1
|
Goyal A, Lemaoui T, Darwish AS, Banat F, Arafat HA, Hasan SW, AlNashef IM. Hydrophobic eutectic solvents functionalized graphene oxide nanocomposites: An engineered solution for antibiotic remediation. J Colloid Interface Sci 2025; 692:137517. [PMID: 40209430 DOI: 10.1016/j.jcis.2025.137517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/16/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Antibiotic contamination in aquatic environments threatens public health and ecological balance. This study introduces a novel nanocomposite by impregnating graphene oxide (GO) with a hydrophobic deep eutectic solvent (HDES). The novel nanocomposite was used to remove meropenem (MEM) antibiotic from aqueous solutions effectively. Ten natural HDESs were screened, and thymol:levulinic acid-impregnated GO nanocomposite GO@Thy:LevA (1:3) was the best-performing adsorbent. The successful integration of HDES into GO nanocomposite was confirmed using several characterization techniques, including X-ray diffractometer (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), total organic carbon analysis (TOC), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and and X-ray photoelectron spectroscopy (XPS). The adsorption performance of the synthesized nanocomposite adsorbents was evaluated under optimized conditions (C0 = 160 mg/L, pH = 7, mixing time = 120 min, adsorbent = 10 mg, stirring = 300 rpm, volume = 10 mL), with pristine GO and GO@Thy:LevA (1:3) nanocomposite exhibiting remarkable adsorption capacities of 63.50 mg/g and 91.51 mg/g, respectively. Kinetic studies showed that the adsorption process followed a pseudo-first-order model, whereas thermodynamic analysis confirmed the endothermic and spontaneous nature of the adsorption process. Advanced statistical physics models, particularly the monolayer model with two energies (M2), have provided new insights into the adsorption mechanism at the molecular level. Density functional theory (DFT) calculations and conductor-like screening model for real solvents (COSMO-RS) studies further elucidated the adsorbent-adsorbate interactions, with theoretical predictions corroborating experimental findings. The reusability of the adsorbents over five cycles was demonstrated, highlighting their potential for practical applications.
Collapse
Affiliation(s)
- Anjali Goyal
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tarek Lemaoui
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmad S Darwish
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Inas M AlNashef
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
3
|
Yang R, Sha Y, Sun Z, Yang B, Solangi F. Role of Microbial Communities and Their Functional Gene in Anammox Process for Biodegradation of Bisphenol A and S in Pharmaceutical Wastewater. TOXICS 2025; 13:252. [PMID: 40278568 PMCID: PMC12031610 DOI: 10.3390/toxics13040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Substantial amounts of nitrogenous (N) compounds, as well as bisphenol A (BPA) and bisphenol S (BPS), contribute to the impurities of pharmaceutical contamination (PC) in wastewater, which have detrimental effects on the environment, humans, and aquaculture. The anammox processes is primarily used to treat wastewater contamination, in which certain microbial communities play a crucial role. In this regard, the present study focuses on microbial communities and the functional genes involved in the anammox process. Further, the current study highlights the secondary (biological) and tertiary (advanced) methods; these techniques are more effective solutions for PC treatment. Anammox bacteria are the primary drivers of the wastewater's ammonium and nitrite removal process. However, overall, 25 anammox species have been recognized between five important genera, including Anammoxoglobus, Anammoximicrobium, Brocadia, Kuenenia, and Jettenia, which are mainly found in activated sludge and marine environments. The group of bacteria called anammox has genes that encode enzymes such as hydrazine synthase (HZS), hydrazine dehydrogenase (HDH), nitrite oxidoreductase reductase (NIR), hydroxylamine oxidoreductase (HAO), and ammonium monooxygenase (AMO). The anammox process is responsible for developing about 30% to 70% N gases worldwide, making it a critical component of the nitrogen cycle as well. Therefore, this review paper also investigates the pathways of hydrazine, an intermediate in the anammox process, and discusses the potential way to significantly decrease the N-compound contamination from wastewater systems and the environmental effects of determined organic contaminants of BPA and BPS.
Collapse
Affiliation(s)
- Ruili Yang
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Yonghao Sha
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Zhuqiu Sun
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Bairen Yang
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Farheen Solangi
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
4
|
Taghizadeh F, Zabihi M. Remarkable simultaneous degradation of cephalexin and amoxicillin employing magnetic nano-catalyst supported on bentonite by heterogeneous photo-Fenton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9785-9808. [PMID: 40153124 DOI: 10.1007/s11356-025-36296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/14/2025] [Indexed: 03/30/2025]
Abstract
In the present study, the heterogeneous catalysts were synthesized using a facile, economical and environmentally friendly method supported on the natural mineral bentonite to degrade amoxicillin (AMX) and cephalexin (CLX) in the aqueous solutions by employing the photo-Fenton process. The characterization tests including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDAX), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and vibrating sample magnetometer (VSM) were evaluated to distinguish the physical and chemical properties of the nanocomposites. The adsorption capacity and catalytic performance of the prepared samples for the removal of AMX were investigated in order to compare the presented catalysts, in addition to the structural analysis. Among the fabricated samples, the magnetic nano-catalyst derived from two different sources of iron (ferrous sulfate and ferric nitrate) named FSF-Be was selected as the appropriate catalyst due to its high efficiency for the simultaneous degradation of CLX and AMX. Response surface method (RSM-central composite design (CCD)) was also applied to determine the effect of the operating conditions encompassing pH, initial concentration of contaminants, dosage of catalyst and hydrogen peroxide concentration for the degradation of CLX and AMX, simultaneously. The quadratic mathematical models were developed with high correlation coefficient (0.9454 and 0.9564) for the removal efficiency of AMX and CLX, respectively. Therefore, the maximum degradation efficiency of CLX and AMX was obtained to be about 96.36% and 81.61%, respectively, at the optimal conditions (pH of 3, H2O2 concentration of 12 mM, catalyst dosage of 0.24 g/L and initial concentration of 23 mg/L) in half hour. The ozonation and the combined photo-Fenton/ozone process were investigated. The mineralization analysis illustrated that the photo-Fenton process was able to remove TOC by 73.35%, while only 2.44% of TOC removal was reached by ozonation. The degradation efficiency of CLX and AMX in the photo-Fenton/ozone system within 15 min of reaction was measured as 87.69% and 70.02%, respectively, and 61.9% mineralization was achieved in this system. However, the results showed that the photo-Fenton using FSF-Be was more efficient. The regeneration and reusability of the prepared nanocomposite was also carried out by five consecutive cycles which showed an acceptable performance in the industrial applications. The achievements demonstrated that the removal efficiency of CLX and AMX decreased about 24 and 18% after fifth cycle.
Collapse
Affiliation(s)
- Fereshteh Taghizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, P.O. Box 51335-1996, Tabriz, Iran
| | - Mohammad Zabihi
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
5
|
Demaria F, Suleiman M, Corvini P, Junier P. Microbes as Resources to Remove PPCPs and Improve Water Quality. Microb Biotechnol 2025; 18:e70084. [PMID: 39869488 PMCID: PMC11771509 DOI: 10.1111/1751-7915.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025] Open
Abstract
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption. To mitigate these risks, there is a growing interest in exploiting microorganisms and their enzymes for bioremediation purposes. By harnessing the metabolic capabilities of microbial communities, PPCPs can be efficiently degraded, transformed, or sequestered in water systems. Additionally, microbial communities exhibit remarkable adaptability and resilience to diverse PPCP contaminants, further underscoring their potential as sustainable and cost-effective solutions for water treatment. This review explores the promise of microbial bioremediation as an approach to addressing the complex challenges posed by persistent PPCP contamination, emphasising its potential to safeguard both environmental integrity and human well-being.
Collapse
Affiliation(s)
- Francesca Demaria
- Institute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts NorthwesternMuttenzSwitzerland
| | - Marcel Suleiman
- Institute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts NorthwesternMuttenzSwitzerland
| | - Philippe Corvini
- Institute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts NorthwesternMuttenzSwitzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of BiologyUniversity of NeuchatelNeuchatelSwitzerland
| |
Collapse
|
6
|
Fan P, Paugam L, Biard PF, Szymczyk A. Mechanistic study of micropollutants rejection by nanofiltration of a natural water. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39737918 DOI: 10.1080/09593330.2024.2439137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.
Collapse
Affiliation(s)
- Penglin Fan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Lydie Paugam
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Pierre-François Biard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Anthony Szymczyk
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| |
Collapse
|
7
|
Shin Y, Hwang TM, Nam SH, Kim E, Park J, Choi YJ, Kye H, Koo JW. Evaluating Nanofiltration and Reverse Osmosis Membranes for Pharmaceutically Active Compounds Removal: A Solution Diffusion Model Approach. MEMBRANES 2024; 14:250. [PMID: 39728700 DOI: 10.3390/membranes14120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Trace organic contaminants (TrOCs), including pharmaceutically active compounds (PhACs), present significant challenges for conventional water treatment processes and pose potential risks to environmental and human health. To address these issues, nanofiltration (NF) and reverse osmosis (RO) membrane technologies have gained attention. This study aims to evaluate the performance of NF and RO membranes in removing TrOCs from wastewater and develop a predictive model using the Solution Diffusion Model. Experiments were conducted using a stirred cell setup at various target concentrations, stirring speeds, and operating pressures, with acetaminophen and caffeine selected as representative pharmaceutical compounds. The results demonstrated that most of the pharmaceutical compounds were effectively removed, showing excellent performance. NF membranes exhibited high permeate flux with somewhat lower removal efficiency (average 84.17%), while RO membranes demonstrated high removal efficiency (average 99.21%), highlighting their importance in trace pharmaceutical treatment. The predictive model based on the solution diffusion model correlated well with the experimental data, suggesting its potential utility for large-scale system applications. This study confirms that NF and RO membranes are effective technologies for the removal of TrOCs from wastewater, offering a promising solution to the challenges posed by trace pharmaceutical contaminants.
Collapse
Affiliation(s)
- Yonghyun Shin
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
| | - Tae-Mun Hwang
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
| | - Sook-Hyun Nam
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
| | - Eunju Kim
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
| | - JeongBeen Park
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
- Civil and Environmental Engineering, Korea University of Science & Technology, 217 Gajung-to Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yong-Jun Choi
- Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Homin Kye
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
| | - Jae-Wuk Koo
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsan-gu, Goyang-si 10223, Republic of Korea
| |
Collapse
|
8
|
Trommetter G, Khaska S, Le Gal La Salle C, Brosillon S, Goetz V, Plantard G, Mendret J. Removal of 39 contaminants of emerging concern found in wastewater effluent by coupling nanofiltration and infiltration into saturated soil column. CHEMOSPHERE 2024; 363:142705. [PMID: 38945224 DOI: 10.1016/j.chemosphere.2024.142705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Guillaume Trommetter
- Institut Européen des Membranes, Université de Montpellier 2, ENSCM, CNR UMR 5635, 300 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Somar Khaska
- Unité Propre de Recherche sur les Risques Chroniques Emergents (CHROME), Université de Nîmes, Nîmes, 30021, Cedex 1, France
| | - Corinne Le Gal La Salle
- Unité Propre de Recherche sur les Risques Chroniques Emergents (CHROME), Université de Nîmes, Nîmes, 30021, Cedex 1, France
| | - Stephan Brosillon
- Institut Européen des Membranes, Université de Montpellier 2, ENSCM, CNR UMR 5635, 300 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Vincent Goetz
- Laboratoire PROcédés, Matériaux et Energie Solaire, PROMES-CNRS UPR8521, Rambla de la Thermodynamique, Tecnosud, 66100, Perpignan, France
| | - Gaël Plantard
- Laboratoire PROcédés, Matériaux et Energie Solaire, PROMES-CNRS UPR8521, Rambla de la Thermodynamique, Tecnosud, 66100, Perpignan, France
| | - Julie Mendret
- Institut Européen des Membranes, Université de Montpellier 2, ENSCM, CNR UMR 5635, 300 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France.
| |
Collapse
|
9
|
Xu R, Zhang Z, Deng C, Nie C, Wang L, Shi W, Lyu T, Yang Q. Micropollutant rejection by nanofiltration membranes: A mini review dedicated to the critical factors and modelling prediction. ENVIRONMENTAL RESEARCH 2024; 244:117935. [PMID: 38103781 DOI: 10.1016/j.envres.2023.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nanofiltration (NF) membranes, extensively used in advanced wastewater treatment, have broad application prospects for the removal of emerging trace organic micropollutants (MPs). The treatment performance is affected by several factors, such as the properties of NF membranes, characteristics of target MPs, and operating conditions of the NF system concerning MP rejection. However, quantitative studies on different contributors in this context are limited. To fill the knowledge gap, this study aims to assess critical impact factors controlling MP rejection and develop a feasible model for MP removal prediction. The mini-review firstly summarized membrane pore size, membrane zeta potential, and the normalized molecular size (λ = rs/rp), showeing better individual relationships with MP rejection by NF membranes. The Lindeman-Merenda-Gold model was used to quantitatively assess the relative importance of all summarized impact factors. The results showed that membrane pore size and operating pressure were the high impact factors with the highest relative contribution rates to MP rejection of 32.11% and 25.57%, respectively. Moderate impact factors included membrane zeta potential, solution pH, and molecular radius with relative contribution rates of 10.15%, 8.17%, and 7.83%, respectively. The remaining low impact factors, including MP charge, molecular weight, logKow, pKa and crossflow rate, comprised all the remaining contribution rates of 16.19% through the model calculation. Furthermore, based on the results and data availabilities from references, the machine learning-based random forest regression model was trained with a relatively low root mean squared error and mean absolute error of 12.22% and 6.92%, respectively. The developed model was then successfully applied to predict MPs' rejections by NF membranes. These findings provide valuable insights that can be applied in the future to optimize NF membrane designs, operation, and prediction in terms of removing micropollutants.
Collapse
Affiliation(s)
- Rui Xu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing, 100012, China
| | - Zeqian Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenning Deng
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chong Nie
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing, 100012, China
| | - Lijing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqing Shi
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, United Kingdom.
| | - Queping Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing, 100012, China.
| |
Collapse
|
10
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
11
|
Nguyen MK, Lin C, Nguyen HL, Hung NTQ, La DD, Nguyen XH, Chang SW, Chung WJ, Nguyen DD. Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165323. [PMID: 37422238 DOI: 10.1016/j.scitotenv.2023.165323] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
12
|
He W, Jiang R, Li S, Zhang M, Zhang T, Zhu X, Wang X. Biodegradation mechanism of chlortetracycline by a novel fungal Aspergillus sp. LS-1. CHEMOSPHERE 2023; 340:139792. [PMID: 37579822 DOI: 10.1016/j.chemosphere.2023.139792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Chlortetracycline (CTC), a widely used typical tetracycline antibiotic, has raised increasing concerns due to its potential health and environmental risks. Biodegradation is considered an effective method to reduce CTC in environment. In this study, a strain Aspergillus sp. LS-1, which can efficiently degrade CTC, was isolated from CTC-rich activated sludge. Under optimal conditions, the maximum removal efficiency of CTC could reach 95.41%. Temperature was the most significant factor affecting the degradation efficiency of LS-1. The 19 products were identified in the CTC degradation by strain LS-1, and three degradation pathways were proposed. All the degradation pathways for CTC exhibited ring-cleaving, which may accelerate the mineralization of CTC. To gain more comprehensive insights into this strain, we obtained the genome of LS-1, which had high GC content (50.1%) and completeness (99.3%). The gene annotation revealed that LS-1 contains some vital enzymes and resistance genes that may carry functional genes involved in the CTC degradation. In addition, other antibiotic resistance genes were found in the genome of LS-1, indicating that LS-1 has the potential to degrade other antibiotics. This study provides a more theoretical basis for the investigation of CTC degradation by fungi and new insights into the biodegradation of CTC.
Collapse
Affiliation(s)
- Wenshan He
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Run Jiang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siqi Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry,Beijing Technology and Business University,Beijing 100048,China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Dolar D, Ćurić I, Ašperger D. Removal, Adsorption, and Cleaning of Pharmaceutical on Polyamide RO and NF Membranes. Polymers (Basel) 2023; 15:2745. [PMID: 37376394 DOI: 10.3390/polym15122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmaceuticals are present in various waters and can be almost completely rejected by membrane separation processes, i.e., nanofiltration (NF) and reverse osmosis (RO). Nevertheless, the adsorption of pharmaceuticals can decrease their rejection, so adsorption can be considered a very important removal mechanism. In order to increase the lifetime of the membranes, the adsorbed pharmaceuticals must be cleaned from the membrane. The used pharmaceutical (albendazole), the most common anthelmintic for threatening worms, has been shown to adsorb to the membrane (solute-membrane adsorption). In this paper, which is a novelty, commercially available cleaning reagents, NaOH/EDTA solution, and methanol (20%, 50%, and ≥99.6%) were used for pharmaceutical cleaning (desorption) of the NF/RO membranes used. The effectiveness of the cleaning was verified by Fourier-transform infrared spectra of the membranes. Of all the chemical cleaning reagents used, pure methanol was the only cleaning reagent that removed albendazole from the membranes.
Collapse
Affiliation(s)
- Davor Dolar
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Iva Ćurić
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Danijela Ašperger
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
14
|
Zhou Z, Yan Y, Li X, Zeng F, Shao S. Effect of urea-based chemical cleaning on TrOCs rejection by nanofiltration membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
16
|
Liu Y, Ji X, Wang Y, Zhang Y, Zhang Y, Li W, Yuan J, Ma D, Sun H, Duan J. A Stable Fe-Zn Modified Sludge-Derived Biochar for Diuron Removal: Kinetics, Isotherms, Mechanism, and Practical Research. Molecules 2023; 28:molecules28062868. [PMID: 36985840 PMCID: PMC10058066 DOI: 10.3390/molecules28062868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar (SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption mechanisms as well as practical applications of SDMBC600 were also investigated and examined. The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption performance (8.88-12.9 mg/g) under wide water quality conditions, in the pH of 2-10 and with the presence of humic acid and six typical metallic ions of 0-20 mg/L. The adsorption mechanisms of SDMBC600 for diuron were found to include surface complexation, π-π binding, hydrogen bonding, as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600 could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore, SDMBC600 could have a promising application for diuron removal in water treatment.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiang Yuan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dong Ma
- Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
17
|
Rutten SB, Junker MA, Leal LH, de Vos WM, Lammertink RG, de Grooth J. Influence of dominant salts on the removal of trace micropollutants by Hollow Fiber Nanofiltration membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Tian Q, Zhang Y, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. Simultaneous removal of tetracycline and sulfamethoxazole by laccase-mediated oxidation and ferrate(VI) oxidation: the impact of mediators and metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15708-15721. [PMID: 36171319 DOI: 10.1007/s11356-022-23232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study explores the impact of mediators and metal ions of laccase-mediated oxidation and ferrate(VI) oxidation for the simultaneous removal of tetracycline antibiotics (TCs) and sulfonamide antibiotics (SAs) and to effectively remove their antimicrobial activity. The results showed that the antimicrobial activity of tetracycline against Bacillus altitudinis and Escherichia coli was significantly reduced, and the antimicrobial activity of sulfamethoxazole against B. altitudinis disappeared completely after treatment with the laccase-ABTS system. The combination of 6.0 U/mL of laccase and 0.2 mmol/L of ABTS removed 100% of 20.0 mg/L of tetracycline after 1.0 min at pH 6.0 and 25.0 °C, whereas the removal ratio of 20.0 mg/L of sulfamethoxazole was only 6.7%. The Al3+ and Cu2+ ions promoted the oxidation, and the Mn2+ ion decelerated the oxidation of tetracycline and sulfamethoxazole by the laccase-mediator systems. In contrast, the antimicrobial activity of tetracycline against B. altitudinis and E. coli was shown to be significantly reduced, and the sulfamethoxazole still retained high antimicrobial activity against B. altitudinis after treatment with Fe(VI) oxidation. The removal ratio of 20.0 mg/L of tetracycline was 100% after 1.0 min of treatment with 982.0 mg/L of K2FeO4 at pH 6.0 and 25.0 °C, whereas the removal ratio of 20.0 mg/L of sulfamethoxazole was only 49.5%. The Al3+, Cu2+, and Mn2+ ions both decelerated the oxidation of tetracycline and sulfamethoxazole by Fe(VI) oxidation. In general, the combination of the laccase-ABTS system and Fe(VI) was proposed for the simultaneous treatment of TCs and SAs in wastewater and to effectively remove their antimicrobial activity.
Collapse
Affiliation(s)
- Qiaopeng Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Yong Zhang
- Department of Chemical and Biological Engineering, Hunan University of Science and Technology, Yongzhou 425199, Hunan, People's Republic of China
| | - Di Meng
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, People's Republic of China
| | - Lixin Zhai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yu Shen
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuiping You
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Mahdavi H, Hosseini F, Akbar Heidari A, Karami M. Polyethersulfone-TPU blend membrane coated with an environmentally friendly sabja seed mucilage-Cu2+ cross-linked layer with outstanding separation performance and superior antifouling. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Loganathan P, Vigneswaran S, Kandasamy J, Cuprys AK, Maletskyi Z, Ratnaweera H. Treatment Trends and Combined Methods in Removing Pharmaceuticals and Personal Care Products from Wastewater-A Review. MEMBRANES 2023; 13:158. [PMID: 36837661 PMCID: PMC9960457 DOI: 10.3390/membranes13020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
When discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms' exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks. For this reason, various methods are being implemented to remove them from water bodies. This report critically reviews these methods and suggests improvements to removal strategies. Biological, physical, and chemical methods such as biological degradation, adsorption, membrane filtration, and advanced electrical and chemical oxidation are the common methods used. However, these processes were not integrated into most studies to take advantage of the different mechanisms specific to each process and are synergistic in the removal of the PPCPs that differ in their physical and chemical characteristics (charge, molecular weight, hydrophobicity, hydrogen bonding, structure). In the review articles published to date, very little information is available on the use of such integrated methods for removing PPCPs. This report attempts to fill this gap with our knowledge.
Collapse
Affiliation(s)
- Paripurnanda Loganathan
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
| | - Agnieszka Katarzyna Cuprys
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Zakhar Maletskyi
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
21
|
Honeycomb-like MnO 2/Biochar Catalyst Fabricated by High-Energy Electron Beam Irradiation for Degradation of Antibiotics in Swine Urine. Biomimetics (Basel) 2023; 8:biomimetics8010032. [PMID: 36648818 PMCID: PMC9844346 DOI: 10.3390/biomimetics8010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The modification of biochar is essential for the development of multifunctional biochar materials with enhanced remediation effects on contaminated water. In this work, a biochar-based microcatalyst with sunlight sensitivity was synthesized by a creative modification method that involved the rapid fabrication of MnO2 microspheres by high-energy electron beam (HEEB) irradiation, and loading them into corn straw-derived honeycomb-like KOH-modified biochar (MBC) to obtain a sunlight-sensitive microcatalyst (SSM). The honeycomb-like structure of MBC facilitated the improvement in MnO2 dispersion and photocatalytic property through confinement effect. The effects of photocatalyst dosage, initial chlortetracycline (CTC) concentration, solution pH, temperature and coexisting ions on the photocatalytic performance of SSM were systemically investigated. The results indicated that SSM could efficiently degrade CTC in water and swine urine under sunlight, and exhibited high stability against coexistence of urea, Cl- and SO42-. Moreover, SSM showed good reusability in regeneration studies. This work provides a novel method for degrading CTC with potential application prospect.
Collapse
|
22
|
Castaño Osorio S, Biesheuvel PM, Spruijt E, Dykstra JE, van der Wal A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. WATER RESEARCH 2022; 225:119130. [PMID: 36240724 DOI: 10.1016/j.watres.2022.119130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Organic micropollutants (OMPs) in drinking water constitute a potential risk to human health; therefore, effective removal of these pollutants is required. Nanofiltration (NF) and reverse osmosis (RO) are promising membrane-based technologies to remove OMPs. In NF and RO, the rejection of OMPs depends on the properties and characteristics of the membrane, the solute, and the solution. In this review, we discuss how these properties can be included in models to study and predict the rejection of OMPs. Initially, an OMP classification is proposed to capture the relevant properties of 58 OMPs. Following the methodology described in this study, more and new OMPs can be easily included in this classification. The classification aims to increase the comprehension and mechanistic understanding of OMP removal. Based on the physicochemical principles used to classify the 58 OMPs, it is expected that other OMPs in the same groups will be similarly rejected. From this classification, we present an overview of the rejection mechanisms involved in the removal of specific OMP groups. For instance, we discuss the removal of OMPs classified as perfluoroalkyl substances (e.g., perfluorooctanoic acid, PFOA). These substances are highly relevant due to their human toxicity at extremely low concentration as well as their persistence and omnipresence in the environment. Finally, we discuss how the rejection of OMPs can be predicted by describing both the membrane-solution interface and calculating the transport of solutes inside the membrane. We illustrate the importance and impact of different rejection mechanisms and interfacial phenomena on OMP removal and propose an extended Nernst-Plank equation to calculate the transport of solutes across the membrane due to convection, diffusion, and electromigration. Finally, we show how the theory discussed in this review leads to improved predictions of OMP rejection by the membranes.
Collapse
Affiliation(s)
- S Castaño Osorio
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| | - E Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - J E Dykstra
- Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands.
| | - A van der Wal
- Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands; Evides Water Company, P.O. Box 4472, Rotterdam 3006 AL, the Netherlands.
| |
Collapse
|
23
|
Khoo YS, Goh PS, Lau WJ, Ismail AF, Abdullah MS, Mohd Ghazali NH, Yahaya NKEM, Hashim N, Othman AR, Mohammed A, Kerisnan NDA, Mohamed Yusoff MA, Fazlin Hashim NH, Karim J, Abdullah NS. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. CHEMOSPHERE 2022; 305:135151. [PMID: 35654232 DOI: 10.1016/j.chemosphere.2022.135151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nor Hisham Mohd Ghazali
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Ahmad Rozian Othman
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Alias Mohammed
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Nirmala Devi A/P Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Muhammad Azroie Mohamed Yusoff
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Noor Haza Fazlin Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Jamilah Karim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nor Salmi Abdullah
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
24
|
Shah IA, Ali S, Yang Z, Ihsanullah I, Huang H. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. CHEMOSPHERE 2022; 303:135211. [PMID: 35660049 DOI: 10.1016/j.chemosphere.2022.135211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Thin-film composite (TFC) nanofiltration (NF) and reverse osmosis (RO) membranes have been widely used to remove pharmaceutically active compounds (PhACs) from water and wastewater. However, limited information is available to present the rejection of neutral PhACs under complex water matrices. In this study, we used acetaminophen (AAP) as a representative neutral pollutant to study the effects of feedwater matrices on the rejection of neutral PhACs by NF and RO membranes. The results showed that the permeation of solutes and water through NF and RO membranes followed the classical solution-diffusion model. The corresponding permeability coefficients of AAP for the RO membrane showed good consistency, with average values ranging between (6.19-7.56) × 10-6 μm s-1 in fresh and brackish feedwater. Meanwhile, the NF membrane exhibited stable AAP and NaCl fluxes as the applied pressure increased from 4.8 to 7.6 bar, suggesting an insignificant influence of convection on solute transport. In addition, a 10-fold increase in NaCl concentration reduced the average AAP permeability coefficient of the NF membrane by 57% (i.e. from 2.8 × 10-5 m s-1 to 1.2 × 10-5 m s-1), highlighting the relevance of co-existing ions to AAP transport. Furthermore, organic fouling resulted in enhanced AAP rejection by both NF and RO membranes at neutral pH level and medium applied pressure (i.e. 5.8 bar). Overall, this study provided important insights into the separation mechanism of TFC membranes for neutral PhACs, as well as the complex effects of the water matrix on the solute permeation processes.
Collapse
Affiliation(s)
- Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Sharafat Ali
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China; Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, PR China
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Haiou Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China; Department of Environmental Health and Engineering, Bloomberg School of Public Health, The John Hopkins University, 615 North Wolfe Street, MD, 21205, USA.
| |
Collapse
|
25
|
Gao Y, Wang K, Wang XM, Huang X. Exploitation of Amine Groups Cooped up in Polyamide Nanofiltration Membranes to Achieve High Rejection of Micropollutants and High Permeance of Divalent Cations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10954-10962. [PMID: 35819002 DOI: 10.1021/acs.est.2c02410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To enhance the use of nanofiltration in the production of quality drinking water, particularly through the efficient removal of micropollutants yet still preserving essential minerals, the targeted nanofiltration membranes (NFMs) are required to have small pore dimensions coupled with a high, net-negative charge density. Herein, after the formation of a separation layer using piperazine interfacially polymerized with trimesoyl chloride, the exploitation of residual amine groups was systematically investigated by different diacyl chlorides in an organic milieu, which caused the upper part of the final separation layer to be denser and highly negatively charged. Hence, this protocol offers a novel means to fabricate NFMs simultaneously endowed with a low molecular cutoff (MWCO) of 145-238 Da and a reduced rejection of MgCl2 (48%-80%) as well as a competitive water permeance. Those features are ideally applicable to the goal of removing small micropollutants while preserving mineral ions, as needed for the energy-efficient production of safe, quality drinking water. Furthermore, an attempt was made to correlate MWCO with MgCl2 rejection, which provides some insights on the nexus of the electrostatic effects constrained by size exclusion. The significance of residual amine groups and the modification environment was unveiled, and this method paves a new avenue for designing functional NFMs.
Collapse
Affiliation(s)
- Yawei Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Moreira CG, Santos HG, Bila DM, da Fonseca FV. Assessment of fouling mechanisms on reverse osmosis (RO) membrane during permeation of 17α-ethinylestradiol (EE2) solutions. ENVIRONMENTAL TECHNOLOGY 2022; 43:3084-3096. [PMID: 33843467 DOI: 10.1080/09593330.2021.1916087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Fouling mechanisms are mainly caused by the deposition of organic compounds that reduce the removal efficiency on reverse osmosis (RO) membranes. It can be described by mathematical models. The aim of this study was to evaluate the membrane fouling and rejection mechanisms when aqueous solutions containing 17α-ethinylestradiol (EE2) in different concentrations are permeated at 5 and 10 bar in a bench-scale dead-end RO system. Adsorption tests were performed and the fouling mechanism was assessed by Hermia's model for solutions of EE2 at concentrations typically found in the environment (µg L-1). Fourier transform infrared spectroscopy (FTIR) has indicated the presence of EE2 on the fouled membrane surface. Membrane rejection of EE2 ranged from 90% to 98% and the main rejection mechanism was size exclusion at all experimental conditions. However, for the higher concentration of EE2 permeated at 5 and 10 bar, adsorption of 7 and 32 mg m-2, respectively, also took place. The rejection was influenced by fouling and concentration polarisation. Fouled membranes present higher rejection of hydrophobic neutral compounds and the concentration polarisation reduces rejection. Hermia's model demonstrated that the permeation values fitted better the standard blocking filtration and cake filtration equations for describing fouling mechanism. This study showed that fouling also occurs in the TFC RO membrane after permeation of EE2, which corroborates with studies using other pollutants.
Collapse
Affiliation(s)
- Carolina G Moreira
- School of Chemistry, Federal University of Rio de Janeiro. Av. Athos da Silveira Ramos, Rio de Janeiro, Brazil
| | - Henrique G Santos
- School of Chemistry, Federal University of Rio de Janeiro. Av. Athos da Silveira Ramos, Rio de Janeiro, Brazil
| | - Daniele M Bila
- Engineering College, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana V da Fonseca
- School of Chemistry, Federal University of Rio de Janeiro. Av. Athos da Silveira Ramos, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Wünsch R, Hettich T, Prahtel M, Thomann M, Wintgens T, von Gunten U. Tradeoff between micropollutant abatement and bromate formation during ozonation of concentrates from nanofiltration and reverse osmosis processes. WATER RESEARCH 2022; 221:118785. [PMID: 35949072 DOI: 10.1016/j.watres.2022.118785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Water treatment with nanofiltration (NF) or reverse osmosis (RO) membranes results in a purified permeate and a retentate, where solutes are concentrated and have to be properly managed and discharged. To date, little is known on how the selection of a semi-permeable dense membrane impacts the dissolved organic matter in the concentrate and what the consequences are for micropollutant (MP) abatement and bromate formation during concentrate treatment with ozone. Laboratory ozonation experiments were performed with standardized concentrates produced by three membranes (two NFs and one low-pressure reverse osmosis (LPRO) membrane) from three water sources (two river waters and one lake water). The concentrates were standardized by adjustment of pH and concentrations of dissolved organic carbon, total inorganic carbon, selected micropollutants (MP) with a low to high ozone reactivity and bromide to exclude factors which are known to impact ozonation. NF membranes had a lower retention of bromide and MPs than the LPRO membrane, and if the permeate quality of the NF membrane meets the requirements, the selection of this membrane type is beneficial due to the lower bromate formation risks upon concentrate ozonation. The bromate formation was typically higher in standardized concentrates of LPRO than of NF membranes, but the tradeoff between MP abatement and bromate formation upon ozonation of the standardized concentrates was not affected by the membrane type. Furthermore, there was no difference for the different source waters. Overall, ozonation of concentrates is only feasible for abatement of MPs with a high to moderate ozone reactivity with limited bromate formation. Differences in the DOM composition between NF and LPRO membrane concentrates are less relevant than retention of MPs and bromide by the membrane and the required ozone dose to meet a treatment target.
Collapse
Affiliation(s)
- R Wünsch
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - T Hettich
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - M Prahtel
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M Thomann
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - T Wintgens
- RWTH Aachen University, Institute of Environmental Engineering, 52074 Aachen, Germany
| | - U von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
28
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Rajput VD, Minkina T, Ahmed B, Singh VK, Mandzhieva S, Sushkova S, Bauer T, Verma KK, Shan S, van Hullebusch ED, Wang B. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. ENVIRONMENTAL RESEARCH 2022; 210:112891. [PMID: 35183514 DOI: 10.1016/j.envres.2022.112891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Currently, the applications of biochar (BC) in agricultural practices and for environmental remediation purposes have demonstrated multifaceted advantages despite a few limitations. Nano-BC offers considerable opportunities especially for the remediation of hazardous contaminants as well as the improvement of crop productivity. Positive outcomes of nano-BC on soil physico-chemical and biological characteristics have indicated its suitability for agricultural applications. Nano-BC may effectively regulate the mobilization and sorption of important micro- and macro-nutrients, along with the hazardous contaminants including potentially toxic metals, pesticides, etc. Additionally, the sorption characteristics of nano-BC depends substantially on feedstock materials and pyrolysis temperatures. Nevertheless, the conducted investigations regarding nano-BC are in infant stages, requiring extensive field investigations. The nano-enhanced properties of BC on one hand dramatically improve its effectiveness and sustainability, on the other hand, there may be associated with toxicity development in diverse aquatic and/or terrestrial environments. Therefore, risk assessment on soil organisms and its indirect impact on human health is another area of concern linked with the field application of nano-BC. The present review delineates the potentiality of nano-BC as an emerging sorbent for sustainable agriculture and environmental applications.
Collapse
Affiliation(s)
| | | | - Bilal Ahmed
- Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | | | | | | | - Tatiana Bauer
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, 344006, Russia Federation
| | | | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique Du Globe de Paris, CNRS, F-75005, Paris, France
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
30
|
Zou R, Tang K, Hambly AC, Chhetri RK, Andersen HR, Zhang Y. Elimination of recalcitrant micropollutants by medium pressure UV-catalyzed bioelectrochemical advanced oxidation process: Influencing factors, transformation pathway and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154543. [PMID: 35302016 DOI: 10.1016/j.scitotenv.2022.154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
31
|
Wu S, Li K, Shi W, Cai J. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int J Biol Macromol 2022; 210:76-84. [PMID: 35533844 DOI: 10.1016/j.ijbiomac.2022.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
Abstract
In this work, a novel electrospun chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) nanofibrous membrane was prepared to remove heavy metal ions and organic pollutants from water. The nanofiber morphologies were adjusted through the optimal electrospinning process parameters. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations indicated that a well-crosslinked CS/PVP/PVA nanofiber film was formed. Under the optimize conditions, the obtained CS/PVP/PVA nanofiber membranes exhibited porous and uniform nanofibrous structures with an average diameter of 160 nm and a pure water permeability of 4518.91 L·m-2·h-1·bar-1. In addition, the adsorption and separation performance of CS/PVP/PVA nanofiber membranes were evaluated with Cu(II), Ni(II), Cd(II), Pb(II) and Methylene Blue (MB), Malachite Green (MG) as target ions and dyes. The results showed that the retention rate of CS/PVP/PVA nanofiber membranes for Cu(II), Ni(II), Cd(II), Pb(II), MG and MB can reach 94.20%, 90.35%, 83.33%, 80.12%, 84.01% and 69.91%, respectively. The adsorption capacities of Cu(II), Ni(II), Cd(II), Pb(II), MG and MB were 34.79, 25.24, 18.07, 16.05, 17.86 and 13.27 mg g-1. The adsorption kinetics of heavy metal ions and dyes by the nanofiber membranes can be explained by the Langmuir isotherm model and represented by the pseudo-second-order kinetic mechanism that determined the spontaneous chemisorption process. This study provides a synthetic approach to membranes for the removal of organic and heavy metal micropollutants from water.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China.
| | - Kanghui Li
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Weijian Shi
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jiawei Cai
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| |
Collapse
|
32
|
Cevallos-Mendoza J, Amorim CG, Rodríguez-Díaz JM, Montenegro MDCBSM. Removal of Contaminants from Water by Membrane Filtration: A Review. MEMBRANES 2022; 12:membranes12060570. [PMID: 35736277 PMCID: PMC9229562 DOI: 10.3390/membranes12060570] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/07/2022]
Abstract
Drinking water sources are increasingly subject to various types of contamination due to anthropogenic factors and require proper treatment to remove disease-causing agents. Public drinking water systems use different treatment methods to provide safe and quality drinking water to populations. However, they are ineffective in removing contaminants that are considered a danger to the environment and therefore to humans. Several alternative treatment processes have been proposed, such as membrane filtration, as final purification methods. This paper aims to summarize the type of pollutant compounds, filtration processes, and membranes that have been most studied in this area with particular emphasis on how the modification of membranes, either the manufacturing process or the incorporation of nanomaterials, influences their performance.
Collapse
Affiliation(s)
- Jaime Cevallos-Mendoza
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Instituto de Admisión y Nivelación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Célia G. Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: (C.G.A.); (J.M.R.-D.); (M.d.C.B.S.M.M.)
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Correspondence: (C.G.A.); (J.M.R.-D.); (M.d.C.B.S.M.M.)
| | - Maria da Conceição B. S. M. Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: (C.G.A.); (J.M.R.-D.); (M.d.C.B.S.M.M.)
| |
Collapse
|
33
|
Nayak V, Cuhorka J, Mikulášek P. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling. MEMBRANES 2022; 12:membranes12050528. [PMID: 35629854 PMCID: PMC9145772 DOI: 10.3390/membranes12050528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Pharmaceutical drugs have recently emerged as one the foremost water pollutants in the environment, triggering a severe threat to living species. With their complex chemical nature and the intricacy involved in the removal process in mind, the present work investigates the performance of commercially available polyamide thin-film composite tubular nanofiltration (NF) membranes (AFC 40 and AFC 80) in removing polluting pharmaceutical drugs, namely caffeine, paracetamol and naproxen. The structural parameters of the NF membranes were estimated by water permeability measurements and retention measurements with aqueous solutions of organic, uncharged (glycerol) solutes. The effect of various operating conditions on the retention of solutes by the AFC 40 and AFC 80 membranes, such as applied transmembrane pressure, tangential feed flow velocity, feed solution concentration and ionic strength, were evaluated. It was found that the rejection of drugs was directly proportional to transmembrane pressure and feed flow rate. Due to the size difference between caffeine (MW = 194.9 g/mol), naproxen (MW = 230.2 g/mol) and paracetamol (MW = 151.16 g/mol), the AFC 40 membrane proved to be efficient for caffeine and naproxen, with rejection efficiencies of 88% and 99%, respectively. In contrast, the AFC 80 membrane proved to be better for paracetamol, with a rejection efficiency of 96% (and rejection efficiency of 100% for caffeine and naproxen). It was also observed that the rejection efficiency of the AFC 80 membrane did not change with changes in external operating conditions compared to the AFC 40 membrane. The membrane performance was predicted using the Spiegler–Kedem model based on irreversible thermodynamics, which was successfully used to explain the transport mechanism of solutes through the AFC 40 and AFC 80 membranes in the NF process.
Collapse
|
34
|
Fluoxetine and Nutrients Removal from Aqueous Solutions by Phycoremediation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106081. [PMID: 35627618 PMCID: PMC9141300 DOI: 10.3390/ijerph19106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/08/2023]
Abstract
The tertiary treatment using microalgae offers an attractive alternative to the removal of low but relevant concentrations of pharmaceuticals from domestic wastewaters. The removal of fluoxetine from aqueous solutions by living and non-living (lyophilized) Chlorella vulgaris was assessed. The determination of the pH at the point of zero charge, Fourier transmittance infrared analysis, and scanning electron microscopy were performed to characterize the microalgae biomass. Kinetic and equilibrium experiments were performed. The pseudo-second-order model described the kinetics of fluoxetine. The corresponding kinetic constants indicated that biosorption was faster onto non-living biomass than onto living biomass. The equilibrium results showed that the systems followed the Langmuir isotherm model. The maximum capacity of living microalgae (1.9 ± 0.1 mg·g−1) was slightly higher than the non-living microalgae (1.6 ± 0.2 mg·g−1). Living Chlorella vulgaris, free and immobilized in calcium-alginate, were also used to remove fluoxetine and nutrients (nitrogen and phosphorus) from treated municipal wastewater in a batch system. In both experiments, fluoxetine was completely removed within six days. The total phosphorus (TP) and total nitrogen (TN) removal efficiencies achieved for free and immobilized cells were, null and 65.0 ± 0.1%, and 86.2 ± 0.1% and 81.8 ± 3.1, respectively.
Collapse
|
35
|
Arabkhani P, Asfaram A. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: A new green adsorbent for removal of antibiotics from pharmaceutical wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128289. [PMID: 35121292 DOI: 10.1016/j.jhazmat.2022.128289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
A bio-based ceramic/organic xerogel (BCO-xerogel) was obtained from the combination of sugarcane bagasse ash, polyvinyl alcohol, and pine cone-derived tannin extract, which are abundant, non-toxic, and renewable sources. The as-prepared BCO-xerogel was used as a low-cost green adsorbent for the eliminate of four types of the most widely used antibiotics, including amoxicillin (AMX), tetracycline (TC), cefalexin (CLX), and penicillin G (PEN G) residuals from contaminated water. The simultaneous effects conventional variables including adsorbent dosage, antibiotic concentrations, solution pH, and contact time were studied and optimized by central composite design (CCD) under response surface methodology (RSM). Analysis of variance (ANOVA) was employed as a statistical formula to determine the significance of operating environmental conditions and their interactions with 95% confidence limits. Under optimized conditions, the experimental removal efficiencies for AMX, TC, CLX, and PEN G were 98.78 ± 3.25, 99.12 ± 2.52, 98.02 ± 1.98, and 98.42 ± 2.19, respectively. The adsorption isotherms and kinetics were better fitted with Langmuir and pseudo-second-order models, respectively. Thermodynamic studies showed that the adsorption process was endothermic, spontaneous, and occurred by combination of physical and chemical mechanisms. Also, evaluating the ability of BCO-xerogel to adsorptive removal of AMX, TC, CLX, and PEN G antibiotics in real wastewaters showed about 97.4-98.6% adsorption efficiency in river water and about 67.1-71.3% in three hospital effluents. After the adsorption process, the antibiotic-loaded adsorbent was regenerated by NaOH (0.01 mol L-1), and the reusability tests showed that the removal efficiencies of the antibiotics in the four recovery steps were still above 90%. This work explored the development of green, efficient, and economical bio-adsorbent that can be utilized for the removal of antibiotics from contaminated wastewaters.
Collapse
Affiliation(s)
- Payam Arabkhani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
36
|
State-of-the-Art Review on the Application of Membrane Bioreactors for Molecular Micro-Contaminant Removal from Aquatic Environment. MEMBRANES 2022; 12:membranes12040429. [PMID: 35448399 PMCID: PMC9032214 DOI: 10.3390/membranes12040429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022]
Abstract
In recent years, the emergence of disparate micro-contaminants in aquatic environments such as water/wastewater sources has eventuated in serious concerns about humans’ health all over the world. Membrane bioreactor (MBR) is considered a noteworthy membrane-based technology, and has been recently of great interest for the removal micro-contaminants. The prominent objective of this review paper is to provide a state-of-the-art review on the potential utilization of MBRs in the field of wastewater treatment and micro-contaminant removal from aquatic/non-aquatic environments. Moreover, the operational advantages of MBRs compared to other traditional technologies in removing disparate sorts of micro-contaminants are discussed to study the ways to increase the sustainability of a clean water supplement. Additionally, common types of micro-contaminants in water/wastewater sources are introduced and their potential detriments on humans’ well-being are presented to inform expert readers about the necessity of micro-contaminant removal. Eventually, operational challenges towards the industrial application of MBRs are presented and the authors discuss feasible future perspectives and suitable solutions to overcome these challenges.
Collapse
|
37
|
Capability of MXene 2D material as an amoxicillin, ampicillin, and cloxacillin adsorbent in wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Predicting the Solubility of Nonelectrolyte Solids Using a Combination of Molecular Simulation with the Solubility Parameter Method MOSCED: Application to the Wastewater Contaminants Monuron, Diuron, Atrazine and Atenolol. Processes (Basel) 2022. [DOI: 10.3390/pr10030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methods to predict the equilibrium solubility of nonelectrolyte solids are indispensable for early-stage process development, design, and feasibility studies. Conventional analytic methods typically require reference data to regress parameters, which may not be available or limited for novel systems. Molecular simulation is a promising alternative, but is computationally intensive. Here, we demonstrate the ability to use a small number of molecular simulation free energy calculations to generate reference data to regress model parameters for the analytical MOSCED (modified separation of cohesive energy density) model. The result is an efficient analytical method to predict the equilibrium solubility of nonelectrolyte solids. The method is demonstrated for the wastewater contaminants monuron, diuron, atrazine and atenolol. Predictions for monuron, diuron and atrazine are in reasonable agreement with MOSCED parameters regressed using experimental solubility data. Predictions for atenolol are inferior, suggesting a potential limitation in the adopted molecular models, or the solvents selected to generate the necessary reference data.
Collapse
|
39
|
Mofokeng LE, Hlekelele L, Tetana ZN, Moma J, Chauke VP. CuO‐doped TiO
2
Supported on Graphitic Carbon Nitride for the Photodegradation of Ketoprofen in Drinking and Groundwater: Process Optimization and Energy Consumption evaluation. ChemistrySelect 2022. [DOI: 10.1002/slct.202101847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lethula E. Mofokeng
- Centre for Nanostructures and Advanced Materials Council for Scientific and Industrial Research Meiring Naude Rd, Brummeria Pretoria 0184 South Africa
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand Private Bag 3 2050 Johannesburg South Africa
| | - Lerato Hlekelele
- Centre for Nanostructures and Advanced Materials Council for Scientific and Industrial Research Meiring Naude Rd, Brummeria Pretoria 0184 South Africa
| | - Zikhona N. Tetana
- DSI/NRF Centre of Excellence in Strong Materials University of the Witwatersrand Private Bag 3 2050 Johannesburg South Africa
- Microscopy and Microanalysis Unit University of the Witwatersrand Private Bag 3 2050 Johannesburg South Africa
| | - John Moma
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand Private Bag 3 2050 Johannesburg South Africa
| | - Vongani P. Chauke
- Centre for Nanostructures and Advanced Materials Council for Scientific and Industrial Research Meiring Naude Rd, Brummeria Pretoria 0184 South Africa
| |
Collapse
|
40
|
A Study of the Mechanism and Separation of Structurally Similar Phenolic Acids by Commercial Polymeric Ultrafiltration Membranes. MEMBRANES 2022; 12:membranes12030285. [PMID: 35323760 PMCID: PMC8950078 DOI: 10.3390/membranes12030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022]
Abstract
This study examined the behavior and penetration mechanisms of typical phenolic (benzoic) acids, which determine their observed penetration rates during membrane separation, focusing on the influence of electrostatic and hydrophobic solute/membrane interactions. To understand the effects of hydrophobicity and electrostatic interaction on membrane filtration, the observed penetration of five structurally similar phenolic acids was compared with regenerated cellulose (RC) and polyamide (PA) membranes at different solute concentrations and solution pHs. Variation partitioning analysis (VPA) was performed to calculate the relative contributions of electrostatic and hydrophobic effects. The penetration of phenolic acids was mainly influenced by the electrostatic interaction, with salicylic acid having the highest penetration. Penetration of phenolic acids through the PA membrane decreased from 98% at pH 3.0 to 30–50% at pH 7.4, indicating the dominance of the electrostatic interaction. Moreover, based on its hydrophobicity and greater surface charge, the PA membrane could separate binary mixtures of protocatechuic/salicylic acid and 4-hydroxybenzoic/salicylic acid at pH 9.0, with separation factors of 1.81 and 1.78, respectively. These results provide a greater understanding of solute/membrane interactions and their effect on the penetration of phenolic acids through polymeric ultrafiltration membranes.
Collapse
|
41
|
Classical and Recent Developments of Membrane Processes for Desalination and Natural Water Treatment. MEMBRANES 2022; 12:membranes12030267. [PMID: 35323741 PMCID: PMC8948695 DOI: 10.3390/membranes12030267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023]
Abstract
Water supply and water treatment are of major concern all around the world. In this respect, membrane processes are increasingly used and reported for a large range of applications. Desalination processes by membranes are well-established technologies with many desalination plants implemented in coastal areas. Natural water treatment is also well implemented to provide purified water for growing population. This review covers various aspects of desalination: membranes and modules, plants, fouling (scaling, biofouling, algal blooms), cleaning, pretreatment (conventional and membrane treatments), energy and environmental issues, renewable energies, boron removal and brine disposal. Treatment of natural water focuses on removal of natural organic matter, arsenic, iron, nitrate, fluoride, pesticides and herbicides, pharmaceutical and personal care products. This review underlines that desalination and natural water treatment require identical knowledge of membrane fouling, construction of large plants, cleaning procedures, energy and environmental issues, and that these two different fields can learn from each other.
Collapse
|
42
|
Barcellos DDS, Procopiuck M, Bollmann HA. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151128. [PMID: 34710408 DOI: 10.1016/j.scitotenv.2021.151128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical micropollutants' contamination of urban waters has been studied globally for decades, but the concentration of innovations in management initiatives is still in developed economies. The gap between the locus of innovations in pharmaceuticals and the relative stagnation in less developed economies to manage waste originating in this activity seems fruitful for investigations on innovation in integrated micropollutant management strategies. These tensions allow for advances in current knowledge for environmental management and, particularly, finding solutions for the contamination by pharmaceutical micropollutants of urban water bodies in developing countries. We aim to list the main strategies for managing pharmaceutical micropollutants discussed to point out opportunities for developing countries to advance in this direction. Methodologically, we conducted a systematic literature review from 1990 to 2020, covering 3027 documents on "pharmaceutical micropollutants management." The framework formed by the macro-approach to integrated management operationalized by the dimensional micro-approaches: technical, organizational, community, and governmental allowed us to understand that (1) the management of pharmaceutical micropollutants tends to occur through a technical approach centered on the removal of aquatic matrices, green chemistry, and urine diversion; (2) management with an organizational approach has enabled removing drugs from water bodies by drug take-back program, collaborative projects, drug use reduction, and better organizational practices; (3) the community approach have helped minimize this type of pollution by reducing the consumption of medicines and the proper destination for medicines that are no longer in use. Finally, the government management approach emerges as a source of legal, economic, and informational instruments to reduce pollution by pharmaceutical micropollutants. Furthermore, these management approaches allowed us to identify 15 opportunities for possible adjustments for developing societies. These opportunities can be promising for practices and research and, in the medium term, contribute to minimizing pollution by pharmaceutical micropollutants in urban waters.
Collapse
Affiliation(s)
- Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Mario Procopiuck
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Harry Alberto Bollmann
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| |
Collapse
|
43
|
Salvador DG, Pavoni JF, Tessaro IC. The influence of aeration rate on the sorption of emerging pharmaceuticals in activated sludge. ENVIRONMENTAL TECHNOLOGY 2022:1-14. [PMID: 35107039 DOI: 10.1080/09593330.2022.2036246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The sorption of pharmaceuticals on activated sludge during the wastewater treatment process has been widely studied and considered one of the main mechanisms for the removal of these micropollutants from domestic sewage. Understanding the removal mechanism is important to reduce the environmental risk associated with these compounds. To the best of our knowledge, no data are reporting the influence of the aeration rate and, consequently, of the physicochemical properties of the sludge flocs, on the sorption of pharmaceutical compounds. In this context, the influence of the aeration rate (2, 5, and 8 L min-1) on the physical properties of the sludge and the sorption of two emerging pharmaceuticals, 17-alpha-ethynylestradiol (EE2) and diclofenac (DCF), was evaluated. The pharmaceuticals were analyzed by Solid Phase Extraction and Liquid Chromatography, and the sludge by Laser Particle Size Analyzer and Settling Curves. As a result, higher sorption for 17-alpha-ethinylestradiol (78-96%) in comparison to diclofenac (23-43%) was observed, corroborating the greater hydrophobicity of EE2. Higher pharmaceuticals removal rates were observed for the highest aeration (10.02 µgEE2 gSST-1 and 3.99 µgDCF gSST-1) in comparison to the lowest one (7.81 µgEE2 gSST-1 and 2.58 µgDCF gSST-1), what can be attributed to structural and surface changes in flocs. Smaller and more dispersed flocs were observed when aeration was increased (104.4 µm for 8 L min-1 and 63.8 µm for 2 L min-1). The results suggest that the increase in aeration seems to be promising for the removal of pharmaceuticals by sorption in sewage sludge, especially for the hydrophobic ones.
Collapse
Affiliation(s)
- Débora Guerra Salvador
- Chemical Engineering Department, Laboratory of Membrane Separation Processes (LASEM), Federal Univesity of Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia Frick Pavoni
- Chemical Engineering Department, Laboratory of Membrane Separation Processes (LASEM), Federal Univesity of Rio Grande do Sul, Porto Alegre, Brazil
| | - Isabel Cristina Tessaro
- Chemical Engineering Department, Laboratory of Membrane Separation Processes (LASEM), Federal Univesity of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Żyłła R, Foszpańczyk M, Kamińska I, Kudzin M, Balcerzak J, Ledakowicz S. Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals. MEMBRANES 2022; 12:150. [PMID: 35207072 PMCID: PMC8874440 DOI: 10.3390/membranes12020150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA). The influence of the structure and properties of the tested compounds on the retention coefficient and filtration rate was investigated. The influence of pH on the filtration parameters was also checked. The properties of selected membranes influencing the retention of pharmaceuticals and filtrate flux were analysed. An extensive analysis of the retention coefficients dependence on the contact angle and surface free energy was performed. It was found that there is a correlation between the hydrophilicity of the membrane and the effectiveness and efficiency of the membrane. As the contact angle of membrane increased, the flow rate of the filtrate stream increased, while the retention coefficient decreased. The studies showed that the best separation efficiency was achieved for compounds with a molecular weight (MW) greater than 300 g/mol. During the filtration of pharmaceuticals with MW ranging from 300 to 450 g/mol, the type of membrane used practically did not affect the filtration efficiency and a high degree of retention was achieved. In the case of low MW molecules (SA and ASA), a significant decrease in the separation efficiency during the process was noted.
Collapse
Affiliation(s)
- Renata Żyłła
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Magdalena Foszpańczyk
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Irena Kamińska
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Marcin Kudzin
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland;
| | - Stanisław Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland;
| |
Collapse
|
45
|
Bilal M, Lam SS, Iqbal HMN. Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118582. [PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
46
|
Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2.89) for Congo red dye removal. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Dos Santos CR, Lebron YAR, Moreira VR, Koch K, Amaral MCS. Biodegradability, environmental risk assessment and ecological footprint in wastewater technologies for pharmaceutically active compounds removal. BIORESOURCE TECHNOLOGY 2022; 343:126150. [PMID: 34678454 DOI: 10.1016/j.biortech.2021.126150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Several studies have investigated the removal of pharmaceutically active compounds (PhACs) by wastewater treatment technologies due to the risk that these compounds pose to the environment. In this sense, advanced biological processes have been developed for micropollutants removal, such as membrane bioreactors and moving bed biofilm reactors. Thus, this review holistically evaluated the biodegradation of 18 environmentally hazardous PhACs. Biological processes were assessed including removal efficiencies, environmental risk, and ecological footprint (consumption of resources and energy, atmospheric emissions, and waste generation). The maximum concentration of PhACs for a low or negligible risk scenario in treated wastewater and the potential of biological processes to meet this goal were assessed. Among the evaluated PhACs, the most biodegradable was paracetamol, while the most recalcitrant was diclofenac. Combination of conventional processes and advanced biological processes proved to be the most efficient way to remove several PhACs, mainly the osmotic membrane bioreactor.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 385748 Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
48
|
Mladenov N, Dodder NG, Steinberg L, Richardot W, Johnson J, Martincigh BS, Buckley C, Lawrence T, Hoh E. Persistence and removal of trace organic compounds in centralized and decentralized wastewater treatment systems. CHEMOSPHERE 2022; 286:131621. [PMID: 34325254 DOI: 10.1016/j.chemosphere.2021.131621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The persistence of trace organic chemicals in treated effluent derived from both centralized wastewater treatment plants (WWTPs) and decentralized wastewater treatment systems (DEWATS) is of concern due to their potential impacts on human and ecosystem health. Here, we utilize non-targeted analysis (NTA) with comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC/TOF-MS) to conduct an evaluation of the common persistent and removed compounds found in two centralized WWTPs in the USA and South Africa and one DEWATS in South Africa. Overall, removal efficiencies of chemicals were similar between the treatment plants when they were compared according to the number of chemical features detected in the influents and effluents of each treatment plant. However, the DEWATS treatment train, which has longer solids retention and hydraulic residence times than both of the centralized WWTPs and utilizes primarily anaerobic treatment processes, was able to remove 13 additional compounds and showed a greater decrease in normalized peak areas compared to the centralized WWTPs. Of the 111 common compounds tentatively identified in all three influents, 11 compounds were persistent in all replicates, including 5 compounds not previously reported in effluents of WWTPs or water reuse systems. There were no significant differences among the physico-chemical properties of persistent and removed compounds, but significant differences were observed among some of the molecular descriptors. These results have important implications for the treatment of trace organic chemicals in centralized and decentralized WWTPs and the monitoring of new compounds in WWTP effluent.
Collapse
Affiliation(s)
- Natalie Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA.
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA; San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - Lauren Steinberg
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - William Richardot
- San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - Jade Johnson
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Chris Buckley
- Water, Sanitation & Hygiene Research & Development Centre, School of Engineering, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Tolulope Lawrence
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
49
|
Żyłła R, Foszpańczyk M, Olak-Kucharczyk M, Marszałek J, Ledakowicz S. Removal of Organic Compounds with an Amino Group during the Nanofiltration Process. MEMBRANES 2021; 12:membranes12010058. [PMID: 35054585 PMCID: PMC8780745 DOI: 10.3390/membranes12010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
The research covered the process of nanofiltration of low molecular weight organic compounds in aqueous solution. The article presents the results of experiments on membrane filtration of compounds containing amino groups in the aromatic ring and comparing them with the results for compounds without amino groups. The research was carried out for several commercial polymer membranes: HL, TS40, TS80, DL from various manufacturers. It has been shown that the presence of the amino group and its position in relation to the carboxyl group in the molecule affects the retention in the nanofiltration process. The research also included the oxidation products of selected pharmaceuticals. It has been shown that 4-Amino-3,5-dichlorophenol—a oxidation product of diclofenac and 4-ethylbenzaldehyde—a oxidation product of IBU, show poor separation efficiency on the selected commercial membranes, regardless of the pH value and the presence of natural organic matter (NOM). It has been shown that pre-ozonation of natural river water can improve the retention of pollutants removed.
Collapse
Affiliation(s)
- Renata Żyłła
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15 Str., 92-103 Łódź, Poland; (M.F.); (M.O.-K.)
- Correspondence:
| | - Magdalena Foszpańczyk
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15 Str., 92-103 Łódź, Poland; (M.F.); (M.O.-K.)
| | - Magdalena Olak-Kucharczyk
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15 Str., 92-103 Łódź, Poland; (M.F.); (M.O.-K.)
| | - Joanna Marszałek
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213 Str., 90-924 Łódź, Poland;
| | - Stanisław Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213 Str., 90-924 Łódź, Poland;
| |
Collapse
|
50
|
Guo H, Li X, Yang W, Yao Z, Mei Y, Peng LE, Yang Z, Shao S, Tang CY. Nanofiltration for drinking water treatment: a review. Front Chem Sci Eng 2021; 16:681-698. [PMID: 34849269 PMCID: PMC8617557 DOI: 10.1007/s11705-021-2103-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.
Collapse
Affiliation(s)
- Hao Guo
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Wulin Yang
- College of Environmental Science and Engineering, Peking University, Beijing, 100871 China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087 China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhe Yang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072 China
| | - Chuyang Y. Tang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|