1
|
Carraro G, Tonderski K, Enrich-Prast A. Solid-liquid separation of digestate from biogas plants: A systematic review of the techniques' performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120585. [PMID: 38508011 DOI: 10.1016/j.jenvman.2024.120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Digestate processing is a strategy to improve the management of digestate from biogas plants. Solid-liquid separation is usually the primary step and can be followed by advanced treatments of the fractions. The knowledge about the performance of the separators and the quality of the fractions is scattered because of many available techniques and large variability in digestate characteristics. We performed a systematic review and found 175 observations of full-scale solid-liquid separation of digestate. We identified 4 separator groups, 4 digestate classes based on substrate, and distinguished whether chemical conditioners were used. We confirmed the hypothesis that the dominant substrate can affect the efficiency of the digestate separation. Furthermore, the results showed that centrifuges separated significantly more dry matter and total P than screw presses. Use of chemical conditioners in combination with a centrifuge lowered the dry matter concentration in the liquid fraction by 30%. Screw presses consumed 4.5 times less energy than centrifuges and delivered 3.3 tonne ammonium N in the liquid fraction and 0.3 tonne total P in the solid fraction using 1 MWh. The results can provide data for systems analyses of biogas solutions and can support practitioners when choosing among full-scale separator techniques depending on the digestate type. In a broader perspective, this work contributes to the continuous improvement of biogas plants operations and to their role as nutrients recovery sites.
Collapse
Affiliation(s)
- Giacomo Carraro
- Department of Thematic Studies, Environmental Change, Linköping University LiU, 58183, Linköping, Sweden; Biogas Solutions Research Center, Sweden.
| | - Karin Tonderski
- Department of Management and Engineering, Linköping University LiU, 58183, Linköping, Sweden; Biogas Solutions Research Center, Sweden
| | - Alex Enrich-Prast
- Department of Thematic Studies, Environmental Change, Linköping University LiU, 58183, Linköping, Sweden; Biogas Solutions Research Center, Sweden; Institute of Marine Science, Federal University of São Paolo, Santos, Brazil
| |
Collapse
|
2
|
Wang X, Zhou Z, Zijing L, Xia L, Song S, Meza JVG, Montes ML, Li J. Surge of native rare taxa in tailings soil induced by peat bacterial invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168596. [PMID: 37972774 DOI: 10.1016/j.scitotenv.2023.168596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The pivotal role of the native bacterial community in maintaining soil health, particularly in degraded tailings environments, is often overlooked. This study utilized peat, rich in microorganisms, to investigate its impact on soil function and native bacteria response in copper tailings-soil. Through 16S rRNA gene sequencing, changes in nutrient cycling, organic matter decomposition, and microbial activity were assessed post one-year peat remediation. Results from FEAST and cluster analysis revealed that peat-derived species disproportionately influenced tailings microbial community remediation, supported by the microbial invasion theory. Tailings responded positively to these species, with optimal function achieved at 5 % peat dosage. Peat biomarkers (Actinobacteriota, Bacteroida, Chloroflexi, and Firmicutes) played key roles in heavy metal removal and nutrition fixation. The Random Forest model and co-occurrence network highlighted contributions from native rare species (Dependentiae and Latescibacterota) activated by peat addition. These insights underscore the resilience of rare taxa and provide a foundation for soil health restoration in tailings areas. By emphasizing the importance of peat as a potential exogenous solution for activating indigenous microbial functions, these findings offer valuable insights for developing effective and sustainable remediation strategies in mining-affected regions.
Collapse
Affiliation(s)
- Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Lu Zijing
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China.
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - J Viridiana García Meza
- Instituto de Física, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P., San Luis Potosí 78290, Mexico
| | | | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China; Instituto de Física, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P., San Luis Potosí 78290, Mexico.
| |
Collapse
|
3
|
Kong F, Li Q, Yang Z, Chen Y. Does the application of biogas slurry reduce soil N 2O emissions and increase crop yield?-A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118339. [PMID: 37315456 DOI: 10.1016/j.jenvman.2023.118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
The use of organic fertilizer for agricultural production can reduce the use of chemical fertilizer (CF), reduce greenhouse gas emissions, and maintain crop production. However, biogas slurry (BS), a liquid with a high moisture content and a low C/N ratio, differs from commercial organic fertilizer and manure in terms of its impact on the soil N cycle. Replacing CF with BS needs to be reconsidered regarding soil nitrous oxide (N2O) emissions and crop production in terms of fertilization, agricultural land type, and soil characteristics. For this systematic review, the results of 92 published studies worldwide were collected. Based on the findings, the combined application of BS and CF can significantly increase soil total N (TN), microbial biomass N (MBN), and soil organic matter (SOM) levels. The Chaol and ACE index values of soil bacteria were increased by 13.58% and 18.53%, whereas those of soil fungi were decreased by 10.45% and 14.53%, respectively. At a replacement ratio (rr) ≤ 70%, crop yield was promoted by 2.20%-12.17%, and soil N2O emissions were reduced by 1.94%-21.81%. A small rr (≤30%) was more conducive to growth, and a moderate rr (30% < rr ≤ 70%) was more favorable for N2O emission reduction, especially in the dryland crop system. However, at rr = 100%, soil N2O emissions in neutral and alkaline dryland soil were increased by 28.56%-32.22%. The importance analysis of the influencing factors showed that the proportion of BS, the N application rate, and the temperature were the factors affecting soil N2O emissions. Our results provide a scientific basis for the safe use of BS in agricultural systems.
Collapse
Affiliation(s)
- Fanjing Kong
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Qing Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China
| | - Zhimin Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Prevention and Control in the Three Gorges Reservoir Area, Chongqing, 400716, China
| | - Yucheng Chen
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China.
| |
Collapse
|
4
|
Impacts of Biogas Slurry Fertilization on Arbuscular Mycorrhizal Fungal Communities in the Rhizospheric Soil of Poplar Plantations. J Fungi (Basel) 2022; 8:jof8121253. [PMID: 36547585 PMCID: PMC9782214 DOI: 10.3390/jof8121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The majority of terrestrial plants are symbiotic with arbuscular mycorrhizal fungi (AMF). Plants supply carbohydrates to microbes, whereas AMF provide plants with water and other necessary nutrients-most typically, phosphorus. Understanding the response of the AMF community structure to biogas slurry (BS) fertilization is of great significance for sustainable forest management. This study aimed to look into the effects of BS fertilization at different concentrations on AMF community structures in rhizospheric soil in poplar plantations. We found that different fertilization concentrations dramatically affected the diversity of AMF in the rhizospheric soil of the poplar plantations, and the treatment with a high BS concentration showed the highest Shannon diversity of AMF and OTU richness (Chao1). Further analyses revealed that Glomerales, as the predominant order, accounted for 36.2-42.7% of the AMF communities, and the relative abundance of Glomerales exhibited negligible changes with different BS fertilization concentrations, whereas the order Paraglomerales increased significantly in both the low- and high-concentration treatments in comparison with the control. Furthermore, the addition of BS drastically enhanced the relative abundance of the dominant genera, Glomus and Paraglomus. The application of BS could also distinguish the AMF community composition in the rhizospheric soil well. An RDA analysis indicated that the dominant genus Glomus was significantly positively correlated with nitrate reductase activity, while Paraglomus showed a significant positive correlation with available P. Overall, the findings suggest that adding BS fertilizer to poplar plantations can elevate the diversity of AMF communities in rhizospheric soil and the relative abundance of some critical genera that affect plant nutrient uptake.
Collapse
|
5
|
Shaffique S, Khan MA, Imran M, Kang SM, Park YS, Wani SH, Lee IJ. Research Progress in the Field of Microbial Mitigation of Drought Stress in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:870626. [PMID: 35665140 PMCID: PMC9161204 DOI: 10.3389/fpls.2022.870626] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 05/26/2023]
Abstract
Plants defend themselves against ecological stresses including drought. Therefore, they adopt various strategies to cope with stress, such as seepage and drought tolerance mechanisms, which allow plant development under drought conditions. There is evidence that microbes play a role in plant drought tolerance. In this study, we presented a review of the literature describing the initiation of drought tolerance mediated by plant inoculation with fungi, bacteria, viruses, and several bacterial elements, as well as the plant transduction pathways identified via archetypal functional or morphological annotations and contemporary "omics" technologies. Overall, microbial associations play a potential role in mediating plant protection responses to drought, which is an important factor for agricultural manufacturing systems that are affected by fluctuating climate.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhamad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhamad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yong-Sung Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops Khudwani, Sher-e-Kashmir University of Agriculture Sciences and Technology of Jammu, Srinagar, India
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
The Effects of Soil Application of Digestate Enriched with P, K, Mg and B on Yield and Processing Value of Sugar Beets. FERMENTATION 2021. [DOI: 10.3390/fermentation7040241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to find out if the supplementation of digestate, a by-product of the anaerobic digestion of sugar beet pulp, with phosphorus, potassium, magnesium and boron can improve digestate performance as a soil amendment. The materials of this study were: digestate and sugar beet roots (Beta vulgaris cv. Fighter). A field trial was carried out on sugar beet growth under soil application conditions of solid and liquid digestate fractions with or without supplementation with P, K, Mg and B. It was shown that the root yield obtained from the plots amended with digestate supplemented with P, K, Mg and B was higher compared to the yield of other treatments. Soil amendment with digestate supplemented with P, K, Mg and B affected quality parameters of sugar beet roots. An increase in the following parameters under the effects of enriched digestate application was found: sucrose content, dry residue, pomace content, inverted sugars, α-amino and amide nitrogen fractions, as well as sodium and potassium content. A reduction in the content of conductometric ash was noted but this difference was not proven. The enrichment of digestate with P, K, Mg and B resulted in the beneficial modification of beet roots’ processing parameters with the exception of the predicted content of sugar in molasses. In the case of the liquid fraction and its supplementation with P, K, Mg and B, six among eleven technological quality parameters were increased.
Collapse
|
7
|
Moure Abelenda A, Semple KT, Lag-Brotons AJ, Herbert BM, Aggidis G, Aiouache F. Kinetic study of the stabilization of an agro-industrial digestate by adding wood fly ash. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize. Processes (Basel) 2021. [DOI: 10.3390/pr9050765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the suitability of sugar beet pulp digestion by-products as soil amendments for maize grown for energy purposes. In a plot experiment, nitrogen fertilizer at a standard rate of 200 kg N ha−1 was applied as a control vs. treatment with solid and liquid digestate fractions. Digestate was obtained from a gasifier processing only sugar beet pulp. Following harvest, heating and calorific values were determined together with the yield and chemical composition of the maize cob and stover. It was found that soil amendment with crude (unseparated) digestate or its two fractions (separated into liquid and solid) produced higher yields of maize cobs and stover compared with the application of standard fertilizer. An analysis of the energy value of the maize plant revealed differences between the studied soil treatments. Cobs obtained from plots treated with the digestate showed higher calorific and heating values than those obtained from control plots; however, maize stover from control plots showed higher calorific and heating values compared with plants from other experimental plots. It can be concluded that by-products obtained from sugar beet pulp digestion can be alternatively used as a soil amendment for maize production in a crop rotation with sugar beet. Among studied amendments the solid fraction of the digestate was found to have the best performance.
Collapse
|
9
|
Tang Y, Luo L, Carswell A, Misselbrook T, Shen J, Han J. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143786. [PMID: 33223165 DOI: 10.1016/j.scitotenv.2020.143786] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Biogas slurry is widely used as a crop fertilizer due to its available nitrogen content. However, it remains unclear how biogas slurry application affects soil organic carbon (SOC) status and soil microbial community under typical agricultural systems. Here, under a wheat-rice field experiment, we examined the responses of SOC and soil bacterial and fungal communities to biogas slurry application, both with (BSS) and without (BS) straw return, relative to chemical nitrogen fertilizer with (CFS) and without (CF) straw return. The BS treatment significantly increased total organic carbon (TOC) at all soil depths (0-60 cm), compared to CF. Greater TOC occurred at 20-40 cm depth under BSS relative to all other treatments. However, straw return had no impact on soil TOC content under the CF and CFS treatments. Labile organic carbon (LOC) in the topsoil and recalcitrant organic carbon (ROC) at 20-60 cm depth was significantly greater under BS relative to CF. The bacterial class Gammaproteobacteria and family Hyphomicrobiaceae were found to be specifically abundant under biogas slurry application after one year of wheat-rice double cropping. Network analyses showed that the soil bacterial community under biogas slurry application was more complex than under chemical fertilizer application, while the opposite was true for the fungal community. Correlations between network modules and the SOC fractions indicated that biogas slurry application stimulated soil bacteria and fungi to participate in SOC cycling. The module functionality supports our speculation that soil microorganisms degraded the biogas slurry derived-ROC in the topsoil. Overall, we conclude that substitution of chemical fertilizer with biogas slurry can be beneficial for increasing SOC stocks and, in systems with straw return, enhancing straw decomposition.
Collapse
Affiliation(s)
- Yifan Tang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Sustainable Agriculture Sciences, North Wyke, Rothamsted Research, Okehampton EX20 2SB, UK
| | - Liming Luo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Alison Carswell
- Sustainable Agriculture Sciences, North Wyke, Rothamsted Research, Okehampton EX20 2SB, UK
| | - Tom Misselbrook
- Sustainable Agriculture Sciences, North Wyke, Rothamsted Research, Okehampton EX20 2SB, UK
| | - Jianhua Shen
- COFCO Meat (Jiangsu) Co., Ltd., Dongtai 224200, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Chen Z, Wang Q, Ma J, Zou P, Yu Q, Jiang L. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110453. [PMID: 32229326 DOI: 10.1016/j.ecoenv.2020.110453] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Anaerobically digested slurry (ADS) has been widely used as a liquid fertilizer in agroecosystems. However, there is scant information on the effects of successive ADS applications on heavy metals (HMs) accumulation and fungal community composition in paddy soils. In this study, we conducted a field experiment over 10 years to assess the changes in soil HMs and fungal community composition under the long-term application of ADS in a paddy field. The four treatments were (1) no fertilizer (CK); (2) mineral fertilizer and 270 kg N ha-1 from urea (MF); (3) 270 kg N ha-1 from ADS (ADS1); and (4) 540 kg N ha-1 from ADS (ADS2). The results revealed that ADS application improved paddy soil fertility compared to that under the MF treatment by increasing soil organic C (SOC), total N (TN) and available potassium (AK). Long-term application of ADS significantly increased soil total and available Zn (TZn and AZn) concentrations as compared to those under the MF treatment. However, there were no significant differences in the total and available Cu concentrations or the total Pb concentration between the ADS and MF treatments. Sequence analysis showed that application of ADS increased the fungal richness indexes (Chao1 and ACE) compared to MF treatment. Principal coordinate analysis (PCoA) showed that the soil fungal community compositions were significantly separated by high levels of ADS application. Long-term application of ADS increased the relative abundance of classes Sordariomycetes, Dothideomycetes and Agaricomycetes by 20.8-29.0%, 107.3-141.4% and 289.5-387.5%, respectively, but decreased that of Pezizomycetes by 14.0-33.0% compared to that under the MF treatment. At the genus level, compared to those under the MF treatment, the relative abundances of Pyrenochaetopsis and Myrothecium were significantly increased by the application of ADS, but those of Mrakia and Tetracladium were significantly decreased. Redundancy analysis (RDA) revealed that SOC, AZn and AP were the three most important factors affecting the fungal community composition of the paddy soil. Our findings suggested that fungal community composition could be affected by changes in the chemical properties and heavy metal contents of paddy soil under high application of ADS in the long term.
Collapse
Affiliation(s)
- Zhaoming Chen
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiang Wang
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junwei Ma
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ping Zou
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiaogang Yu
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lina Jiang
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
11
|
Zheng X, Shi T, Song W, Xu L, Dong J. Biochar of distillers' grains anaerobic digestion residue: Influence of pyrolysis conditions on its characteristics and ammonium adsorptive optimization. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:86-97. [PMID: 31849274 DOI: 10.1177/0734242x19893021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To promote the sustainable development of the liquor/ethanol industry and environment protection, alternative ways to dispose of anaerobic digestion residue (ADR) are urgently required. This research aims at studying the effects of different residence times (RTs) (30, 60 and 120 min) and heating rates (HR) (2.5, 5.0 and 10.0°C min-1) under 700°C on characteristics of ADR biochar as well as the optimization of ammonium (NH4+) adsorption. Results showed that, with the increasing RT and HR, the aromaticity as well as the content of fixed carbon and elemental carbon of ADR biochar increased, but the pyrolysis yield, volatile matter content, elemental hydrogen, oxygen and polarity decreased. Biochar prepared at 60 min and 5.0°C min-1 under 700°C presented the best development of orderly and honeycomb shape structures, highest specific surface area and maximal amount of NH4+ adsorption (3.15 mg N g-1). The multilayer heterogeneous adsorption process dominated the NH4+ adsorption behaviour. And the maximal amount of NH4+ adsorption was achieved with 4 g biochar L-1 at pH 11.0 along with the order of the competitive effect of K+ > Na+ > Ca2+ > Mg2+. Furthermore, NH4+ adsorption was exothermic. Thus, the present study demonstrated that ADR biochar has potential to adsorb NH4+ from NH4+ polluted water to meet environmental standards.
Collapse
Affiliation(s)
- Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ting Shi
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lei Xu
- College of Environmental Science and Tourism, Nanyang Normal University, Nanyang, China
| | - Jianxin Dong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
12
|
Wang S, Zhang L, Jiang M, Wang J, Xia F, Shi L, Xia Y, Chen C, Shen Z, Chen Y. Cyclic and safety utilisation of Cu polluted biogas residue in saline-alkali soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135410. [PMID: 31791757 DOI: 10.1016/j.scitotenv.2019.135410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The proper disposal of copper (Cu) polluted plant residues after phytoremediation has attracted extensive attention. In this study, the Cu-polluted biogas residue produced through anaerobic digestion was applied directly. Wheat, soybean and pakchoi were grown in pots for four seasons over two years. The application dosage of Cu-polluted biogas residue was evaluated by measuring growth conditions of crops, Cu content in edible parts, and amelioration of saline-alkali soil. The results showed that the biomass of the crops, the content of soil organic matter, total N and available P and microbial diversity can be improved, and the Cu concentration of the edible parts was all lower than limit standard. Amendment with 2% biogas residue enhanced the growth of beneficial bacteria and fungi, and decreased the relative abundances of potentially pathogenic fungi in the saline-alkali soil. The results of this study provide a basis for the safe utilisation of copper-polluted plant residues.
Collapse
Affiliation(s)
- Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingli Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fuzhen Xia
- National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China; The Collaborated Lab. of Plant Molecular Ecology (between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Wolters B, Jacquiod S, Sørensen SJ, Widyasari-Mehta A, Bech TB, Kreuzig R, Smalla K. Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS Microbiol Ecol 2018; 94:4867966. [DOI: 10.1093/femsec/fiy027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11–12, 38104 Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Arum Widyasari-Mehta
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Tina B Bech
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11–12, 38104 Braunschweig, Germany
| |
Collapse
|
14
|
Leinweber P, Bathmann U, Buczko U, Douhaire C, Eichler-Löbermann B, Frossard E, Ekardt F, Jarvie H, Krämer I, Kabbe C, Lennartz B, Mellander PE, Nausch G, Ohtake H, Tränckner J. Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P. AMBIO 2018; 47:3-19. [PMID: 29159449 PMCID: PMC5722737 DOI: 10.1007/s13280-017-0968-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.
Collapse
Affiliation(s)
- Peter Leinweber
- Department of Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
| | - Ulrich Bathmann
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Uwe Buczko
- Landscape Ecology and Site Evaluation, University of Rostock, 18059 Rostock, Germany
| | - Caroline Douhaire
- Forschungsstelle Nachhaltigkeit und Klimapolitik, Könneritzstraße 41, 04229 Leipzig, Germany
| | - Bettina Eichler-Löbermann
- Department of Crop Production, Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
| | - Emmanuel Frossard
- ETH Zurich, Research Station in Plant Sciences, Eschikon, 8315 Lindau, Switzerland
| | - Felix Ekardt
- Forschungsstelle Nachhaltigkeit und Klimapolitik, Könneritzstraße 41, 04229 Leipzig, Germany
| | - Helen Jarvie
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire OX10 8BB UK
| | - Inga Krämer
- Leibniz Science Campus Phosphorus Research Rostock c/o, Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, 18119 Rostock, Germany
| | - Christian Kabbe
- P-REX Environment, Am Goldmannpark 43, 12587 Berlin, Germany
| | - Bernd Lennartz
- Department of Soil Physics, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justusvon-Liebig Weg 6, 18059 Rostock, Germany
| | - Per-Erik Mellander
- Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle Environmental Research Centre, Johnstown Castle, Co. Wexford Ireland
| | - Günther Nausch
- Baltic Sea Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, 18109 Rostock, Germany
| | - Hisao Ohtake
- Phosphorus Atlas Research Institute, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo, 162-0056 Japan
| | - Jens Tränckner
- Water Management, Faculty of Agricultural and Environmental Sciences, Satower Strasse 48, 18059 Rostock, Germany
| |
Collapse
|