=10-3.04) in manure were lower than the cases where professional advice was sought. Small-scale farms had lower relative ARG levels than medium- and large-scale farms, except for mcr5 (x͂=10-3.98) in wastewater. In different sample types, the relative ARG levels trended as manure-amended soil (x͂=10-2.34) > wastewater (x͂=10-2.90)> manure (x͂=10-3.39)> dung (x͂=10-2.54). ARGs correlated with the marker for horizontal gene transfer, intI1, which exacerbates overall antibiotic resistance levels. Exposure assessment showed that the agriculture farm workers working in manure-amended agriculture farms are exposed to higher antibiotic resistance potential than dairy farm workers, who manually handle dung. Our study showed that the link between the dairy infrastructure (ventilation and floor type) and operations (scale of operation and veterinary consultation) and the antibiotic resistance potential in the dairy farm environment was statistically significant. This knowledge paves the way for designing interventions that can minimize the antibiotic resistance potential on dairy farms and in affected environments and thus reduce the public health burden of antibiotic-resistant infections in the dairy industry and dairy workers in India.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Kenyum Bagra
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Sourabh Dixit
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Awanish Kumar Singh
- College of Veterinary and Animal Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 263145, India.
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
2
|
Zhang C, Zhang S, Tang X, Zhang B, Liu D, Yang Z, Huang R, Wu Y, Tao Q, Luo Y, Wang C, Li B. Mechanistic insights into phosphorus transformation mediated by Arthrobacter and Sordariomycetes under long-term high-volume swine manure application in a wheat-rice rotation system. Front Microbiol 2025; 16:1540267. [PMID: 40432968 PMCID: PMC12106499 DOI: 10.3389/fmicb.2025.1540267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Understanding the impacts of sustained high-input swine manure on soil phosphorus (P), along with identifying and functionally characterizing P-associated microorganisms, can provide a scientific foundation for effective management of soil P in relation to swine manure application. This study provides novel insights into the functional roles of P-associated microorganisms in mediating phosphorus dynamics under long-term excessive swine manure application. Methods The study investigated the prolonged impact of high-volume swine manure application on soil P fractions over an 8-year continuous, randomized field trial involving rotating wheat (wet conditions) and rice (flooded conditions) crops. And the soil treated with the prolonged high- volume swine manure application was selected to isolate and identify specific microorganisms, which were subsequently inoculated into soil previously treated with long-term NPK fertilizer (F) and swine manure application (M) for indoor cultivation and functional characterization verification. Results The sustained high input of swine manure markedly enhanced soil P activity and microbial P content (P < 0.05), specifically extracting P-associated microorganisms, namely Arthrobacter sp. M4 bacteria and Sordariomycetes 2 MS-M4 fungi. Upon separate inoculation of these microorganisms into high-Carbon (C) and high-P soils (M soil, Olsen P > 70 mg kg-1, ROC > 150 mg kg-1), it was observed that both microorganisms effectively converted available P sources (Ca2-P, Ca8-P) into organic P reserves through biological immobilization. Conversely, under conditions of low C and low P (F soil, Olsen P < 10 mg kg-1, ROC < 75 mg kg-1), there was an enhancement in the decomposition and utilization of soil organic C which resulted in increased effective P content via the breakdown of organic phosphates-demonstrating a robust capacity for P transformation. Furthermore, when these phosphate-related microorganisms were introduced to long-term fertilized soils enriched with NPK fertilizer (F), they exhibited a significantly greater enhancement in soil P availability compared to those inoculated into soils subjected to prolonged high inputs of swine manure. Discussion The P-related microorganisms Arthrobacter sp. M4 and Sordariomycetes 2 MS-M4 extracted from soils with high P availability were confirmed to have the key functions of enhancing the fixation of inorganic P into organic P (high-C and high-P condition) or promoting the activation of organic P into rapidly available P (low C and low P level). Which may plays an important role in the management of agricultural P nutrients.
Collapse
Affiliation(s)
- Chunlong Zhang
- School of Pharmacy and Medical Laboratory Science, Ya’an Polytechnic College, Ya’an, China
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Shuang Zhang
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Tang
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Bin Zhang
- School of Pharmacy and Medical Laboratory Science, Ya’an Polytechnic College, Ya’an, China
| | - Dejun Liu
- School of Pharmacy and Medical Laboratory Science, Ya’an Polytechnic College, Ya’an, China
| | - Zepeng Yang
- Institute of Agricultural Resource and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Rong Huang
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Yingjie Wu
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Qi Tao
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Youlin Luo
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Changquan Wang
- College of Resource, Sichuan Agricultural University, Chengdu, China
| | - Bing Li
- College of Resource, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Sun J, Wang X, He Y, Han M, Li M, Wang S, Chen J, Zhang Q, Yang B. Environmental fate of antibiotic resistance genes in livestock farming. Arch Microbiol 2025; 207:120. [PMID: 40214801 DOI: 10.1007/s00203-025-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
As emerging environmental pollutants, antibiotic resistance genes (ARGs) are prevalent in livestock farms and their surrounding environments. Although existing studies have focused on ARGs in specific environmental media, comprehensive research on ARGs within farming environments and their adjacent areas remains scarce. This review explores the sources, pollution status, and transmission pathways of ARGs from farms to the surrounding environment. Drawing on the "One Health" concept, it also discusses the potential risks of ARGs transmission from animals to human pathogens and the resulting impact on human health. Our findings suggest that the emergence of ARGs in livestock farming environments primarily results from intrinsic resistance and genetic mutations, while their spread is largely driven by horizontal gene transfer. The distribution of ARGs varies according to the type of resistance genes, seasonal changes, and the medium in which they are present. ARGs are disseminated into the surrounding environment via pathways such as manure application, wastewater discharge, and aerosol diffusion. They may be absorbed by humans, accumulating in the intestinal microbiota and subsequently affecting human health. The spread of ARGs is influenced by the interplay of microbial communities, antibiotics, heavy metals, emerging pollutants, and environmental factors. Additionally, we have outlined three control strategies: reducing the emergence of ARGs at the source, controlling their spread, and minimizing human exposure. This article provides a theoretical framework and scientific guidance for understanding the cross-media migration of microbial resistance in livestock farming environments.
Collapse
Affiliation(s)
- Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang, 050035, China
| | - Qiang Zhang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Tripathi A, Jaiswal A, Kumar D, Chavda P, Pandit R, Joshi M, Blake DP, Tomley FM, Joshi CG, Dubey SK. Antimicrobial resistance in plant endophytes associated with poultry-manure application revealed by selective culture and whole genome sequencing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136166. [PMID: 39423640 DOI: 10.1016/j.jhazmat.2024.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Poultry manure is widely used as organic fertilizer in agriculture during the cultivation of crops, but the persistent high-level use of antibiotics in poultry production has raised concerns about the selection for reservoirs of antimicrobial resistance genes (ARGs). Previous studies have shown that the addition of poultry manure can increase the abundance of genes associated with resistance to tetracyclines, aminoglycosides, fluoroquinolones, sulfonamides, bacitracin, chloramphenicol, and macrolide-lincosamide-streptogramin in soil and plants. Understanding the microbial populations that harbor these ARGs is important to identify microorganisms that could enter the human food chain. Here, we test the hypothesis that environmental exposure to poultry manure increases the occurrence of antimicrobial resistance (AMR) in plant endophytes using selective culture, phenotypic Antibiotic Susceptibility Testing (AST), phylogenetic analysis, and whole genome sequencing (WGS). Endophytes from poultry manure treated Sorghum bicolor (L.) Moench plant root and stem samples showed increased phenotypic and genotypic resistance against multiple antibiotics compared to untreated controls. Comparison of AMR phenotype-to-genotype relationships highlighted the detection of multi-drug resistant (MDR) plant endophytes, demonstrating the value of genomic surveillance for emerging drug-resistant pathogens. The increased occurrence of ARGs in poultry manure-exposed endophytes highlights the need for responsible antibiotic use in poultry and animal farming to reduce contamination of ecological niches and transgression into endophytic plant microbiome compartments. It also emphasizes the requirement for proper manure management practices and vigilance in monitoring and surveillance efforts to tackle the growing problem of antibiotic resistance and preserve the efficacy of antibiotics for human and veterinary medicine.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Damer P Blake
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Fiona M Tomley
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Qiu T, Shen L, Guo Y, Gao M, Gao H, Li Y, Zhao G, Wang X. Impact of aeration rate on the transfer range of antibiotic-resistant plasmids during manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124851. [PMID: 39216666 DOI: 10.1016/j.envpol.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Shen
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
6
|
Liu Y, Zhang Q, Shi Y, Hao Z, Zhan X. Anthropogenic activities significantly interfered distribution and co-occurrence patterns of antibiotic resistance genes in a small rural watershed in Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117118. [PMID: 39357373 DOI: 10.1016/j.ecoenv.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
The prevalence and spread of antibiotic resistance genes (ARGs) have been a significant concern for global public health in recent years. Small rural watersheds are the smallest units of factor mobility for agricultural production in China, and their ARG profiles are the best scale of the contamination status, but the mapping and the distribution and diffusion of ARGs in the water and soil of small rural watersheds are inadequate. In this study, based on microbial metagenomics, we invested prevalence maps of 209 ARGs corresponding to typical commonly used antibiotics (including multidrug, aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB), and β-Lactamase) in water and soil in different agricultural types, as well as within water-soil interfaces in small rural watersheds in Southwest China. The results revealed that the most abundant ARGs in water and soil were consistent, but different in subtypes, and anthropogenic activities affect the transport of ARGs between water and soils. Livestock wastewater discharges influenced the diversity and abundance of ARGs in water, while in soil it is planting type and fertilizer management, and thus interfered with the co-occurrence patterns between bacteria and ARGs. Co-occurrence analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant ARG hosts in water and soil, but soil exhibited a more intricate ARG-bacterial association. Overall, this study provides integrated profiles of ARGs in water and soil influenced by anthropogenic activities at the small watershed scale in a typical rural area and provides a baseline for comparisons of ARGs.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Hao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoying Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Hailu W, Alemayehu H, Wolde D, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Prevalence and antimicrobial susceptibility profile of Salmonella isolated from vegetable farms fertilized with animal manure in Addis Ababa Ethiopia. Sci Rep 2024; 14:19169. [PMID: 39160213 PMCID: PMC11333614 DOI: 10.1038/s41598-024-70173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Deneke Wolde
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Lulit Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gireesh Rajashekara
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Wondwossen A Gebreyes
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University Global One Health LLC, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Wu D, Dai S, Feng H, Karunaratne SHPP, Yang M, Zhang Y. Persistence and potential risks of tetracyclines and their transformation products in two typical different animal manure composting treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122904. [PMID: 37951528 DOI: 10.1016/j.envpol.2023.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Abundant residues of tetracyclines in animal manures and manure-derived organic fertilizers can pose a substantial risk to environments. However, our knowledge on the residual levels and potential risk of tetracyclines and their transformation products (TPs) in manure and manure-derived organic fertilizers produced by different composting treatments is still limited. Herein, the occurrence and distribution of four veterinary tetracyclines (tetracycline, oxytetracycline, chlortetracycline, and doxycycline) and ten of their TPs were investigated in paired samples of fresh manure and manure-derived organic fertilizers. Tetracyclines and TPs were frequently detected in manure and manure-derived organic fertilizer samples in ranging from 130 to 118,137 μg·kg-1 and 54.6 to 104,891 μg·kg-1, respectively. Notably, the TPs concentrations of tetracycline and chlortetracycline were comparable to those of the parent compounds, with 4-epimers being always dominant and retained antibacterial potency. Based on paired-sampling strategy, the removal efficiency of tetracyclines and TPs in thermophilic composting was higher than that in manure storage. Toxicological data in the soil environment and the data derived from equilibrium partitioning method, indicated that tetracyclines and some TPs like 4-epitetracycline, 4-epichlortetracycline and isochlortetracycline could pose median to high ecological risk to terrestrial organisms. Total concentrations of TPs in manure-derived organic fertilizers were significantly correlated with the absolute abundance of tet(X) family genes, which provide evidence to evaluate the effects of TPs on the levels of antibiotic resistance in the environment. Among them, the 4-epitetracycline could pose ecological risk and retain antibacterial potency. Our findings emphasize the importance of monitoring and controlling the prevalence of tetracyclines and their TPs in livestock-related environments.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haodi Feng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Kang Y, Zhao S, Cheng H, Xu W, You R, Hu J. The distribution profiles of tetracycline resistance genes in rice: Comparisons using four genotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168359. [PMID: 37951253 DOI: 10.1016/j.scitotenv.2023.168359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The potential transmission of antibiotic resistance genes (ARGs) from the rhizosphere to plants and humans poses a significant concern. This study aims to investigate the distribution of tetracycline resistance genes (TRGs) in rice using four genotypes and identify the primary source of TRGs in grains. Quantitative polymerase chain reaction (qPCR) was employed to determine the abundance of seven TRGs and intI1 in four rice varieties and three partitions during the jointing and heading stages, respectively. The analysis of the bacterial community was conducted to elucidate the underlying mechanism of the profiles of TRGs. It was observed that tetZ was predominantly present in the rhizosphere and endoroot, whereas tetX became dominant in grains. The relative abundances of TRGs and intI1 exhibited significant variations across both the variety and partition. However, no significant differences were observed in grains, where the abundances of TRGs were several orders of magnitude lower compared to those in the rhizosphere. Nevertheless, the potential risk of the dissemination of TRGs to humans, particularly those carried by potential pathogens in grains, warrants attention. The increased likelihood of TRGs accumulation in the rhizosphere and endoroot of hybrid rice varieties, as opposed to japonica varieties, may be attributed to the heightened metabolic activities of their roots. The significant associations observed between intI1 and TRGs, coupled with the substantial alterations in potential hosts for intI1 across various treatments, indicate that intI1-mediated horizontal gene transfer plays a role in the diverse range of bacterial hosts for TRGs. The study also revealed that rhizosphere bacteria during the jointing stage serve as the primary contributors of TRGs in grains through the endoroot junction. The findings indicate that Japonica rice varieties exhibit superior control over TRGs compared to hybrid varieties, emphasizing the need for early interventions throughout the entire growth period of rice.
Collapse
Affiliation(s)
- Yijun Kang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, Jiangsu, China.
| | - Sumeng Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Haoyang Cheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Wenjie Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ruiqiang You
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Liu L, Yin Q, Hou Y, Ma R, Li Y, Wang Z, Yang G, Liu Y, Wang H. Fungus reduces tetracycline-resistant genes in manure treatment by predation of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167462. [PMID: 37783436 DOI: 10.1016/j.scitotenv.2023.167462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
New strategies to remove antibiotic resistance genes (ARGs), one of the most pressing threats to public health, are urgently needed. This study showed that the fungus Phanerochaete chrysosporium seeded to a composting reactor (CR) could remarkably reduce tetracycline-resistant genes (TRGs). The reduction efficiencies for the five main TRGs (i.e., tetW, tetO, tetM, tetPA, and tet(32)) increased by 8 to 100 folds compared with the control without P. chrysosporium, and this could be attributed to the decrease in the quantity of bacteria. Enumeration based on green fluorescence protein labeling further showed that P. chrysosporium became dominant in the CR. Meanwhile, the bacteria in the CR invaded the fungal cells via the cell wall defect of chlamydospore or active invasion. Most of the invasive bacteria trapped inside the fungus could not survive, resulting in bacterial death and the degradation of their TRGs by the fungal nucleases. As such, the predation of tetracycline-resistant bacteria by P. chrysosporium was mainly responsible for the enhanced removal of TRGs in the swine manure treatment. This study offers new insights into the microbial control of ARGs.
Collapse
Affiliation(s)
- Lei Liu
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qianxi Yin
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Hou
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Rui Ma
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Li
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ganggang Yang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hailei Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Liu S, Han Z, Zhu D, Luan X, Deng L, Dong L, Yang M, Zhang Y. Field-based evidence for the enrichment of intrinsic antibiotic resistome stimulated by plant-derived fertilizer in agricultural soil. J Environ Sci (China) 2024; 135:728-740. [PMID: 37778843 DOI: 10.1016/j.jes.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 10/03/2023]
Abstract
Animal manures have been demonstrated to enhance antibiotic resistance in agricultural soils. However, little is known about the effects of plant-derived fertilizer on soil antibiotic resistome. Herein, metagenomic sequencing was used to investigate the effects of a plant-derived fertilizer processed from sugarcane and beet on soil antibiotic resistance genes (ARGs) in a soybean field along crop growth stages. ARG profiles in the soils amended by plant-derived fertilizer were compared with those in the soils amended by chicken manure. The abundance and diversity of total ARGs in the soils amended by plant-derived fertilizer were significantly (P < 0.05) elevated at the sprout stage, to a level comparable to that in the manured soils. Whereas, unlike chicken manure mainly introducing manure-borne ARGs to soil, the plant-derived fertilizer was indicated to mainly enrich multidrug resistance genes in soil by nourishing indigenous bacteria. ARGs with abundances in amended soils significantly (P < 0.05) higher than in unamended soils at the sprout stage of soybean were considered as enriched ARGs. Decrease in the abundance of the enriched ARGs was observed in both the amended soils from the sprout to the harvest. Network analysis further identified Proteobacteria and Bacteroidetes as the primary bacterial taxa involved in the temporal variation of the enriched ARGs in the soils amended by plant-derived fertilizer, while in manured soils were Firmicutes and Actinobacteria. As revealed by multivariate statistical analyses, variation of the enriched ARGs in the soils amended by plant-derived fertilizer was majorly attributed to the response of co-occurred bacteria to depleting nutrients, which was different from the failed establishment of manure-borne bacteria in the manured soils. Our study provided field-based evidence that plant-derived fertilizer stimulated the intrinsic antibiotic resistome, and proposed attention to the un-perceived risk since some clinically relevant ARGs originate and evolve from natural resistome.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liujie Deng
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Liping Dong
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
13
|
Zhang Y, Zhao J, Chen M, Tang X, Wang Y, Zou Y. Fecal antibiotic resistance genes were transferred through the distribution of soil-lettuce-snail food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87793-87809. [PMID: 37434056 DOI: 10.1007/s11356-023-28606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Massive antibiotic resistance genes (ARG) were detected in the soil modified by manure, which may affect human life safety through the food chain. However, the transmission of ARGs through the soil-plant-animal food chain is still unclear. Therefore, this study used high-throughput quantitative PCR technology to explore the effects of pig manure application on ARGs and bacterial communities in soil, lettuce phyllosphere, and snail excrement. The results showed that a total of 384 ARGs and 48 MEGs were detected in all samples after 75 days of incubation. The diversity of ARGs and MGEs in soil components increased significantly by 87.04% and 40% with the addition of pig manure. The absolute abundance of ARGs in the phyllosphere of lettuce was significantly higher than that of the control group, with a growth rate of 212.5%. Six common ARGs were detected between the three components of the fertilization group, indicating that there was internal transmission of fecal ARGs between the trophic levels of the food chain. Firmicutes and Proteobacteria were identified as the dominant host bacteria in the food chain system, which were more likely to be used as carriers of ARGs to promote the spread of resistance in the food chain. The results were used to assess the potential ecological risks of livestock and poultry manure. It provides theoretical basis and scientific support for the formulation of ARG prevention and control policies.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Jiayi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yijia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yun Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
14
|
Tan M, Shi W, Wang H, Di G, Xie Z, Fan S, Tang J, Dong F. Effective photodegradation of antibiotics by guest-host synergy between photosensitizer and bismuth vanadate: Underlying mechanism and toxicity assessment. CHEMOSPHERE 2023; 325:138362. [PMID: 36905996 DOI: 10.1016/j.chemosphere.2023.138362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The removal of antibiotics in wastewater has attracted increasing attention. Herein, a superior photosensitized photocatalytic system was developed with acetophenone (ACP) as the guest photosensitizer, bismuth vanadate (BiVO4) as the host catalyst and poly dimethyl diallyl ammonium chloride (PDDA) as the bridging complex, and used for the removal of sulfamerazine (SMR), sulfadiazine (SDZ) and sulfamethazine (SMZ) in water under simulated visible light (λ > 420 nm). The obtained ACP-PDDA-BiVO4 nanoplates attained a removal efficiency of 88.9%-98.2% for SMR, SDZ and SMZ after 60 min reaction and achieved kinetic rate constant approximately 10, 4.7 and 13 times of BiVO4, PDDA-BiVO4 and ACP-BiVO4, respectively, for SMZ degradation. In the guest-host photocatalytic system, ACP photosensitizer was found to have a great superiority in enhancing the light absorption, promoting the surface charge separation-transfer and efficient generation of holes (h+) and superoxide radical (·O2-), greatly contributing to the photoactivity. The SMZ degradation pathways were proposed based on the identified degradation intermediates, involving three main pathways of rearrangement, desulfonation and oxidation. The toxicity of intermediates was evaluated and the results demonstrated that the overall toxicity was reduced compared with parent SMZ. This catalyst maintained 92% photocatalytic oxidation performance after five cyclic experiments and displayed a co-photodegradation ability to others antibiotics (e.g., roxithromycin, ciprofloxacin et al.) in effluent water. Therefore, this work provides a facile photosensitized strategy for developing guest-host photocatalysts, which enabling the simultaneous antibiotics removal and effectively reduce the ecological risks in wastewater.
Collapse
Affiliation(s)
- Meihong Tan
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wanping Shi
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Haifeng Wang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Guanglan Di
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengxin Xie
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Tang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| |
Collapse
|
15
|
Guo Y, Qiu T, Gao M, Ru S, Gao H, Wang X. Does increasing the organic fertilizer application rate always boost the antibiotic resistance level in agricultural soils? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121251. [PMID: 36764373 DOI: 10.1016/j.envpol.2023.121251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The amendment of organic fertilizer derived from livestock manure or biosolids is a significant driver of increasing antibiotic resistance in agricultural soils; however, it remains unclear whether increasing organic fertilizer application rates consistently enhances soil antibiotic resistance levels. Herein, we collected soils with long-term amendment with three types of organic fertilizers at four application rates (15, 30, 45, and 60 t/ha/y) and found that the higher the fertilization rate, the higher the antibiotic resistance gene (ARG) abundance. However, when the fertilization rate exceeded 45 t/ha/y, the ARG abundance ceased to significantly increase. Moreover, the soil ARG abundance was positively correlated with total nitrogen (TN) content and bacterial abundance, especially Firmicutes, and negatively affected by pH and bacterial diversity. Soil TN/bacterial abundance and pH/bacterial diversity reached maximum and minimum values at the 45 t/ha/y fertilization rate, respectively. Meanwhile, at this fertilization rate, Firmicutes enrichment peaked. Therefore, an organic fertilization rate of 45 t/ha/y appeared to represent the threshold for soil antibiotic resistance in this study. The underlying mechanism for this threshold was closely related to soil TN, pH, bacterial abundance, and diversity. Taken together, the findings of this study advance the current understanding regarding the soil resistome under different fertilization rates, while also providing novel insights into organic fertilizer management in agricultural practices.
Collapse
Affiliation(s)
- Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuhua Ru
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Science, Hebei Fertilizer Technology Innovation Center, Shijiazhuang, 050051, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
16
|
Min J, Kim P, Yun S, Hong M, Park W. Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:710-726. [PMID: 35906519 DOI: 10.1007/s11356-022-22279-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Animal fecal samples collected in the summer and winter from 11 herbivorous animals, including sable antelope (SA), long-tailed goral (LTG), and common eland (CE), at a public zoo were examined for the presence of antibiotic resistance genes (ARGs). Seven antibiotics, including meropenem and azithromycin, were used to isolate culturable multidrug-resistant (MDR) strains. The manures from three animals (SA, LTG, and CE) contained 104-fold higher culturable MDR bacteria, including Chryseobacterium, Sphingobacterium, and Stenotrophomonas species, while fewer MDR bacteria were isolated from manure from water buffalo, rhinoceros, and elephant against all tested antibiotics. Three MDR bacteria-rich samples along with composite samples were further analyzed using nanopore-based technology. ARGs including lnu(C), tet(Q), and mef(A) were common and often associated with transposons in all tested samples, suggesting that transposons carrying ARGs may play an important role for the dissemination of ARGs in our tested animals. Although several copies of ARGs such as aph(3')-IIc, blaL1, blaIND-3, and tet(42) were found in the sequenced genomes of the nine MDR bacteria, the numbers and types of ARGs appeared to be less than expected in zoo animal manure, suggesting that MDR bacteria in the gut of the tested animals had intrinsic resistant phenotypes in the absence of ARGs.
Collapse
Affiliation(s)
- Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sohyeon Yun
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minyoung Hong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Peng S, Song D, Zhou B, Hua Q, Lin X, Wang Y. Persistence of Salmonella Typhimurium and antibiotic resistance genes in different types of soil influenced by flooding and soil properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114330. [PMID: 36436254 DOI: 10.1016/j.ecoenv.2022.114330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Salmonella is a zoonotic foodborne bacterial pathogen that can seriously harm health. Persistence of Salmonella and antibiotic resistance genes (ARGs) in different types of soil under flooding and natural conditions are rare explored. This study investigated the dynamic changes of the Salmonella, ARGs and bacterial communities in three types of soils applied with pig manure in lab scale. Abundance of the Salmonella Typhimurium in soils reduced to the detection limit varied from 40 to 180 days, most of the Salmonella did not survive in soil for more than 90 days. Flooding and soil texture (content of sand) promote the decline rate of Salmonella. No Salmonella was found have acquired resistance gene from the soil or manure after 90 days. 64 ARGs and 11 MGEs were quantified, abundance of these genes and risky ARGs both gradually decline along with the extension of time. Most of the extrinsic ARGs cannot colonize in soil, cellular protection and antibiotic deactivation were their main resistance mechanism. Multidrug resistance and efflux pump were the dominant class and mechanism of soil intrinsic ARGs. Flooding can affect the ARGs profiles by reducing the types of extrinsic ARGs invaded into soil and inhibit the proliferation of intrinsic genes. Soil sand content, soil moisture and nutrition concentrations had significant direct effect on the abundance or profile of ARGs. Soil bacterial community structures also changed along with the extension of time and affected by flooding. Network analyses between ARGs and bacteria taxa revealed that Actinobacteria and Myxococcia were the main hosts of intrinsic ARGs, some taxa may play a role in inhibiting extrinsic ARGs colonization in the soils. These findings unveil that saturate soil with water may play a positive role in reducing potential risk of Salmonella and ARGs in the farmland environment.
Collapse
Affiliation(s)
- Shuang Peng
- College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, PR China
| | - Dan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Beibei Zhou
- College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
18
|
Chen J, Cai Y, Deng W, Xing S, Liao X. Transmission of tetracycline resistance genes and microbiomes from manure-borne black soldier fly larvae frass to rhizosphere soil and pakchoi endophytes. Front Microbiol 2022; 13:1014910. [DOI: 10.3389/fmicb.2022.1014910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Manure treatment with black soldier fly larvae (BSFL) and BSFL frass application in crop land is a sustainable strategy; however, whether residual antibiotic resistance genes (ARGs) and their transmission risk are related to the manure BSFL treatment process is still unknown. In this paper, the effect of BSFL addition density on residual tetracycline resistance genes (TRGs) and transmission from frass to pakchoi was determined. The results showed that BSFL frass can provide sufficient nutrients for growth, improve the economic value of pakchoi, and reduce the risk of transmission of TRGs in chicken manure regardless of BSFL density. The potential hosts of the TRGs we detected were found in BSFL frass (Oblitimonas and Tissierella), rhizosphere soil (Mortierella and Fermentimonas), and pakchoi endophytes (Roseomonas). The present study concluded that BSFL frass produced by adding 100 BSFL per 100 g of chicken manure has the advantages of high value and low risk. These findings will provide important strategic guidance for animal manure disposal and theoretical support for preventing the transmission of TRGs in BSFL applications.
Collapse
|
19
|
Liu C, Zhang X, Zhang W, Wang S, Fan Y, Xie J, Liao W, Gao Z. Mitigating gas emissions from poultry litter composting with waste vinegar residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156957. [PMID: 35760166 DOI: 10.1016/j.scitotenv.2022.156957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The composting process is important in the recycling of organic wastes produced in agriculture, food, and municipal waste management. This study explored the suitability of using waste vinegar residue (WVR) as an amendment in poultry litter (PL) composting. Four treatments, including poultry litter (CK), poultry litter+vinegar residue (VR), poultry litter+vinegar residue+lime (VR_Ca) and poultry litter+vinegar residue+biochar (VR_B), were conducted. During a 42-day composting period, the dynamics of carbon dioxide (CO2), ammonia (NH3), nitrous oxide (N2O) and methane (CH4) emissions, as well as the physicochemical properties and abundances of the bacteria and fungi of the feedstock were tracked to examine the potential barriers in the co-composting of WVR and PL. Compared to those of the CK, using a WVR amendment lowered the pH, increased the electrical conductivity significantly at the early stage, resulted in a strong inhibition of bacterial and fungal growth and delayed the thermophilic period of poultry litter composting while significantly reducing NH3 and N2O and GHG (CO2-e) emissions. A preadjustment of the WVR with alkaline biochar or lime lengthened the thermophilic period and increased the germination index (GI) by alleviating the inhibitory effect of the WVR on bacterial and fungal growth during composting. However, such preadjustment might reduce the mitigation effect on NH3. In conclusion, WVR can be recycled through co-composting with poultry litter, and the additional mitigation of N losses and N conservation can be achieved without halting compost quality.
Collapse
Affiliation(s)
- Chunjing Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China
| | - Xinxing Zhang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China
| | - Weitao Zhang
- General Husbandry Station of Hebei Province, Shijiazhuang 050000, PR China
| | - Shanshan Wang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China
| | - Yujing Fan
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China
| | - Jianzhi Xie
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China
| | - Wenhua Liao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China.
| | - Zhiling Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China.
| |
Collapse
|
20
|
Akter R, Mukhles MB, Rahman MM, Rana MR, Huda N, Ferdous J, Rahman F, Rafi MH, Biswas SK. Effect of pesticides on nitrification activity and its interaction with chemical fertilizer and manure in long-term paddy soils. CHEMOSPHERE 2022; 304:135379. [PMID: 35716712 DOI: 10.1016/j.chemosphere.2022.135379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Effect of pesticides on nitrification activity and its interaction among heavy metal concentrations (HMCs), antibiotic resistance genes (ARGs), and ammonia monooxygenase (amoA) genes of long-term paddy soils is little known. The aim was to study the effect of pesticides on net nitrification rate (NR), potential nitrification rate (NP), HMCs, ARGs (sulI, sulII, tetO, and tetQ), and amoA (amoA-AOA, amoA-AOB, and amoA-NOB) genes in long-term treated paddy soils. NR and NP were significantly decreased (p < 0.05), whereas HMCs (Pb2+, Cu2+, Zn2+, and Fe3+) were a significantly increased (p < 0.05) in chemical fertilizer with pesticide treated paddy soils as compared with chemical fertilizer treated paddy soils. The scatter plot matrix indicated that total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), and Fe were linearly correlated with NR and NP in long-term treated paddy soils. ARGs and amoA genes were significantly decreased (p < 0.05) in chemical fertilizer and manure with pesticide treated paddy soils. Overall, the result indicated the response of pesticide and their combination of manure with pesticide interaction present in long-term paddy soils, which will play a great role in the control uses of pesticides, manure, and chemical fertilizers in paddy soils and protect the nitrogen cycle as well as environment.
Collapse
Affiliation(s)
- Rehena Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Muntaha Binte Mukhles
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Nazmul Huda
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Fahida Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Meherab Hossain Rafi
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
21
|
Su Y, Liu S, Dong Q, Zeng Y, Yang Y, Gao Q. Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119736. [PMID: 35810986 DOI: 10.1016/j.envpol.2022.119736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked.
Collapse
Affiliation(s)
- Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing, 102205, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Zhang Y, Zhou J, Wu J, Hua Q, Bao C. Distribution and transfer of antibiotic resistance genes in different soil-plant systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59159-59172. [PMID: 35381918 DOI: 10.1007/s11356-021-17465-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
The extensive application of farm manure that is contaminated with pharmaceutical antibiotics not only causes substantial soil pollution but additionally leads to the input of antibiotic resistance genes (ARGs) into the soil. These ARGs would proliferate and affect human health via the food chain. The effects of cultivated crops and wild plants on ARGs in rhizosphere soil are unclear. Therefore, we chose potted plants of cultivated crops (pakchoi, lettuce, corn) and wild plants (barnyard grass, crabgrass, dog tail), and set up test groups, i.e., treatment group, antibiotic-contaminated soil; control group, no antibiotic-contaminated soil; and a blank group without plants. The aim was to explore differences in the distribution and transfer of ARGs in the soil-plant system between cultivated crops and wild plants and at the same time to explore the influence of bacterial community evolution on ARGs in the rhizosphere soil of cultivated crops and wild plants. We concluded that under the pressure of antibiotic selection, ARGs can be transferred to the root endophytes of plants through the soil and further to the phyllosphere of plants, and cultivated crops such as pakchoi and wild plants barnyard grass have a strong ability to transport ARGs. Regardless of cultivated crops or wild plants, the abundance of ARGs in rhizosphere soil can be substantially reduced by 66.53 ~ 85.35%. Redundancy analysis and network analysis indicated that bacterial community succession is the main mechanism affecting changes of ARGs in rhizosphere soil. The reduction of Firmicutes due to the plant was the main factor responsible for the reduction of the abundance of ARGs in rhizosphere soil. The tetA, tetG, tetX, sul2, and qnrS genes are highly related to some potential pathogens, and the health risks they bring are a red flag that deserves attention.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Jie Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jian Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qianwen Hua
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Canxin Bao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
23
|
Qing L, Qigen D, Jian H, Hongjun W, Jingdu C. Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119368. [PMID: 35489540 DOI: 10.1016/j.envpol.2022.119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of organic rice cultivation areas have been accompanied by increased application of organic fertilizers. The high prevalence of soil antibiotic resistance caused by organic fertilizer application poses a severe threat to the agricultural and soil ecosystems. To date, research efforts and understanding of the effects and mechanism of action of the various organic fertilizers on antibiotic resistance in paddy soils remain poorly investigated. Tetracycline resistance genes (TRGs, including tetB, tetC, tetL, tetZ, tetM, tetO, tetT, and tetX), class 1 integron-integrase gene (intI1) and bacterial communities were characterized using quantitative-PCR and Illumina MiSeq sequencing, in paddy soils exposed to inorganic fertilizer (NPK), animal-derived organic fertilizer (AOF, composted swine and/or chicken manure), plant-derived organic fertilizer (POF, rapeseed cake and/or astragalus) and commercial organic fertilizer (COF, composted of animal manure mix with crop residues) applications. Compared with NPK, AOF applications significantly increased the relative abundance of TRGs, which was predominantly expressed in the increase of the relative abundance of tetC, tetM, tetO, tetT, and tetX, while POF and COF had no significant effect on the relative abundance of TRGs. Principal coordinate analysis revealed that AOF and POF significantly altered bacterial communities in paddy soils relative to NPK, while COF had no significant change of bacterial communities. Variation partitioning analysis indicated that soil physicochemical properties were the decisive factors for the changes of TRGs in organic paddy fields. Furthermore, redundancy analysis and the Mantel test showed that TRG profiles in AOF applied paddy soils were strongly influenced by electrical conductivity (EC). Total nitrogen (TN) and organic matter (OM) affected the distribution of TRGs in COF and POF applied paddy soils through a different mechanism. This study provides insights into the impacts of different types of organic fertilizer on the profiles of TRGs in paddy soils.
Collapse
Affiliation(s)
- Li Qing
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dai Qigen
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hu Jian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wu Hongjun
- Yangzhou Supervision & Inspection Center for Agri-products, Yangzhou, 225101, China
| | - Chen Jingdu
- Yangzhou Municipal Bureau of Agriculture and Rural Affairs, Yangzhou, 225000, China
| |
Collapse
|
24
|
Tetracycline-Resistant Genes in Escherichia coli from Clinical and Nonclinical Sources in Rivers State, Nigeria. Int J Microbiol 2022; 2022:9192424. [PMID: 35855811 PMCID: PMC9288291 DOI: 10.1155/2022/9192424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Monitoring the occurrence of tetracycline resistance and its determinants in both clinical and nonclinical settings is essential in understanding the role played by continuous usage of this drug in animal husbandry and the withdrawal of this drug from clinical practice. Limited information is available on this from our locale. This study, therefore, set out to explore the occurrence of specific tetracycline-resistant genes in Escherichia coli from clinical and nonclinical sources in Rivers State, Nigeria. Methods Two hundred clinical and nonclinical samples were analyzed for the presence of E. coli using standard phenotypic and genotypic tests. Susceptibility testing was carried out using the Kirby–Bauer disc diffusion method, and specific tetracycline-resistant genes (tetA, tetB, tetG, and tetM) were assayed. Results Results showed that stool samples had the highest occurrence of E. coli (39, 78%), and soil had the lowest (13, 26%). Tetracycline resistance was observed in 80.7% of total isolates. The tetA genes were the most commonly occurring (n = 80, 89.9%) detected in confirmed E. coli isolates, and tetG, the least commonly occurring (n = 16,18%) of isolates. The combined presence of tetA-tetM was the highest (n = 14, 15.7%), followed by tetA-tetB (n = 13, 14.8%). Conclusion The present study reports on the occurrence and distribution of four tetracycline-resistant determinants in E. coli from clinical and nonclinical sources in Rivers State, Nigeria. The high-level occurrence of the most commonly occurring tetracycline gene even in nonclinical isolates could be indicative of a potential reservoir of this resistance. And, this could limit the reintroduction of tetracycline even in combination therapy.
Collapse
|
25
|
Profile of Bacterial Community and Antibiotic Resistance Genes in Typical Vegetable Greenhouse Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137742. [PMID: 35805398 PMCID: PMC9265268 DOI: 10.3390/ijerph19137742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
The use of vegetable greenhouse production systems has increased rapidly because of the increasing demand for food materials. The vegetable greenhouse production industry is confronted with serious environmental problems, due to their high agrochemical inputs and intensive utilization. Besides this, antibiotic-resistant bacteria, carrying antibiotic-resistance genes (ARGs), may enter into a vegetable greenhouse with the application of animal manure. Bacterial communities and ARGs were investigated in two typical vegetable-greenhouse-using counties with long histories of vegetable cultivation. The results showed that Proteobacteria, Firmicutes, Acidobacteria, Chloroflexi, and Gemmatimonadetes were the dominant phyla, while aadA, tetL, sul1, and sul2 were the most common ARGs in greenhouse vegetable soil. Heatmap and principal coordinate analysis (PCoA) demonstrated that the differences between two counties were more significant than those among soils with different cultivation histories in the same county, suggesting that more effects on bacterial communities and ARGs were caused by soil type and manure type than by the accumulation of cultivation years. The positive correlation between the abundance of the intI gene with specific ARGs highlights the horizontal transfer potential of these ARGs. A total of 11 phyla were identified as the potential hosts of specific ARGs. Based on redundancy analysis (RDA), Ni and pH were the most potent factors determining the bacterial communities, and Cr was the top factor affecting the relative abundance of the ARGs. These results might be helpful in drawing more attention to the risk of manure recycling in the vegetable greenhouse, and further developing a strategy for practical manure application and sustainable production of vegetable greenhouses.
Collapse
|
26
|
Pellegrini MC, Okada E, González Pasayo RA, Ponce AG. Prevalence of Escherichia coli strains in horticultural farms from Argentina: antibiotic resistance, biofilm formation, and phylogenetic affiliation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23225-23236. [PMID: 34802078 DOI: 10.1007/s11356-021-17523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Escherichia coli is the bacteria most commonly used as an indicator of fecal contamination in agricultural environments. Moreover, E. coli is categorized as a priority pathogen due to its widespread antibiotic resistance. This study aimed to characterize E. coli strains isolated from 10 horticultural farms. Isolates were obtained from samples of vegetable crops (n = 62), the surrounding soil (n = 62), poultry litter (n = 8), and groundwater (n = 6). Phyllo-grouping assignment was performed on the total of E. coli isolates. Antibiograms and quantification of the minimal inhibitory concentration (MIC) were performed with antibiotics commonly used in humans. Biofilm formation capacity was studied by quantifying cells attached to culture tubes. Overall, 21 E. coli isolates were obtained. Three phylogenetic groups (A, B1, and C) and two Escherichia clade IV and IV-V were identified in the collection by polymerase chain reaction. Sixty-seven percent of the E. coli isolates were resistant to amoxicillin-clavulanic acid and/or ampicillin. Amoxicillin MIC values ranged from 11.9 to >190.5 µg/mL and ampicillin MIC values ranged from 3 to >190.5 µg/mL. All the E. coli isolates, resistant and non-resistant, had biofilm forming capacity. The presence of phenotypic resistance on fresh produce and environmental matrices could present significant opportunities for contamination that result in health risks for consumers. To the authors' best knowledge, this is the first environmental assessment of resistant E. coli occurrence in horticultural farms in South America.
Collapse
Affiliation(s)
- María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina.
| | - Elena Okada
- Instituto Nacional de Tecnología Agropecuaria (INTA) Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, 7620, Balcarce, Argentina
| | - Ramón Alejandro González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Graciela Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina
| |
Collapse
|
27
|
Li Y, Chen H, Wang Y, Yang Z, Zhang H. Efficient biodegradation of chlortetracycline in high concentration from strong-acidity pharmaceutical residue with degrading fungi. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127671. [PMID: 34799176 DOI: 10.1016/j.jhazmat.2021.127671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chlortetracycline (CTC) pharmaceutical residue with strong acidity and in high CTC concentration is a hazardous solid waste. There is a huge attention but few studies on whether and how the CTC raw residue (CRR) can be degraded in microbiological way. In this study, three self-screened fungi, LJ245, LJ302 and LJ318, were used and thoroughly investigated to remove CTC, strong acidity and biotoxicity in CRR. The result disclosed that the concentration of CTC decreased rapidly in the first seven days and declined slowly subsequently, and the decreasing curve was similar to "L" shape. the corresponding degradation ratios of three strains were 95.73%, 98.53% and 98.07%, respectively. Meanwhile, numerous intermediates in degradation appeared in early days and gradually reduced, and eventually disappeared once the degradation time was long enough, among which eleven intermediates from CTC were identified. Moreover, the strong acidity of CRR declined dramatically using this biological method along with the CTC being metabolized, the pH value increased from 2.30 to 8.32 in the first 7 days. The toxicity of CRR was significantly reduced by LJ302 with inhibition rate from 96.02% to no inhibition effect to Micrococcus luteus. Therefore, CTC, strong acidity and biotoxicity of CRR could be effectively removed simultaneously through a biodegradation process driven with proposed strains.
Collapse
Affiliation(s)
- Yanju Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Haibo Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Université Paris Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yuzhou Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengli Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiyan Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
28
|
Lan W, Yao C, Luo F, Jin Z, Lu S, Li J, Wang X, Hu X. Effects of Application of Pig Manure on the Accumulation of Heavy Metals in Rice. PLANTS 2022; 11:plants11020207. [PMID: 35050095 PMCID: PMC8777798 DOI: 10.3390/plants11020207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Pig manure (PM) is often highly enriched in heavy metals, such as Cu and Zn, due to the wide use of feed additives. To study the potential risks of heavy metal accumulation in the soil and rice grains by the application of PM and other organic manure, a four-year field experiment was conducted in the suburb of Shanghai, southeast China. The contents of Cu, Zn, Pb, and Cd in the soils and rice plants by the treatments of PM and fungal culturing residues (FCR) show a trend of annual increase. Those in the soils and rice by the PM treatment are raised even more significantly. Cu and Zn contents in the soil and rice roots by the PM are significantly higher than those by the non-fertilizer control (CK) during the four years, and Pb and Cd also significantly higher than CK in the latter two years. Heavy metals taken up by the rice plants are mostly retained in the roots. Cu and Zn contents in the rice plants are in the decreasing order of roots > grains > stems > leaves, and Pb and Cd in the order of roots > stems > leaves > grains. Cu, Zn, Pb, and Cd contents in the soils by the PM treatment increase by 73%, 32%, 106%, and 127% on annual average, and those in the brown rice by 104%, 98%, 275%, and 199%, respectively. The contents of Cu, Zn, Pb, and Cd in the brown rice of the treatments are significantly correlated with those in the soils and rice roots (p < 0.05), suggesting the heavy metals accumulated in the rice grains come from the application of PM and FCR. Though the contents of heavy metals in the brown rice during the four experimental years are still within the safe levels, the risks of their accumulative increments, especially by long-term application of PM, can never be neglected.
Collapse
Affiliation(s)
- Wenchong Lan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
| | - Chunxia Yao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), China Ministry of Agriculture, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (C.Y.); (X.H.)
| | - Fan Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
| | - Zhi Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
| | - Siwen Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
| | - Jun Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
| | - Xindong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
| | - Xuefeng Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (W.L.); (F.L.); (Z.J.); (S.L.); (J.L.); (X.W.)
- Correspondence: (C.Y.); (X.H.)
| |
Collapse
|
29
|
Nejidat A, Diaz-Reck D, Gelfand I, Zaady E. Persistence and spread of tetracycline resistance genes and microbial community variations in the soil of animal corrals in a semi-arid planted forest. FEMS Microbiol Ecol 2021; 97:6323997. [PMID: 34279614 DOI: 10.1093/femsec/fiab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/15/2021] [Indexed: 11/14/2022] Open
Abstract
At the spring, goat and sheep herds are transferred to planted forests, in a semi-arid region in the northern Negev Desert, Israel, to reduce herbaceous biomass and, fire risk. The herds are held overnight in corrals for about 4 months, enriching the soil with organic matter and nitrogen. This research examined the effect of these enrichments on soil bacterial community structure (BCS) and the abundance of tetracycline resistance genes (TRGs) in active and abandoned corrals (1-10-years-old). Based on 16S rRNA gene sequences, the Proteobacteria and Actinobacteria phyla dominated the soil of all corrals. The Actinobacteria were less abundant in the active and 1-year-old corrals (23-26%) than in the other corrals and the control (33-38%). A principal component analysis showed that, the BCS in the active and the 1-year-old abandoned corrals was significantly different from that in the older corrals and the control. The Firmicutes phylum constituted 28% of the BCS in the active corrals, 12.5% in the 1-year-old corrals and 2% in the older corrals and the control. In contrast, the Acidobacteria phylum was hardly detected in the active and 1-year-old abandoned corrals and constituted 10% of the BCS in the older corrals. Genes conferring resistance to tetracycline were detected in high numbers. The tetG and tetW genes were detected in the active and abandoned corrals (1-10 years). The tetQ gene was detected only in the active and 1-year-old abandoned corrals. None of the genes were detected in the control soil. The three genes were detected outside an active corral, in the downstream section of an ephemeral tributary. The results prove that abandoned and unobserved periodic animal corrals are an environmental reservoir for TRGs.
Collapse
Affiliation(s)
- Ali Nejidat
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Damiana Diaz-Reck
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-G urion 84990, Israel
| | - Ilya Gelfand
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Eli Zaady
- Department of Natural Resources, Gilat Research Center, Agriculture Research Organization, Mobile, Post Negev 8531100, Israel
| |
Collapse
|
30
|
Ahn Y, Jung JY, Kweon O, Veach BT, Khare S, Gokulan K, Piñeiro SA, Cerniglia CE. Impact of Chronic Tetracycline Exposure on Human Intestinal Microbiota in a Continuous Flow Bioreactor Model. Antibiotics (Basel) 2021; 10:antibiotics10080886. [PMID: 34438936 PMCID: PMC8388752 DOI: 10.3390/antibiotics10080886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Studying potential dietary exposure to antimicrobial drug residues via meat and dairy products is essential to ensure human health and consumer safety. When studying how antimicrobial residues in food impact the development of antimicrobial drug resistance and disrupt normal bacteria community structure in the intestine, there are diverse methodological challenges to overcome. In this study, traditional cultures and molecular analysis techniques were used to determine the effects of tetracycline at chronic subinhibitory exposure levels on human intestinal microbiota using an in vitro continuous flow bioreactor. Six bioreactor culture vessels containing human fecal suspensions were maintained at 37 °C for 7 days. After a steady state was achieved, the suspensions were dosed with 0, 0.015, 0.15, 1.5, 15, or 150 µg/mL tetracycline, respectively. Exposure to 150 µg/mL tetracycline resulted in a decrease of total anaerobic bacteria from 1.9 × 107 ± 0.3 × 107 down to 2 × 106 ± 0.8 × 106 CFU/mL. Dose-dependent effects of tetracycline were noted for perturbations of tetB and tetD gene expression and changes in acetate and propionate concentrations. Although no-observed-adverse-effect concentrations differed, depending on the traditional cultures and the molecular analysis techniques used, this in vitro continuous flow bioreactor study contributes to the knowledge base regarding the impact of chronic exposure of tetracycline on human intestinal microbiota.
Collapse
Affiliation(s)
- Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
- Correspondence: ; Tel.: +1-870-540-7084
| | - Ji Young Jung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Brian T. Veach
- Office of Regulatory Affairs, Arkansas Laboratory, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Silvia A. Piñeiro
- Division of Human Food Safety, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 72079, USA;
| | - Carl E. Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| |
Collapse
|
31
|
Shi Y, Zhang Y, Wu X, Zhang H, Yang M, Tian Z. Potential dissemination mechanism of the tetC gene in Aeromonas media from the aerobic biofilm reactor under oxytetracycline stresses. J Environ Sci (China) 2021; 105:90-99. [PMID: 34130843 DOI: 10.1016/j.jes.2020.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The tetC gene has been found to be one of the most widely distributed tetracycline resistance (tet) genes in various environmental niches, but the detailed dissemination mechanisms are still largely unknown. In the present study, 11 tetC-containing Aeromonas media strains were isolated from an aerobic biofilm reactor under oxytetracycline stresses, and the genome of one strain was sequenced using the PacBio RSII sequencing approach to reveal the genetic environment of tetC. The tetC gene was carried by an IS26 composite transposon, named Tn6434. The tetC-carrying Tn6434 structure was detected in all of the A. media strains either in a novel plasmid pAeme2 (n=9) or other DNA molecules (n=2) by PCR screening. The NCBI database searching result shows that this structure was also present in the plasmids or chromosomes of other 13 genera, indicating the transferability of Tn6434. Inverse PCR and sequencing confirmed that Tn6434 can form a circular intermediate and is able to incorporate into a preexisting IS26 element, suggesting that Tn6434 might be responsible for the dissemination of tetC between different DNA molecules. This study will be helpful in uncovering the spread mechanism of tet genes in water environments.
Collapse
Affiliation(s)
- Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
32
|
Peng S, Wang Y, Chen R, Lin X. Chicken Manure and Mushroom Residues Affect Soil Bacterial Community Structure but Not the Bacterial Resistome When Applied at the Same Rate of Nitrogen for 3 Years. Front Microbiol 2021; 12:618693. [PMID: 34093457 PMCID: PMC8177108 DOI: 10.3389/fmicb.2021.618693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/19/2021] [Indexed: 01/17/2023] Open
Abstract
Animal manure is a reservoir of antibiotic resistance genes (ARGs), and direct application of the manure will lead to spread of ARGs in farmland. Here, we explored the impacts of chicken manure and heat-treated chicken manure on the patterns of soil resistome after 3 years’ application, with mushroom residues set as the plant-derived organic manure treatment. A total of 262 ARG subtypes were detected in chicken manure using high-throughput qPCR, and heat treatment can effectively remove 50 types of ARGs. Although ARG subtypes and abundance were both higher in chicken manure, there was no significant difference in the ARG profiles and total ARG abundance among three manure-treated soils. Soil bacteria community compositions were significantly different among manure-treated soils, but they were not significantly correlated with soil ARG profiles. Fast expectation–maximization microbial source tracking (FEAST) was used for quantifying the contributions of the potential sources to microbial taxa and ARGs in manure-fertilized soil. Results revealed that only 0.2% of the chicken manure-derived bacterial communities survived in soil, and intrinsic ARGs were the largest contributor of soil ARGs (95.8–99.7%); ARGs from chicken manure only contributed 0.4%. The total ARG abundance in the heat-treated chicken manure-amended soils was similar to that in the mushroom residue-treated soils, while it was 1.41 times higher in chicken manure-treated soils. Thus, heat treatment of chicken manure may efficiently reduce ARGs introduced into soil and decrease the risk of dissemination of ARGs.
Collapse
Affiliation(s)
- Shuang Peng
- College of Environment and Ecology, Jiangsu Open University, Nanjing, China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Ruirui Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
33
|
Zhou C, Pan Y, Ge S, Coulon F, Yang Z. Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Tang X, Shen M, Zhang Y, Zhu D, Wang H, Zhao Y, Kang Y. The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. CHEMOSPHERE 2021; 266:128985. [PMID: 33228990 DOI: 10.1016/j.chemosphere.2020.128985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs.
Collapse
Affiliation(s)
- Xingyao Tang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Min Shen
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yanzhou Zhang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Dewei Zhu
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Huanli Wang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yongqiang Zhao
- Yancheng National Nature Reserve for Rare Birds, Yancheng, Jiangsu, PR China
| | - Yijun Kang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China.
| |
Collapse
|
35
|
Xu M, Wang F, Sheng H, Stedtfeld RD, Li Z, Hashsham SA, Jiang X, Tiedje JM. Does anaerobic condition play a more positive role in dissipation of antibiotic resistance genes in soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143737. [PMID: 33243511 DOI: 10.1016/j.scitotenv.2020.143737] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The persistence of antibiotic resistance genes (ARGs) under the aerobic vs. anaerobic conditions is unknown, especially under different fertilization. Towards this goal, a microcosm experiment was carried out with chemical fertilized and manured soil under aerobic and anaerobic conditions. High throughput qPCR was used to analyze ARGs with 144 primer sets and sequencing for microorganisms. Completely different dynamics of ARGs were observed in soil under aerobic and anaerobic conditions, regardless of the fertilization type. ARGs had different half-lives, even though they confer resistance to the same type of antibiotics. Aminoglycoside, chloramphenicol, macrolide - lincosamide - streptogramin B (MLSB) and tetracycline resistance genes were significantly accumulated in the aerobic soils. Anaerobic soil possessed a higher harboring capacity for exogenous microorganisms and ARGs than aerobic soil. The interaction between ARGs and mobile genetic elements (MGEs) in manured soil under aerobic condition was more pronounced than the anaerobic condition. These findings unveil that anaerobic soil could play a more positive role in reducing potential risk of ARGs in the farmland environment.
Collapse
Affiliation(s)
- Min Xu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA.
| | - Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Zhongpei Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| |
Collapse
|
36
|
Zhan L, Xia Z, Xu Z, Xie B. Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116312. [PMID: 33360583 DOI: 10.1016/j.envpol.2020.116312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are commonly used in livestock and poultry breeding along with organic arsenic. Through long-term accumulation, they can enter into the surrounding soil through various pathways and contaminate the soil. In this paper, tetracycline antibiotics (TCs) and roxarsone (ROX) contaminated soil were used as the representatives of the two kinds of veterinary drugs contaminated soil, respectively, to study the thermal desorption behavior and arsenic stabilization process. Different parameters like heating temperatures, heat duration, stabilizer type and dosage were optimized for effective removal of TCs and ROX. Furthermore, TCs and ROX removal path and ROX stabilization mechanism were explored. Results of the study showed that over 98% of tetracycline antibiotics and roxarsone were effectively removed at 300 °C for 60 min. The heat treatment process of TCs contaminated soil was controlled by the first-order kinetics. Based on the detection of degradation products and thermogravimetric analysis, the possible thermal degradation path of TCs and ROX was proposed. Addition of FeSO4.7H2O (10% by weight) as stabilizer during the heat treatment process yielded 96.7% stabilization rate. Through the analysis of arsenic fractions, valence and the characterization of soil samples collected after the heat treatment, mechanism of arsenic stabilization in ROX was explored. The results show that thermal treatment combined with chemical stabilization technology can not only degrade TCs and ROX efficiently and completely, but also convert organic arsenic into inorganic state, which is conducive to better stabilization, and finally achieve effective and safe remediation of this kind of contaminated soil.
Collapse
Affiliation(s)
- Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China; School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhiwen Xia
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China.
| | - Bing Xie
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
37
|
Guo H, Xue S, Nasir M, Gu J, Lv J. Impacts of cadmium addition on the alteration of microbial community and transport of antibiotic resistance genes in oxytetracycline contaminated soil. J Environ Sci (China) 2021; 99:51-58. [PMID: 33183716 DOI: 10.1016/j.jes.2020.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/11/2023]
Abstract
The large-scale development in livestock feed industry has increased the chances of antibiotics and heavy metals contamination in the soil. The fate of antibiotic resistance genes (ARGs) and microbial community in heavy metals and antibiotic contaminated soil is still unclear. In this study, we investigated the effect of cadmium (Cd) addition on the transport of ARGs, microbial community and human pathogenic bacteria in oxytetracycline (OTC) contaminated soil. Results showed that the addition of OTC significantly increased the abundance of ARGs and intI1 in the soil and lettuce tissues. The addition of Cd to OTC treated soil further increased the abundance and translocation of ARGs and intI1. Moreover, Cd promoted the transfer of potential human pathogenic bacteria (HPB) into lettuce tissues. Compared with O10 treatment, the addition of Cd decreased the concentration of OTC in soil and lettuce tissue, but slightly increased the fresh weight of lettuce tissues. Redundancy analysis indicated that bacterial community succession is a major factor in ARGs variation. Network analysis indicated that the main host bacteria of ARGs were mainly derived from Proteobacteria. Correlation analysis showed that intI1 was significantly correlated with tetG, tetC, sul1, sul2, ermX, and ermQ. Meanwhile, potential HPB (Clostridium, and Burkholderia) was significantly correlated with intI1 and eight ARGs (tetG, tetC, tetW, tetX, sul1, sul2, ermX, and ermQ.). The findings of this study suggest that the addition of heavy metals to agricultural fields must be considered in order to reduce the transfer of ARGs in the soil and crops.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shuhong Xue
- Power China Northwest Engineering Corporation Limited, Power Construction Corporation of China, Xian 710065, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
38
|
Miller DN, Jurgens ME, Durso LM, Schmidt AM. Simulated Winter Incubation of Soil With Swine Manure Differentially Affects Multiple Antimicrobial Resistance Elements. Front Microbiol 2020; 11:611912. [PMID: 33391241 PMCID: PMC7772212 DOI: 10.3389/fmicb.2020.611912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Gastrointestinal bacteria that harbor antibiotic resistance genes (ARG) become enriched with antibiotic use. Livestock manure application to cropland for soil fertility presents a concern that ARG and bacteria may proliferate and be transported in the environment. In the United States, manure applications typically occur during autumn with slow mineralization until spring planting season. A laboratory soil incubation study was conducted mimicking autumn swine manure application to soils with concentrations of selected ARG monitored during simulated 120-day winter incubation with multiple freeze-thaw events. Additionally, the effects of two soil moistures [10 and 30% water holding capacity (WHC)] and two manure treatments [raw versus hydrated lime alkaline stabilization (HLAS)] were assessed. Fourteen tetracycline resistance genes were evaluated; tet(D), tet(G), and tet(L) were detected in background soil while swine manure contained tet(A), tet(B), tet(C), tet(G), tet(M), tet(O), tet(Q), and tet(X). By day 120, the manure-borne tet(M) and tet(O) were still detected while tet(C), tet(D), tet(L), and tet(X) genes were detected less frequently. Other tet resistance genes were detected rarely, if at all. The sum of unique tet resistance genes among all treatments decreased during the incubation from an average of 8.9 to 3.8 unique tet resistance genes. Four resistance elements, intI1, blactx–m–32, sul(I), erm(B), and 16s rRNA genes were measured using quantitative PCR. ARG abundances relative to 16S abundance were initially greater in the raw manure compared to background soil (−1.53 to −3.92 log abundance in manure; −4.02 to <−6.7 log abundance in soil). In the mixed manure/soil, relative abundance of the four resistance elements decreased (0.87 to 1.94 log abundance) during the incubation largely because 16S rRNA genes increased by 1.21 log abundance. Throughout the incubation, the abundance of intI1, blactx–m–32, sul(I), and erm(B) per gram in soil amended with HLAS-treated manure was lower than in soil amended with raw manure. Under low initial soil moisture conditions, HLAS treatment reduced the abundance of intI1 and resulted in loss of blactx–m–32, sul(I), and erm(B)] compared to other treatment-moisture combinations. Although one might expect antibiotic resistance to be relatively unchanged after simulated winter manure application to soil, a variety of changes in diversity and relative abundance can be expected.
Collapse
Affiliation(s)
- Daniel N Miller
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE, United States
| | | | - Lisa M Durso
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE, United States
| | - Amy M Schmidt
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
39
|
Cao Y, Hu HW, Guo HG, Butterly C, Bai M, Zhang YS, Chen D, He JZ. Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. BIORESOURCE TECHNOLOGY 2020; 315:123841. [PMID: 32688250 DOI: 10.1016/j.biortech.2020.123841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) in animal manure are a great threat to human health. This study investigated the effects of lignite addition at three levels (5%, 10%, 15% w/w) on the profiles of ARGs and the bacterial communities during poultry litter composting. Lignite addition effectively promoted the removal of manure-borne ARGs. After 65 days of composting, the relative abundances of ARGs decreased by 8.9% in control (no lignite), and by 15.8%, 27.7% and 41.5% in 5%, 10% and 15% lignite treatments, respectively. Although the total mobile genetic elements were enriched after composting, the enrichment of the intI-1 gene was significantly lower in the 10% and 15% lignite treatments compared with control. Network analysis indicated that Actinobacteria and Firmicutes were potential bacterial hosts for ARGs. Redundancy analysis showed that bacterial community succession played a key role in the shifts of ARGs. Taken together, this study provides evidence that lignite as additives promoted the removal efficacy of ARGs during composting of poultry litter.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; JAAS Engineering Laboratory of Agricultural Waste Treatment and Recycling, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Hai-Gang Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Clayton Butterly
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mei Bai
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yu-Shu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Deli Chen
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, VIC 3010, Australia; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
40
|
Sun J, Jin L, He T, Wei Z, Liu X, Zhu L, Li X. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140001. [PMID: 32569910 DOI: 10.1016/j.scitotenv.2020.140001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 05/23/2023]
Abstract
As an important reservoir of intrinsic antimicrobial resistance, soil is subjected to increasing anthropogenic activities that creates sustained selection pressure for the prevalence of antibiotic resistance genes (ARGs), thus constituting an important environmental dissemination pathway to human exposure. This study investigated the levels and spatial distributions of three classes of ARGs in relation to a range of co-occurring chemical mixtures and soil properties at a regional scale of the Yangtze River Delta (YRD), China. The selected eight ARGs were all detected in 241 agricultural soil samples with relative abundances ranging from 1.01 × 10-7 to 2.31 × 10-1 normalized to the 16S rRNA gene. The sulII and tetG were the dominant ARGs with a mean relative abundance of 6.67 × 10-3 and 5.25 × 10-3, respectively. The ARGs were mainly present in agricultural soils alongside Taihu Lake and Shanghai municipality, the most agriculturally and economically vibrant area of the YRD region. Antibiotics, rather than other co-occurring pollutants and soil properties, remain to be the dominant correlate to the ARGs, suggesting their co-introduction into the soils via irrigation and manure application or the sustained selection pressure of antibiotics from these sources for the proliferation of ARGs in the soils. While the current dataset provided useful information to assess the ARGs pollution for mitigation, future studies are warranted to reveal the complete picture on the potential transfer of antimicrobial resistance from soil to agricultural produces to human consumption and associated health implications.
Collapse
Affiliation(s)
- Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xinyi Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
41
|
Li Y, Gong Y, Zhao H, Gu J, Wang Z, He X. Enhancement of chlortetracycline biodegradation with Trichoderma harzianum LJ245 and its spore-producing mutants using co-metabolism. Biodegradation 2020; 31:265-273. [PMID: 32949331 DOI: 10.1007/s10532-020-09908-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
Chlortetracycline (CTC) has been widely used in veterinary medicine in recent years, which has resulted in severe environmental issues due to its low degradation rate and high risk to induce antibiotic resistance bacteria and genes. In previous studies, CTC could be efficiently degraded by Trichoderma harzianum LJ245. Nevertheless, the strain itself suffers from relatively poor adaptability due to the limited number of spores produced. In this paper, ultraviolet (UV) mutagenesis was conducted on LJ245, and various mutants with high sporulation rate were generated to expand the environmental adaptability and enhance CTC degradation. An OmniLog-based method, where 95 types of carbon sources were applied, was first proposed to acquire the carbon metabolic profile of the strains. Several controlled experiments were performed to evaluate the impact of co-substrate metabolism on strain growth, CTC biodegradation, and metabolites biotoxicity removal. The result shows that produced mutants could significantly broaden the carbon metabolic profile and expand the environmental adaptability compared to the original LJ245, where the mutants obtained remarkable increase in total number of usable carbon sources. Meanwhile, as the sole carbon source, CTC could not be fully degraded by the strains. However, the use of co-metabolism could considerably enhance CTC degradation and completely remove CTC degradation products biotoxicity by all strains. Specifically, amino acids and carboxylic acids had the best performance on both strain growth and CTC degradation among all carbon source categories. The results can be applied to the biodegradation treatment of CTC in solid residue, waste water and other environments.
Collapse
Affiliation(s)
- Yanju Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yu Gong
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiying Zhao
- GE Digital, 19015 North Creek Parkway, Bothell, WA, 98011, USA
| | - Jingang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zinuo Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuli He
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
42
|
Zhou X, Wang J, Lu C, Liao Q, Gudda FO, Ling W. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. CHEMOSPHERE 2020; 255:127006. [PMID: 32417517 DOI: 10.1016/j.chemosphere.2020.127006] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 05/20/2023]
Abstract
The extensive use of antibiotics globally and their residues in the environment has become a serious concern. Intensive animal farming is considered to be a major contributor to the increased environmental burden of antibiotics. Although some antibiotic investigations have been advancing around the world, as an important agricultural country, the information on these pollutants in animal farms are very limited in China. Previous studies have explored few antibiotic residues in livestock farms, whereas information on some antibiotics has remained unknown. The current study analyzed residues of 32 common veterinary antibiotics in manure and manure-based fertilizers collected from Jiangsu Province, China. In most of the manure and fertilizer samples, sulfamethazine and tetracycline were present, with high concentration up to 5650 and 1920 μg·kg-1, respectively. These detected antibiotics have weak relationships with physicochemical properties. Ciprofloxacin, enrofloxacin, sulfamethazine, and sulfachlorpyridazine, hence pose a high potential risk to crops based on the toxicological data of organisms and plants in the soil environment. However, soil invertebrate, such as earthworms, Planococcus Citri. and Folsomia fimeraria., had low ecological risks. Our results showed the presence of antibiotics in livestock and poultry farms plus the potential risks to the soil ecosystem. Therefore, the findings can provide guidelines for monitoring antibiotic residues in agroecosystems, as well as insights into the associated ecological risks of using the two products.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qihang Liao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen 2020; 9:e1035. [PMID: 32710495 PMCID: PMC7520999 DOI: 10.1002/mbo3.1035] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture‐animal‐manure‐soil‐water‐plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic‐resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro‐ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro‐ecosystem; and possible ways to curtail the menace of antimicrobial resistance.
Collapse
Affiliation(s)
- Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
44
|
Zhang B, Wang M, Cai C, Wang P, Liu H. Assessing the effects of tylosin fermentation dregs as soil amendment on macrolide antibiotic resistance genes and microbial communities: Incubation study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:854-863. [PMID: 32648501 DOI: 10.1080/03601234.2020.1788337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tylosin fermentation dregs (TFDs) are biosolid waste of antibiotics tylosin production process which contain nutritious components and may be recycled as soil amendments. However, the specific ecological safety of TFDs from the perspective of bacterial resistance in soil microenvironment is not fully explored. In the present study, a series of replicated lab-scale work were performed using the simulated fertilization to gain insight into the potential environmental effects and risks of macrolide antibiotic resistance genes (ARGs) and the soil microbial communities composition via quantitative PCR and 16S rRNA sequencing following the TFDs land application as the soil amendments. The results showed that bio-processes might play an important role in the decomposition of tylosin which degraded above 90% after 20 days in soil. The application of TFDs might induce the development of antibiotic-resistant bacteria, change soil environment and reduce the microbial diversity. Though the abundances of macrolide ARGs exhibited a decreasing trend following the tylosin degradation, other components in TFDs may have a lasting impact on both macrolide ARGs abundance and soil bacterial communities. Thus, this study pointed out the fate of TFDs on soil ecological environment when directly applying into soil, and provide valuable scientific basis for TFDs management.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chen Cai
- School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
45
|
Zhao Y, Mao W, Pang L, Li R, Li S. Influence of Phragmites communis and Zizania aquatica on rhizosphere soil enzyme activity and bacterial community structure in a surface flow constructed wetland treating secondary domestic effluent in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26141-26152. [PMID: 32358746 DOI: 10.1007/s11356-020-08904-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The present study aims to investigate the effects of Phragmites communis and Zizania aquatica on rhizosphere soil enzyme activity and bacterial community structure in a surface flow constructed wetland (SFCW) for the treatment of domestic sewage from the Shanxi province of China. The basic physical and chemical properties of the soil, the contents of soil urease (UE), alkaline phosphatase (ALP), soil microbial biomass carbon and nitrogen (SMBC, SMBN), and bacterial community structure were measured in the Phragmites communis group (PG), Zizania aquatica group (ZG), and control group (CG), respectively. The results showed that (1) the contents of UE, ALP, SMBC, and SMBN in rhizosphere soil of PG were more than those of ZG; (2) the highest bacterial abundance and α-diversity appeared in PG, in which Gp6 was the most abundant bacterial genus in PG; (3) the main functions of the dominant bacteria Gp6 and Longilinea in PG were involved in metabolizing multiple carbohydrates and participating in the carbon cycle in the soil based on the clusters of orthologous groups pathway analysis data; (4) the bacterial community of PG was mainly affected by the positive correlation with arsenic, nickel, or SMBC via the redundancy analysis. Collectively, Phragmites communis is a recommended species for wastewater wetland treatment system in Shanxi province, and the special enzymes and dominant bacteria in plant rhizosphere soil had obvious functions of removing organic pollutants. Besides, the influences of environmental factors on rhizosphere bacteria and the combined effects of Phragmites communis and dominant bacteria in wetland wastewater treatment system should be taken seriously.
Collapse
Affiliation(s)
- Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wei Mao
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Lixin Pang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Suqing Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
46
|
Fang LX, Chen C, Cui CY, Li XP, Zhang Y, Liao XP, Sun J, Liu YH. Emerging High-Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X). Bioessays 2020; 42:e2000014. [PMID: 32567703 DOI: 10.1002/bies.202000014] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Antibiotic resistance in bacteria has become a great threat to global public health. Tigecycline is a next-generation tetracycline that is the final line of defense against severe infections by pan-drug-resistant bacterial pathogens. Unfortunately, this last-resort antibiotic has been challenged by the recent emergence of the mobile Tet(X) orthologs that can confer high-level tigecycline resistance. As it is reviewed here, these novel tetracycline destructases represent a growing threat to the next-generation tetracyclines, and a basic framework for understanding the molecular epidemiology and resistance mechanisms of them is presented. However, further large-scale epidemiological and functional studies are urgently needed to better understand the prevalence and dissemination of these newly discovered Tet(X) orthologs among Gram-negative bacteria in both human and veterinary medicine.
Collapse
Affiliation(s)
- Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
47
|
Wang L, Wang J, Wang J, Zhu L, Conkle JL, Yang R. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122334. [PMID: 32092657 DOI: 10.1016/j.jhazmat.2020.122334] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Composted livestock and poultry manure, which may contain antibiotic resistance genes (ARGs), is widely used as natural fertilizer in China. But the influence of soil types on ARGs is not well characterized, particularly at greenhouse sites with long-term manure application. We investigated the distribution of ARGs in the cinnamon, fluvo-aquic and saline-alkali soils in greenhouse of Yellow River Delta region, China. A total of 193 ARGs subtypes were detected, with multidrug and aminoglycoside resistance genes as the most universal ARGs subtypes. Soil types influenced the ARGs distribution, where higher levels of diversity and relative abundance of ARGs in the fluvo-aquic and saline-alkali soils compared with those in the cinnamon soils. Among abiotic factors, sand, pH and Zn contributed more to the pattern of ARGs in the cinnamon soils, whereas sand and Cd, clay and Pb contributed the most in the fluvo-aquic and saline-alkali soils respectively. Furthermore, positive correlations between the relative abundances of ARGs and mobile genetic elements (MGEs) in the fluvo-aquic soils, suggesting higher dissemination potential of ARGs in this type of soil. Overall, MGEs played a positive primary role in the ARGs distribution in greenhouse soil than heavy metal co-selection and soil physicochemical properties.
Collapse
Affiliation(s)
- Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States.
| | - Rui Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
48
|
Pu Q, Zhao LX, Li YT, Su JQ. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122267. [PMID: 32062545 DOI: 10.1016/j.jhazmat.2020.122267] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/21/2023]
Abstract
A large quantity of manure is applied in greenhouse vegetable production (GVP) soils, while manure fertilization often leads to the proliferation of antibiotic resistance genes (ARGs) in soils. However, comprehensive study on the effects of different types of manure on ARGs in GVP soils remains unknown, and the baseline level of ARGs in GVP soil is poorly quantified. This study conducted a comprehensive survey of ARGs in GVP soils using high-throughput quantitative PCR. We found elevated ARG diversity and absolute abundance in fertilized soil, whereas no significant difference in soil ARGs amended with different types of manure. Redundancy analysis indicated that the change of bacterial community compositions and environmental factors contributed partially to the shift in ARG profiles. Bipartite network analysis indicated that one ARG was detected in non-manured soils, while 50 ARGs and 4 mobile gene elements were exclusively detected in fertilized soils, suggesting introduction of ARGs from manure into soils largely explained the increased ARG diversity in fertilized soil. By comparison of ARG absolute abundance between manured and non-manured soil, we estimated the typical level of ARG absolute abundance in non-manured soil, which provided the first rough baseline level of ARGs to assess ARG contamination in GVP soils.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li-Xia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong-Tao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
49
|
Whole Genome Sequencing Analysis of Porcine Faecal Commensal Escherichia coli Carrying Class 1 Integrons from Sows and Their Offspring. Microorganisms 2020; 8:microorganisms8060843. [PMID: 32512857 PMCID: PMC7355456 DOI: 10.3390/microorganisms8060843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Intensive pig production systems often rely on the use of antimicrobials and heavy metal feed additives to maintain animal health and welfare. To gain insight into the carriage of antimicrobial resistance genes (ARGs) in the faecal flora of commercially reared healthy swine, we characterised the genome sequences of 117 porcine commensal E. coli that carried the class 1 integrase gene (intI1+). Isolates were sourced from 42 healthy sows and 126 of their offspring from a commercial breeding operation in Australia in 2017. intI1+ E. coli was detected in 28/42 (67%) sows and 90/126 (71%) piglets. Phylogroup A, particularly clonal complex 10, and phylogroup B1 featured prominently in the study collection. ST10, ST20, ST48 and ST361 were the dominant sequence types. Notably, 113/117 isolates (96%) carried three or more ARGs. Genes encoding resistance to -lactams, aminoglycosides, trimethoprim, sulphonamides, tetracyclines and heavy metals were dominant. ARGs encoding resistance to last-line agents, such as carbapenems and third generation cephalosporins, were not detected. IS26, an insertion sequence noted for its ability to capture and mobilise ARGs, was present in 108/117 (92%) intI1+ isolates, and it played a role in determining class 1 integron structure. Our data shows that healthy Australian pig faeces are an important reservoir of multidrug resistant E. coli that carry genes encoding resistance to multiple first-generation antibiotics and virulence-associated genes.
Collapse
|
50
|
Rahman MM, Nahar K, Ali MM, Sultana N, Karim MM, Adhikari UK, Rauf M, Azad MAK. Effect of Long-Term Pesticides and Chemical Fertilizers Application on the Microbial Community Specifically Anammox and Denitrifying Bacteria in Rice Field Soil of Jhenaidah and Kushtia District, Bangladesh. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:828-833. [PMID: 32385520 DOI: 10.1007/s00128-020-02870-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effect of long-term pesticides and chemical fertilizers application on the microbial communities specifically anammox and denitrification bacteria in rice field soils. The abundances of microbial communities (16S rDNA), anammox (hszB), and denitrification (narG, nirK, nirS, and nosZ) genes were quantified by q-PCR. 10 pesticides (5 insecticides, 3 fungicides and 2 herbicides) and chemical fertilizers urea, potassium, phosphate, DAP (di-ammonium phosphate), gypsum, and boric acid were used by local farmers. Nitrate, SOC (ammonia, soil organic carbon), N and C content significantly (p < 0.05) decreased in the rice field soils as compared to the upland soils. Abundance of 16S rDNA, hszB, narG, nirK, nirS, and nosZ genes significantly (p < 0.05) decreased in the rice field soils and positively correlated with chemical properties of soils. Our results provide useful information and further maintenance should be instilled to the potential of chemical and biological factors decreased in rice field soils.
Collapse
Affiliation(s)
- M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh.
| | - Kamrun Nahar
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Meraj Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Nasrin Sultana
- Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Md Abul Kalam Azad
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|