1
|
Ji C, Zhu Y, Zhao S, Zhang Y, Nie Y, Zhang H, Zhang H, Wang S, Zhou J, Zhao H, Liu X. Arsenic species in soil profiles from chemical weapons (CWs) burial sites of China: Contamination characteristics, degradation process and migration mechanism. CHEMOSPHERE 2024; 349:140938. [PMID: 38101484 DOI: 10.1016/j.chemosphere.2023.140938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In this study, soil profiles and pore water from Japanese abandoned arsenic-containing chemical weapons (CWs) burial sites in Dunhua, China were analyzed to understand the distribution of arsenic (As) contamination, degradation, and migration processes. Results of As species analysis showed that the As-containing agents underwent degradation with an average rate of 87.55 ± 0.13%, producing inorganic pentavalent arsenic (As5+) and organic arsenic such as 2-chlorovinylarsonic acid (CVAOA), triphenylarsenic (TPA), and phenylarsine oxide (PAO). Organic arsenic pollutants accounted for 1.27-18.20% of soil As. In the vertical profiles, total As concentrations peaked at about 40-60 cm burial depth, and the surface agricultural soil exhibited moderate to heavy contamination level, whereas the contamination level was insignificant below 1 m, reflecting As migration was relatively limited throughout the soil profile. Sequential extraction showed Fe/Al-bound As was the predominant fraction, and poorly-crystalline Fe minerals adsorbed 33.23-73.13% of soil As. Oxygen-susceptible surface soil formed poorly-crystalline Fe3+ minerals, greatly reducing downward migration of arsenic. However, the reduction of oxidizing conditions below 2 m soil depth may promote As activity and require attention.
Collapse
Affiliation(s)
- Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026, China
| | - Hongjie Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
3
|
Ji C, Zhu Y, Zhao S, Zhang H, Wang S, Zhou J, Liu X, Zhang Y, Liu X. Arsenic and heavy metals at Japanese abandoned chemical weapons site in China: distribution characterization, source identification and contamination risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3069-3087. [PMID: 36153764 DOI: 10.1007/s10653-022-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
As-containing chemical weapons (CWs) and their degraded products pose a great threat to the environment and to human health. In this study, concentration and distribution characteristics, source identification, and health risk assessments were determined for As, Cr, Ni, Cu, Zn, Cd and Pb in environmental samples from Lianhuapao (LHP), a typical site of Japanese abandoned chemical weapons (JACWs) in China. The results show that the concentration levels of As, Cr and Ni in the LHP soils are abnormally high, with 69.57%, 83.33% and 91.67%, respectively, of the total sample exceeding the risk screening values for soil contamination of agricultural land. As levels in water samples were generally within safety limits, with the exception of perched water in the core contamination area. In the study area, none of the dominant plant species were enriched with As, except for the Pteris vittata L. Pentavalent arsenic was found to be the predominant arsenic species in the topsoil and water samples. Source identification using statistical approaches indicated that the concentrations of As, Pb, Cu, Cd and Zn are likely influenced by JACWs, while Cr and Ni levels may be related to the natural weathering process. The total concentrations of As, Cr and Ni showed a significant degree of contamination, but only As displayed high potential ecological risk. The calculated indexes of health risk evaluation strongly indicate an unacceptable carcinogenic risk (1E-04) to children, and higher non-carcinogenic risk, relative to that of adults. Our data indicate that the health risk from the resulting As contamination is still a cause for concern, although the JACWs were excavated decades ago from these soils.
Collapse
Affiliation(s)
- Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jun Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, 230026, Anhui, China
| | - Xiangcui Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
4
|
Ciampi P, Esposito C, Bartsch E, Alesi EJ, Rehner G, Morettin P, Pellegrini M, Olivieri S, Ranaldo M, Liali G, Papini MP. A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®). ENVIRONMENTAL RESEARCH 2023; 217:114827. [PMID: 36410461 DOI: 10.1016/j.envres.2022.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Persistent arsenic (As) pollution sources from anthropogenic activities pose a serious threat to groundwater quality. This work aims to illustrate the application of an innovative remediation technology to remove As from a heavily contaminated fractured aquifer at a historically polluted industrial site. Groundwater circulation well (GCW) technology was tested to significantly increase and accelerate the mobilization and removal of As in the source area. The GCW extracts and re-injects groundwater at different depths of a vertical circulation well. By pumping out and reinjecting in different screen sections of the well, the resulting vertical hydraulic gradients create recirculation cells and affect and mobilize trapped contaminants that cannot be influenced by traditional pumping systems. The first 45-m deep IEG-GCW® system was installed in 2020, equipped with 4 screen sections at different depths and with an above-ground As removal system by oxidation and filtration on Macrolite (Enki). A geomodeling approach supports both remediation and multi-source data interpretation. The first months of operation demonstrate the hydraulic effectiveness of the IEG-GCW® system in the fractured rock aquifer and the ability to significantly enhance As removal compared to conventional pumping wells currently feeding a centralized treatment system. The recirculation flow rate amounts to about 2 m3/h. Water pumped and treated by the GCW system is reintroduced with As concentrations reduced by an average of 20%-60%. During the pilot test, the recirculating system removed 23 kg As whilst the entire central pump-and-treat (P&T) system removed 129 kg, although it treated 100 times more water volume. The P&T plant removed 259 mg As per m3 of pumped and treated groundwater while the GCW removed 4814 mg As per m3 of the treated groundwater. The results offer the opportunity for a more environmentally sustainable remediation approach by actively attacking the contamination source rather than containing the plume.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Ernst Bartsch
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Gert Rehner
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Piero Morettin
- Enki Ambiente Srl, Via Zandonai 6, 30174, Mestre, Italy.
| | | | | | | | | | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
5
|
Battaglia-Brunet F, Naveau A, Cary L, Bueno M, Briais J, Charron M, Joulian C, Thouin H. Biogeochemical behaviour of geogenic As in a confined aquifer of the Sologne region, France. CHEMOSPHERE 2022; 304:135252. [PMID: 35691389 DOI: 10.1016/j.chemosphere.2022.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is one of the main toxic elements of geogenic origin that impact groundwater quality and human health worldwide. In some groundwater wells of the Sologne region (Val de Loire, France), drilled in a confined aquifer, As concentrations exceed the European drinking water standard (10 μg L-1). The monitoring of one of these drinking water wells showed As concentrations in the range 20-25 μg L-1. The presence of dissolved iron (Fe), low oxygen concentration and traces of ammonium indicated reducing conditions. The δ34SSO4 was anticorrelated with sulphate concentration. Drilling allowed to collect detrital material corresponding to a Miocene floodplain and crevasse splay with preserved plant debris. The level that contained the highest total As concentration was a silty-sandy clay containing 26.9 mg kg-1 As. The influence of alternating redox conditions on the behaviour of As was studied by incubating this material with site groundwater, in biotic or inhibited bacterial activities conditions, without synthetic organic nutrient supply, in presence of H2 during the reducing periods. The development of both AsV-reducing and AsIII-oxidising microorganisms in biotic conditions was evidenced. At the end of the reducing periods, total As concentration strongly increased in biotic conditions. The microflora influenced As speciation, released Fe and consumed nitrate and sulphate in the water phase. Microbial communities observed in groundwater samples strongly differed from those obtained at the end of the incubation experiment, this result being potentially related to influence of the sediment compartment and to different physico-chemical conditions. However, both included major Operating Taxonomic Units (OTU) potentially involved in Fe and S biogeocycles. Methanogens emerged in the incubated sediment presenting the highest solubilised As and Fe. Results support the hypothesis of in-situ As mobilisation and speciation mediated by active biogeochemical processes.
Collapse
Affiliation(s)
- Fabienne Battaglia-Brunet
- BRGM, F-45060, Orléans, France; ISTO, UMR7327, Université D'Orléans, CNRS, BRGM, F-45071, Orléans, France.
| | - Aude Naveau
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers/CNRS, UMR 7285, Rue Michel Brunet, F-86022, Poitiers Cedex, France
| | | | - Maïté Bueno
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physicochimie pour L'Environnement et Les Matériaux-IPREM, UMR5254, 64000, Pau, France
| | | | | | | | | |
Collapse
|
6
|
Loukola-Ruskeeniemi K, Müller I, Reichel S, Jones C, Battaglia-Brunet F, Elert M, Le Guédard M, Hatakka T, Hellal J, Jordan I, Kaija J, Keiski RL, Pinka J, Tarvainen T, Turkki A, Turpeinen E, Valkama H. Risk management for arsenic in agricultural soil-water systems: lessons learned from case studies in Europe. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127677. [PMID: 34774350 DOI: 10.1016/j.jhazmat.2021.127677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chronic exposure to arsenic may be detrimental to health. We investigated the behaviour, remediation and risk management of arsenic in Freiberg, Germany, characterized by past mining activities, and near Verdun in France, where World War I ammunition was destroyed. The main results included: (1) pot experiments using a biologically synthesized adsorbent (sorpP) with spring barley reduced the mobility of arsenic, (2) the Omega-3 Index ecotoxicological tests verified that sorpP reduced the uptake and toxicity of arsenic in plants, (3) reverse osmosis membrane systems provided 99.5% removal efficiency of arsenic from surface water, (4) the sustainability assessment revealed that adsorption and coagulation-filtration processes were the most feasible options for the treatment of surface waters with significant arsenic concentrations, and (5) a model was developed for assessing health risk due to arsenic exposure. Risk management is the main option for extensive areas, while remediation options that directly treat the soil can only be considered in small areas subject to sensitive use. We recommend the risk management procedure developed in Germany for other parts of the world where both geogenic and anthropogenic arsenic is present in agricultural soil and water. Risk management measures have been successful both in Freiberg and in Verdun.
Collapse
Affiliation(s)
| | - Ingo Müller
- Saxon State Office for Environment, Agriculture and Geology, Dep. 42 Soil, Contaminated Sites, Halsbrückerstr. 31a, 09599 Freiberg, Germany
| | - Susan Reichel
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Celia Jones
- Kemakta Konsult AB, Box 126 55, 112 93 Stockholm, Sweden
| | | | - Mark Elert
- Kemakta Konsult AB, Box 126 55, 112 93 Stockholm, Sweden
| | - Marina Le Guédard
- LEB Aquitaine Transfert-ADERA, 71. Avenue Edouard Bourlaux, CS20032, 33140 Villenave d'Ornon, France
| | - Tarja Hatakka
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Jennifer Hellal
- BRGM, 3 avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Isabel Jordan
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Juha Kaija
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Riitta L Keiski
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Jana Pinka
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Timo Tarvainen
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Auli Turkki
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Esa Turpeinen
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Hanna Valkama
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| |
Collapse
|
7
|
Sowers TD, Nelson CM, Blackmon MD, Jerden ML, Kirby AM, Diamond GL, Bradham KD. Interconnected soil iron and arsenic speciation effects on arsenic bioaccessibility and bioavailability: a scoping review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:1-22. [PMID: 34706629 PMCID: PMC9850428 DOI: 10.1080/10937404.2021.1996499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extensive research has examined arsenic (As) bioavailability in contaminated soils and is routinely assessed using in vitro bioaccessibility (IVBA) assays. Analysis of differences in bioaccessibility measurements across IVBA assays and phases is expected to provide valuable insights into geochemical mechanisms controlling soil As bioaccessibility and bioavailability. Soil iron (Fe) content and As speciation are expected to significantly influence IVBA gastric and intestinal phases due to fluctuations in precipitation-dissolution chemistry and sorption reactivity as pH and assay chemical complexity changes. The aim of this review was to examine these relationships by 1) conducting a meta-analysis (n = 47 soils) determining the influence of total Fe on As bioaccessibility measurements and 5 IVBA assays and 2) investigating the effect of As speciation on gastric/intestinal phase IVBA and in vitro-in vivo correlations. Our findings indicate that soil Fe content and As speciation heterogeneity are important in elucidating variability of bioaccessibility measurements across IVBA assays and gastrointestinal phases. Greater focus on coupled As speciation and Fe precipitation chemistry may (1) improve our understanding of soil geochemical factors and assay constituents that influence As in vitro-in vivo correlations and (2) resolve variability in the precision of oral relative bioavailability (RBA) estimated using IVBA assays for soils possessing heterogenous As speciation and Fe composition.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, US
| | | | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, US
| | | | | | | | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, US
| |
Collapse
|
8
|
Battaglia-Brunet F, Le Guédard M, Faure O, Charron M, Hube D, Devau N, Joulian C, Thouin H, Hellal J. Influence of agricultural amendments on arsenic biogeochemistry and phytotoxicity in a soil polluted by the destruction of arsenic-containing shells. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124580. [PMID: 33248819 DOI: 10.1016/j.jhazmat.2020.124580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 10/05/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Agricultural soils can contain high arsenic (As) concentrations due to specific geological contexts or pollution. Fertilizer amendments could influence As speciation and mobility thus increasing its transfer to crops and its toxicity. In the present study, field-relevant amounts of fertilizers were applied to soils from a cultivated field that was a former ammunition-burning site. Potassium phosphate (KP), ammonium sulfate and organic matter (OM) were applied to these soils in laboratory experiments to assess their impact on As leaching, bioavailability to Lactuca sativa and microbial parameters. None of the fertilizers markedly influenced As speciation and mobility, although trends showed an increase of mobility with KP and a decrease of mobility with ammonium sulfate. Moreover, KP induced a small increase of As in Lactuca sativa, and the polluted soil amended with ammonium sulfate was significantly less phytotoxic than the un-amended soil. Most probable numbers of AsIII-oxidizing microbes and AsIII-oxidizing activity were strongly linked to As levels in water and soils. Ammonium sulfate negatively affected AsIII-oxidizing activity in the un-polluted soil. Whereas no significant effect on As speciation in water could be detected, amendments may have an impact in the long term.
Collapse
Affiliation(s)
| | - Marina Le Guédard
- LEB Aquitaine Transfert - ADERA, 71 Avenue Edouard Bourlaux, CS20032, 33140 Villenave d'Ornon, France; University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France
| | - Olivier Faure
- Mines Saint-Etienne, Univ Lyon, Univ Jean Moulin, Univ Lumière, Univ Jean Monnet, ENTPE, INSA Lyon, ENS Lyon, CNRS, UMR 5600 EVS, Centre SPIN, Departement PEG, F-42023 Saint-Etienne, France
| | - Mickael Charron
- French Geological Survey (BRGM), 3 Avenue Claude Guillemin, 45060 Orléans Cedex 02, France
| | - Daniel Hube
- French Geological Survey (BRGM), 3 Avenue Claude Guillemin, 45060 Orléans Cedex 02, France
| | - Nicolas Devau
- French Geological Survey (BRGM), 3 Avenue Claude Guillemin, 45060 Orléans Cedex 02, France
| | - Catherine Joulian
- French Geological Survey (BRGM), 3 Avenue Claude Guillemin, 45060 Orléans Cedex 02, France
| | - Hugues Thouin
- French Geological Survey (BRGM), 3 Avenue Claude Guillemin, 45060 Orléans Cedex 02, France
| | - Jennifer Hellal
- French Geological Survey (BRGM), 3 Avenue Claude Guillemin, 45060 Orléans Cedex 02, France
| |
Collapse
|
9
|
Zhang F, Battaglia-Brunet F, Hellal J, Joulian C, Gautret P, Motelica-Heino M. Impact of Fe(III) (Oxyhydr)oxides Mineralogy on Iron Solubilization and Associated Microbial Communities. Front Microbiol 2020; 11:571244. [PMID: 33329429 PMCID: PMC7715016 DOI: 10.3389/fmicb.2020.571244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Iron-reducing bacteria (IRB) are strongly involved in Fe cycling in surface environments. Transformation of Fe and associated trace elements is strongly linked to the reactivity of various iron minerals. Mechanisms of Fe (oxyhydr)oxides bio-reduction have been mostly elucidated with pure bacterial strains belonging to Geobacter or Shewanella genera, whereas studies involving mixed IRB populations remain scarce. The present study aimed to evaluate the iron reducing rates of IRB enriched consortia originating from complex environmental samples, when grown in presence of Fe (oxyhydr)oxides of different mineralogy. The abundances of Geobacter and Shewanella were assessed in order to acquire knowledge about the abundance of these two genera in relation to the effects of mixed IRB populations on kinetic control of mineralogical Fe (oxyhydr)oxides reductive dissolution. Laboratory experiments were carried out with two freshly synthetized Fe (oxyhydr)oxides presenting contrasting specific surfaces, and two defined Fe-oxides, i.e., goethite and hematite. Three IRB consortia were enriched from environmental samples from a riverbank subjected to cyclic redox oscillations related to flooding periods (Decize, France): an unsaturated surface soil, a flooded surface soil and an aquatic sediment, with a mixture of organic compounds provided as electron donors. The consortia could all reduce iron-nitrilotriacetate acid (Fe(III)-NTA) in 1–2 days. When grown on Fe (oxyhydr)oxides, Fe solubilization rates decreased as follows: fresh Fe (oxyhydr)oxides > goethite > hematite. Based on a bacterial rrs gene fingerprinting approach (CE-SSCP), bacterial community structure in presence of Fe(III)-minerals was similar to those of the site sample communities from which they originated but differed from that of the Fe(III)-NTA enrichments. Shewanella was more abundant than Geobacter in all cultures. Its abundance was higher in presence of the most efficiently reduced Fe (oxyhydr)oxide than with other Fe(III)-minerals. Geobacter as a proportion of the total community was highest in the presence of the least easily solubilized Fe (oxyhydr)oxides. This study highlights the influence of Fe mineralogy on the abundance of Geobacter and Shewanella in relation to Fe bio-reduction kinetics in presence of a complex mixture of electron donors.
Collapse
Affiliation(s)
- Fengfeng Zhang
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, Orléans, France.,BRGM, Orléans, France
| | | | | | | | | | | |
Collapse
|
10
|
Park J, Chung H, Kim SH, An J, Nam K. Effect of neutralizing agents on the type of As co-precipitates formed by in situ Fe oxides synthesis and its impact on the bioaccessibility of As in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140686. [PMID: 32673914 DOI: 10.1016/j.scitotenv.2020.140686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The bioaccessibility of heavy metals in soil is closely related to their potential risk. Therefore, developing techniques for reducing it needs considerable attention. In this study, we aimed to co-precipitate soil As(V) through an in situ formation of Fe oxides, thereby reducing its bioaccessibility. Soil As(V) was co-precipitated by introducing 2% Fe-nitrate (w/w) and 30% water (v/w) into soil at pH ~7. Two different neutralizing agents (NaOH and CaO) were used to induce the precipitation of Fe oxides, and their effects on the speciation of As were investigated. In all the stabilized soils, the exchangeable As fraction decreased, and the fraction of As bound to amorphous Fe oxides increased by a factor of more than 1.4. In contrast, a marked decrease in bioaccessibility of As was achieved using NaOH (40% to 7%). X-ray absorption spectroscopy analysis demonstrated that highly bioaccessible forms of calcium iron arsenate (yukonite and arseniosiderite) could be generated in CaO-stabilized soil. Our study found that neutralizing agents may play an important role in stabilizing As(V) and lowering its bioaccessibility through determining the type of formed Fe oxides in soil.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeonyong Chung
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Hyun Kim
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinsung An
- Department of Biological & Environmental Engineering, Semyung University, 65 Semyung-ro, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea.
| | - Kyoungphile Nam
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Soil Contamination in Areas Impacted by Military Activities: A Critical Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Military activities drastically affect soil properties mainly via physical/chemical disturbances during military training and warfare. The present paper aims to review (1) physical/chemical disturbances in soils following military activities, (2) approaches to characterization of contaminated military-impacted sites, and (3) advances in human health risk assessment for evaluating potential adverse impacts. A literature search mainly covering the period 2010–2020 but also including relevant selected papers published before 2010 was conducted. Selected studies (more than 160) were grouped as follows and then reviewed: ~40 on the presence of potentially toxic elements (PTEs), ~20 on energetic compounds (ECs) and chemical warfare agents (CWAs), ~40 on human health risk assessment, and generic limits/legislation, and ~60 supporting studies. Soil physical disturbances (e.g., compaction by military traffic) may drastically affect soil properties (e.g., hydraulic conductivity) causing environmental issues (e.g., increased erosion). Chemical disturbances are caused by the introduction of numerous PTEs, ECs, and CWAs and are of a wide nature. Available generic limits/legislation for these substances is limited, and their contents do not always overlap. Among numerous PTEs in military-impacted zones, Pb seems particularly problematic due to its high toxicity, abundance, and persistence. For ECs and CWAs, their highly variable physiochemical properties and biodegradability govern their specific distribution, environmental fate, and transport. Most site characterization includes proper spatial/vertical profiling, albeit without adequate consideration of contaminant speciation/fractionation. Human health risk assessment studies generally follow an agreed upon framework; however, the depth/adequacy of their use varies. Generic limits/legislation limited to a few countries do not always include all contaminants of concern, their content doesn’t overlap, and scientific basis is not always clear. Thus, a comprehensive scientific framework covering a range of contaminants is needed. Overall, contaminant speciation, fractionation, and mobility have not been fully considered in numerous studies. Chemical speciation and bioaccessibility, which directly affect the results for risk characterization, should be properly integrated into risk assessment processes for accurate results.
Collapse
|
12
|
Garnier R, Mathieu-Huart A, Ronga-Pezeret S, Nouyrigat E, Benoit P, Goullé JP, Granon C, Manel J, Manouchehri N, Nisse P, Normand JC, Roulet A, Simon F, Gabach P, Tournoud C. Exposition de la population française à l’arsenic inorganique. Identification de valeurs toxicologiques de référence. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Michel C, Joulian C, Tris H, Charnois F, Battaglia-Brunet F. Rapid and simple As(III) quantification using a turbidimetric test for the monitoring of microbial arsenic bio-transformation. J Microbiol Methods 2020; 177:106026. [PMID: 32795641 DOI: 10.1016/j.mimet.2020.106026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
A turbidimetric test for rapid quantification of As(III) (detection limit of 3 mg/L, quantification range of 10-100 mg/L) in liquid growth medium was developed for assessing and monitoring microbial As(III)-oxidizing and As(V)-reducing activities. This test is based on As(III) chelation with pyrrolidine dithiocarbamate followed by spectrometric measurement of absorbance, and was validated by comparison with AAS quantification of As after As(III)/As(V) separation.
Collapse
Affiliation(s)
- Caroline Michel
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), GME (Unité Géomicrobiologie et Monitoring Environemental), 3 avenue Claude Guillemin, BP 36000, 45060 Orléans, Cedex 2, France.
| | - Catherine Joulian
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), GME (Unité Géomicrobiologie et Monitoring Environemental), 3 avenue Claude Guillemin, BP 36000, 45060 Orléans, Cedex 2, France
| | - Hafida Tris
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), GME (Unité Géomicrobiologie et Monitoring Environemental), 3 avenue Claude Guillemin, BP 36000, 45060 Orléans, Cedex 2, France
| | - Flavie Charnois
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), GME (Unité Géomicrobiologie et Monitoring Environemental), 3 avenue Claude Guillemin, BP 36000, 45060 Orléans, Cedex 2, France
| | - Fabienne Battaglia-Brunet
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), GME (Unité Géomicrobiologie et Monitoring Environemental), 3 avenue Claude Guillemin, BP 36000, 45060 Orléans, Cedex 2, France
| |
Collapse
|
14
|
Gattullo CE, Allegretta I, Porfido C, Rascio I, Spagnuolo M, Terzano R. Assessing chromium pollution and natural stabilization processes in agricultural soils by bulk and micro X-ray analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22967-22979. [PMID: 32323242 DOI: 10.1007/s11356-020-08857-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
A combined approach based on multiple X-ray analytical techniques and conventional methods was adopted to investigate the distribution and speciation of Cr in a polluted agricultural soil, from the bulk-scale down to the (sub)micro-level. Soil samples were collected from two different points, together with a control sample taken from a nearby unpolluted site. The bulk characterization revealed that the polluted soils contained much higher concentrations of organic matter (OM) and potentially toxic elements (PTE) than the control. Chromium was the most abundant PTE (up to 5160 g kg-1), and was present only as Cr(III), as its oxidation to Cr(VI) was hindered by the high OM content. According to sequential extractions, Cr was mainly associated to the soil oxidisable fraction (74%) and to the residual fraction (25%). The amount of Cr potentially bioavailable for plant uptake (DTPA-extractable) was negligible. Characterization of soil thin sections by micro X-ray fluorescence (μXRF) and field emission scanning electron microscopy coupled with microanalysis (FEGSEM-EDX) showed that Cr was mainly distributed in aggregates ranging from tens micrometres to few millimetres in size. These aggregates were coated with an aluminosilicate layer and contained, in the inner part, Cr, Ca, Zn, P, S and Fe. Hyperspectral elaboration of μXRF data revealed that polluted soils were characterised by an exogenous organic-rich fraction containing Cr (not present in the control), and an endogenous aluminosilicate fraction (present also in the control), coating the Cr-containing aggregates. Analyses by high-resolution micro X-ray computed tomography (μCT) revealed a different morphology of the soil aggregates in polluted soils compared with the control. The finding of microscopic leather residues, combined with the results of bulk- and micro-characterizations, suggested that Cr pollution was likely ascribable to soil amendment with tannery waste-derived matrices. However, over the years, a natural process of Cr stabilization occurred in the soil thus reducing the environmental risks.
Collapse
Affiliation(s)
- Concetta Eliana Gattullo
- Department of Soil, Plant and Food Sciences, University of Bari "A. Moro", Via G. Amendola n. 165/A, 70126, Bari, Italy.
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Sciences, University of Bari "A. Moro", Via G. Amendola n. 165/A, 70126, Bari, Italy
| | - Carlo Porfido
- Department of Soil, Plant and Food Sciences, University of Bari "A. Moro", Via G. Amendola n. 165/A, 70126, Bari, Italy
| | - Ida Rascio
- Department of Soil, Plant and Food Sciences, University of Bari "A. Moro", Via G. Amendola n. 165/A, 70126, Bari, Italy
| | - Matteo Spagnuolo
- Department of Soil, Plant and Food Sciences, University of Bari "A. Moro", Via G. Amendola n. 165/A, 70126, Bari, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari "A. Moro", Via G. Amendola n. 165/A, 70126, Bari, Italy
| |
Collapse
|
15
|
Thouin H, Battaglia-Brunet F, Norini MP, Joulian C, Hellal J, Le Forestier L, Dupraz S, Gautret P. Microbial community response to environmental changes in a technosol historically contaminated by the burning of chemical ammunitions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134108. [PMID: 32380607 DOI: 10.1016/j.scitotenv.2019.134108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
The burning of chemical weapons in the 1926-1928 period produced polluted technosols with elevated levels of arsenic, zinc, lead and copper. During an eight-month mesocosm experiment, these soils were submitted to two controlled environmental changes, namely the alternation of dry and water-saturated conditions and the addition of fragmented organic forest litter to the surface soil. We investigated, by sequencing the gene coding 16S rRNA and 18S rRNA, (1) the structure of the prokaryotic and eukaryotic community in this polluted technosol and (2) their response to the simulated environmental changes, in the four distinct layers of the mesocosm. In spite of the high concentrations of toxic elements, microbial diversity was found to be similar to that of non-polluted soils. The bacterial community was dominated by Proteobacteria, Acidobacteria and Bacteroidetes, while the fungal community was dominated by Ascomicota. Amongst the most abundant bacterial Operational Taxonomic Units (OTUs), including Sphingomonas as a major genus, some were common to soil environments in general whereas a few, such as organisms related to Leptospirillum and Acidiferrobacter, seemed to be more specific to the geochemical context. Evolution of the microbial abundance and community structures shed light on modifications induced by water saturation and the addition of forest litter to the soil surface. Co-inertia analysis suggests a relationship between the physico-chemical parameters total organic carbon, Zn, NH4+ and As(III) concentrations and the bacterial community structure. Both these results imply that microbial community dynamics linked to environmental changes should be considered as factors influencing the behavior of toxic elements on former ammunition burning sites.
Collapse
Affiliation(s)
- Hugues Thouin
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France.
| | - Fabienne Battaglia-Brunet
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | | | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | | | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| |
Collapse
|
16
|
Abstract
Armed conflict regularly presents extremely adverse circumstances not only for combatants, but also for civilians. In fact, estimates from various wars over the past 70 years suggest that noncombatants comprise the majority of casualties. For survivors, war's effects are often embodied, leaving long-term effects on health and biology. Some of these effects, such as injuries and psychological trauma, are well known. Yet other effects may be subtle and may be elucidated by a developmental biological perspective. In early life, when growth rates are highest, conditions of war may have their greatest impact. Depending on local circumstances, a developing embryo, infant, or child growing in a place embroiled in armed conflict is likely to face—directly or indirectly—various stressors, including malnutrition, infectious disease, and/or psychological stress. Thus, the conditions of war and forced displacement may become embodied, getting under the skin for fundamental biological reasons.
Collapse
Affiliation(s)
- Patrick F. Clarkin
- Department of Anthropology, University of Massachusetts, Boston, Massachusetts 02125-3393, USA
| |
Collapse
|
17
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Spanò N, Cappello T. First report of geochemical fractionation distribution, bioavailability and risk assessment of potentially toxic inorganic elements in sediments of coral reef Islands of the Persian Gulf, Iran. MARINE POLLUTION BULLETIN 2018; 137:185-197. [PMID: 30503425 DOI: 10.1016/j.marpolbul.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
Metal contamination is a serious environmental concern in the Middle East. Herein, geochemical fractionation distribution and potential sources of thirteen metals (Fe, Al, Mn, Zn, Cu, Co, Cr, Ni, V, As, Hg, Pb and Cd) were investigated in sediments from ten coral reef Islands in the Persian Gulf, Iran. To properly assess availability and mobility of elements, enrichment factor (EF), pollution load index (PLI), pollution index (PI), contamination index (CI), sediment pollution index (SPI) and ecological risk assessment were provided. Sediment grain size showed an outstanding role in controlling the levels of potentially toxic inorganic elements (PTIEs). The highest values of total organic matter (TOM) were detected in Kharg and Lavan Islands. Different metals fractionation distribution was found across sites. As was noticed in carbonate (F2), exchangeable (F1), Fe-Mn oxy-hydroxide (F3), organic (F4) and residual (F5) fractions, Hg primarily associated with F2 and F1, whereas Pb and Cd with F2, followed by F1, F3, F5 and F4. Conversely, Ni and V accumulated in F1, suggesting their high mobility and bioavailability, and thus environmental risk to aquatic biota. All metals (except Al, Fe and As) had geological and anthropogenic sources. Based on modified risk assessment analysis, the sediments from Kharg, Lavan, Siri and Lark Islands showed medium adverse effects. Overall, results from this study corroborate that petroleum industry is the main source of pollution of PTIEs in the Persian Gulf, and offer a scientific basis for monitoring and preventing metal pollution in the environment.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
18
|
Thouin H, Battaglia-Brunet F, Norini MP, Le Forestier L, Charron M, Dupraz S, Gautret P. Influence of environmental changes on the biogeochemistry of arsenic in a soil polluted by the destruction of chemical weapons: A mesocosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:216-226. [PMID: 29426144 DOI: 10.1016/j.scitotenv.2018.01.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Thermal destruction of chemical munitions from World War I led to the formation of a heavily contaminated residue that contains an unexpected mineral association in which a microbial As transformation has been observed. A mesocosm study was conducted to assess the impact of water saturation episodes and input of bioavailable organic matter (OM) on pollutant behavior in relation to biogeochemical parameters. Over a period of about eight (8) months, the contaminated soil was subjected to cycles of dry and wet periods corresponding to water table level variations. After the first four (4) months, fragmented litter from the nearby forest was placed on top of the soil. The mesocosm solid phase was sampled by three rounds of coring: at the beginning of the experiment, after four (4) months (before the addition of OM), and at the end of the experiment. Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy observations showed that an amorphous phase, which was the primary carrier of As, Zn, and Cu, was unstable under water-saturated conditions and released a portion of the contaminants in solution. Precipitation of a lead arsenate chloride mineral, mimetite, in soils within the water saturated level caused the immobilization of As and Pb. Mimetite is a durable trap because of its large stability domain; however, this precipitation was limited by a low Pb concentration inducing that high amounts of As remained in solution. The addition of forest litter modified the quantities and qualities of soil OM. Microbial As transformation was affected by the addition of OM, which increased the concentration of both As(III)-oxidizing and As(V)-reducing microorganisms. The addition of OM negatively impacted the As(III) oxidizing rate, however As(III) oxidation was still the dominant reaction in accordance with the formation of arsenate-bearing minerals.
Collapse
Affiliation(s)
- Hugues Thouin
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France.
| | - Fabienne Battaglia-Brunet
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | - Marie-Paule Norini
- Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | - Lydie Le Forestier
- Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | | | | | - Pascale Gautret
- Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| |
Collapse
|
19
|
Thouin H, Battaglia-Brunet F, Gautret P, Le Forestier L, Breeze D, Séby F, Norini MP, Dupraz S. Effect of water table variations and input of natural organic matter on the cycles of C and N, and mobility of As, Zn and Cu from a soil impacted by the burning of chemical warfare agents: A mesocosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:279-293. [PMID: 28384583 DOI: 10.1016/j.scitotenv.2017.03.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
A mesocosm study was conducted to assess the impact of water saturation episodes and of the input of bioavailable organic matter on the biogeochemical cycles of C and N, and on the behavior of metal(loid)s in a soil highly contaminated by the destruction of arsenical shells. An instrumented mesocosm was filled with contaminated soil taken from the "Place-à-Gaz" site. Four cycles of dry and wet periods of about one month were simulated for 276days. After two dry/wet cycles, organic litter sampled on the site was added above the topsoil. The nitrogen cycle was the most impacted by the wet/dry cycles, as evidenced by a denitrification microbial process in the saturated level. The concentrations of the two most mobile pollutants, Zn and As, in the soil water and in the mesocosm leachate were, respectively, in the 0.3-1.6mM and 20-110μM ranges. After 8months of experiment, about 83g·m-3 of Zn and 3.5g·m-3 of As were leached from the soil. These important quantities represent <1% of the solid stock of this contaminant. Dry/wet cycles had no major effect on Zn mobility. However, soil saturation induced the immobilization of As by trapping As V but enhanced As III mobility. These phenomena were amplified by the presence of bioavailable organic matter. The study showed that the natural deposition of forest organic litter allowed a part of the soil's biological function to be restored but did not immobilize all the Zn and As, and even contributed to transport of As III to the surrounding environment. The main hazard of this type of site, contaminated by organo-arsenic chemical weapons, is the constitution of a stock of As that may leach into the surrounding environment for several hundred years.
Collapse
Affiliation(s)
- Hugues Thouin
- BRGM, 3 Avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France.
| | - Fabienne Battaglia-Brunet
- BRGM, 3 Avenue Claude Guillemin, 45060 Orléans, France; Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | - Pascale Gautret
- Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | - Lydie Le Forestier
- Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | | | - Fabienne Séby
- UT2A, Hélioparc Pau Pyrénées, 2 avenue du président Angot, 64053 Pau, France
| | - Marie-Paule Norini
- Université d'Orléans, ISTO, UMR 7327, 45071 Orléans, France; CNRS, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
| | | |
Collapse
|