1
|
Liu JL, Yao J, Zhou DL, Liu B, Liu H, Li M, Zhao C, Sunahara G, Duran R. Mining-related multi-resistance genes in sulfate-reducing bacteria treatment of typical karst nonferrous metal(loid) mine tailings in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104753-104766. [PMID: 37707732 DOI: 10.1007/s11356-023-29203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
Management of tailings at metal mine smelter sites can reduce the potential hazards associated with exposure to toxic metal(loid)s and residual organic flotation reagents. In addition, microbes in the tailings harboring multi-resistance genes (e.g., tolerance to multiple antimicrobial agents) can cause high rates of morbidity and global economic problems. The potential co-selection mechanisms of antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) during tailings sulfate-reducing bacteria (SRB) treatment have been poorly investigated. Samples were collected from a nonferrous metal mine tailing site treated with an established SRB protocol and were analyzed for selected geochemical properties and high throughput sequencing of 16S rRNA gene barcoding. Based on the shotgun metagenomic analysis, the bacterial domain was dominant in nonferrous metal(loid)-rich tailings treated with SRB for 12 months. KEGGs related to ARGs and MRGs were detected. Thiobacillus and Sphingomonas were the main genera carrying the bacA and mexEF resistance operons, along with Sulfuricella which were also found as the main genera carrying MRGs. The SRB treatment may mediate the distribution of numerous resistance genes. KOs based on the metagenomic database indicated that ARGs (mexNW, merD, sul, and bla) and MRGs (czcABCR and copRS genes) were found on the same contig. The SRB strains (Desulfosporosinus and Desulfotomaculum), and the acidophilic strain Acidiphilium significantly contributed to the distribution of sul genes. The functional metabolic pathways related to siderophores metabolism were largely from anaerobic genera of Streptomyces and Microbacterium. The presence of arsenate reductase, metal efflux pump, and Fe transport genes indicated that SRB treatment plays a key role in the metal(loid)s transformation. Overall, our findings show that bio-treatment is an effective tool for managing ARGs/MRGs and metals in tailings that contain numerous metal(loid) contaminants.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - De-Liang Zhou
- Beijing Zhongdianyida Technology Co., Ltd, Beijing, 100190, China
| | - Bang Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Houquan Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
2
|
Durrieu G, Layglon N, D'Onofrio S, Oursel B, Omanović D, Garnier C, Mounier S. Extreme hydrological regimes of a small urban river: impact on trace element partitioning, enrichment and fluxes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1092. [PMID: 37620680 DOI: 10.1007/s10661-023-11622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
The input of trace elements from a small urban river (Las River, Toulon, France) located on the northern Mediterranean coast was studied during both base flow and flood events. A 2-year monitoring period of water flow and suspended particulate matter (SPM) showed a typical Mediterranean hydrological regime: a strong increase in water flow and SPM during short flood periods. During the flood event, an up to 2-fold increase in dissolved trace element (DTM) concentrations and particulate trace element content in SPM (PTM) was observed compared to the baseline discharge. The enrichment factor of elements in the SPM ranges from low or moderate for Co, Ni and Cr (1.0-4.7) to extremely high for Cd (157). However, the enrichment factors decrease from base flow to flood, indicating a dilution effect with a large yield of weathering particles with higher particle size. The most significant total trace element loading occurred during flood, ranging from 78% for As and Ni to 91% for Pb, while PTM loading during flood ranged from 35% for As to 77% for Pb. The specific dissolved fluxes during the flood are significantly higher for Pb, Cu and Zn than in the surrounding rivers, indicating specificity in the catchment (lithology). This study shows the importance of monitoring the transport of pollutants through small urban rivers and their potential impact on the coastal region, especially when they enter small and closed bays, as a receiving pool.
Collapse
Affiliation(s)
- Gaël Durrieu
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France.
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland
| | | | - Benjamin Oursel
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002, Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| | - Stéphane Mounier
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| |
Collapse
|
3
|
Veloso S, Amouroux D, Lanceleur L, Cagnon C, Monperrus M, Deborde J, Laureau CC, Duran R. Keystone microbial taxa organize micropollutant-related modules shaping the microbial community structure in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130858. [PMID: 36706488 DOI: 10.1016/j.jhazmat.2023.130858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The fluctuation of environmental conditions drives the structure of microbial communities in estuaries, highly dynamic ecosystems. Microorganisms inhabiting estuarine sediments play a key role in ecosystem functioning. They are well adapted to the changing conditions, also threatened by the presence of pollutants. In order to determine the environmental characteristics driving the organization of the microbial assemblages, we conducted a seasonal survey along the Adour Estuary (Bay of Biscay, France) using 16S rRNA gene Illumina sequencing. Microbial diversity data were combined with a set of chemical analyses targeting metals and pharmaceuticals. Microbial communities were largely dominated by Proteobacteria (41 %) and Bacteroidota (32 %), showing a strong organization according to season, with an important shift in winter. The composition of microbial communities showed spatial distribution according to three main areas (upstream, middle, and downstream estuary) revealing the influence of the Adour River. Further analyses indicated that the microbial community was influenced by biogeochemical parameters (Corg/Norg and δ13C) and micropollutants, including metals (As, Cu, Mn, Sn, Ti, and Zn) and pharmaceuticals (norfloxacin, oxolinic acid and trimethoprim). Network analysis revealed specific modules, organized around keystone taxa, linked to a pollutant type, providing information of paramount importance to understand the microbial ecology in estuarine ecosystems.
Collapse
Affiliation(s)
- Sandrine Veloso
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Laurent Lanceleur
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Anglet, France
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Mathilde Monperrus
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Anglet, France
| | - Jonathan Deborde
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Anglet, France; Ifremer, LITTORAL, Laboratoire Environnement Ressources des Pertuis Charentais, F-17390 La Tremblade, France
| | - Cristiana Cravo Laureau
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| |
Collapse
|
4
|
Lyu L, He Y, Dong C, Li G, Wei G, Shao Z, Zhang S. Characterization of chlorinated paraffin-degrading bacteria from marine estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129699. [PMID: 35963094 DOI: 10.1016/j.jhazmat.2022.129699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
This study explored chlorinated paraffin (CP)-degrading bacteria from the marine environment. Aequorivita, Denitromonas, Parvibaculum, Pseudomonas and Ignavibacterium were selected as the dominant genera after enrichment with chlorinated paraffin 52 (CP52) as the sole carbon source. Eight strains were identified as CP degraders, including Pseudomonas sp. NG6 and NF2, Erythrobacter sp. NG3, Castellaniella sp. NF6, Kordiimonas sp. NE3, Zunongwangia sp. NF12, Zunongwangia sp. NH1 and Chryseoglobus sp. NF13, and their degradation efficiencies ranged from 6.4% to 19.0%. In addition to Pseudomonas, the other six genera of bacteria were first reported to have the degradation ability of CPs. Bacterial categories, carbon-chain lengths and chlorination degrees were three crucial factors affecting the degradation efficiencies of CPs, with their influential ability of chlorinated degrees > bacterial categories > carbon-chain lengths. CP degradation can be performed by producing chlorinated alcohols, chlorinated olefins, dechlorinated alcohols and lower chlorinated CPs. This study will provide valuable information on CP biotransformation and targeted bacterial resources for studying the transformation processes of specific CPs in marine environments.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yufei He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chunming Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guizhen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guangshan Wei
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
5
|
Hafez T, Ortiz-Zarragoitia M, Cagnon C, Cravo-Laureau C, Duran R. Legacy and dispersant influence microbial community dynamics in cold seawater contaminated by crude oil water accommodated fractions. ENVIRONMENTAL RESEARCH 2022; 212:113467. [PMID: 35588780 DOI: 10.1016/j.envres.2022.113467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Dispersants, used for combating oil spills, increase hydrocarbon bioavailability promoting their biodegradation. Oil weathering process introduces harmful soluble hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), into the water column, resulting in water-accommodated fraction (WAF). The presence of dispersants can influence the weathering process by increasing PAHs solubility, toxicity and biodegradability. However, little is known on how dispersants affect microbial communities and their degradation capacities, especially in cold environment where low temperature decreases microbial activity and thus hydrocarbon degradation. Here, we investigated the microbial community dynamics in cold water contaminated by WAF prepared from crude oil with or without a commercial dispersant (Finasol OSR52). The WAFs, prepared with Naphthenic North Atlantic crude oil, were used to contaminate seawater from Norwegian cold sites, one oil-contaminated and the other pristine. The WAF-contaminated seawaters were maintained in microcosms at 4 °C for 21 days. The content of PAHs and microbial compositions (16S rRNA gene sequencing) were determined at days 0, 7, 14 and 21. In addition, the 96 h toxicity assay with adult Acartia tonsa revealed WAFs toxicity at days 0 and 21. The toxicity of WAF mixtures, with and without dispersant, against Acartia tonsa was reduced during the experiment, but PAHs removal was not increased. The water from the oil-contaminated site showed the highest PAHs removal revealing legacy effect (presence of microorganisms adapted to PAHs). Additionally, our results reveal: i) microbial community plasticity allowing the adaptation to the presence of PAHs and dispersant, ii) specific bacteria taxa probably involved in PAHs degradation, and iii) dispersants shape the microbial communities dynamics by stimulating potential dispersant-degrading taxa, such as Fusibacter. Thus, our results provide valuable insights on the role of microbial community in determining the fate of water-solubilized hydrocarbon in cold environment while questioning the role of dispersant used for fighting oil spill.
Collapse
Affiliation(s)
- Tamer Hafez
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU) University of the Basque Country, Areatza z/g, 48620, Plentzia, Bizkaia, Basque Country, Spain; Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM5254, 64000, Pau, France
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU) University of the Basque Country, Areatza z/g, 48620, Plentzia, Bizkaia, Basque Country, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM5254, 64000, Pau, France
| | | | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM5254, 64000, Pau, France.
| |
Collapse
|
6
|
Layglon N, Abdou M, Massa F, Castellano M, Bakker E, Povero P, Tercier-Waeber ML. Speciation of Cu, Cd, Pb and Zn in a contaminated harbor and comparison to environmental quality standards. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115375. [PMID: 35751235 DOI: 10.1016/j.jenvman.2022.115375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The water column of harbors contains significant amounts of (priority) hazardous trace metals that may be released into coastal areas of high societal and economic interests where they may disturb their fragile equilibria. To deepen our understanding of the processes that influence the transport of the various metal fractions and allow for a more rigorous environmental risk assessment, it is important to spatially monitor the relevant chemical speciation of these metals. It is of particular interest to assess their so-called dynamic fraction, which comprises the dissolved chemical forms that are potentially bioavailable to living organisms. In this study this was achieved in the Genoa Harbor (NW Italy) for copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) by applying a multi-method approach. For the first time in this system the dynamic fractions of the target metals (CuDyn, CdDyn, PbDyn, ZnDyn) were observed in real-time on-board by voltammetry using innovative electrochemical sensing devices. Trace metals in the operationally defined dissolved <0.2 μm and <0.02 μm fractions were equally quantified through sampling/laboratory-based techniques. The obtained results showed a clear spatial trend for all studied metals from the enclosed contaminated part of the harbor towards the open part. The highest CuDyn and CdDyn fractions were found in the inner part of the harbor while the highest PbDyn fraction was found in the open part. The proportion of ZnDyn was negligible in the sampled area. Small and coarse colloids were involved in Cu, Cd and Zn partitioning while only coarse colloids played an important role in Pb partitioning. The determined concentrations were compared to the Environmental Quality Standards (EQS) established by the EU and those determined by the Australia and New Zealand to trigger for 99 and 95% species protection values. The results of this work allow us to highlight gaps in the EQS for which metal concentration thresholds are excessively high or non-existent and should urgently be revised. They also reflect the need to quantify the potentially bioavailable fraction of hazardous trace metals instead of just their total dissolved concentrations. The data support the establishment of environmental quality standards and guidelines based on realistic risk assessment to protect aquatic life and resources and ultimately human health.
Collapse
Affiliation(s)
- Nicolas Layglon
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland.
| | - Melina Abdou
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland; CIIMAR, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | | | | | - Eric Bakker
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland
| | - Paolo Povero
- University of Genoa, DISTAV-DCCI, 16132, Genoa, Italy
| | | |
Collapse
|
7
|
Layglon N, Lenoble V, Longo L, D'Onofrio S, Mounier S, Mullot JU, Sartori D, Omanović D, Garnier C, Misson B. Cd transfers during marine sediment resuspension over short and long-term period: Associated risk for coastal water quality. MARINE POLLUTION BULLETIN 2022; 180:113771. [PMID: 35623216 DOI: 10.1016/j.marpolbul.2022.113771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a highly toxic metal, regularly monitored uniformly for water quality across Europe, but scarcely for sediments. This study was designed to compare the kinetics of Cd remobilization and the amplitude of its transfers with different marine sediments. The results showed a highly reproducible transfer kinetics. Dissolved Cd was strongly and quickly removed from the dissolved phase (from 5 min up to 7 h). Then, the dissolved Cd concentration increased progressively to reach a maximal value after two weeks of mixing. The influence of the resuspension intensity representing light wind-induced resuspension up to dredging operations was observed after 2 weeks. The intensity of the sediment resuspension clearly impacted the amplitude of Cd remobilization, dissolved Cd ranging from a few ngL-1 to few hundreds of ngL-1, exceeding the maximal dissolved Cd concentration accepted by the European Union Water Framework Directive (WFD-2008/105 32/EC).
Collapse
Affiliation(s)
- Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France; University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221 Geneva 4, Switzerland.
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Louis Longo
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Stéphane Mounier
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | | | - Davide Sartori
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| |
Collapse
|
8
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
9
|
Djaoudi K, Onrubia JAT, Boukra A, Guesnay L, Portas A, Barry-Martinet R, Angeletti B, Mounier S, Lenoble V, Briand JF. Seawater copper content controls biofilm bioaccumulation and microbial community on microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152278. [PMID: 34902408 DOI: 10.1016/j.scitotenv.2021.152278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The adsorption of trace metals on microplastics (MPs) is affected by the presence of surficial biofilms but their interactions are poorly understood. Here, we present the influence of Cu levels in real seawater (Toulon Bay, NW Mediterranean Sea) on microbial communities and Cu content of the resulting biofilms grown during incubation experiments on high density polyethylene. Two sets of incubation experiments were run with seawater supplied with MPs, sampled in two sites with contrasting Cu levels: Pt12 (most contaminated site) and Pt41P (less contaminated site). For each incubation experiment, 5 treatments were considered differing in Cu concentrations, ranging between 30 and 400 nM and between 6 and 60 nM, for Pt12 and Pt41p, respectively. A control experiment (filtered at 0.2 μm) was run in parallel for each incubation experiment. We observed that, at the time scale of the incubation period, both prokaryotic and eukaryotic richness and diversity were higher in the biofilms formed from the most contaminated site. In addition, we showed that Cu levels are shaping biofilm communities, evidencing co-occurrence patterns between prokaryotes and eukaryotes with diatoms playing a central role. These differences in biofilm formation were reflected in the amount of bioaccumulated Cu per dry weight of MPs, exhibiting higher values in the most contaminated site. Within this site, the increase of Cu seawater content enhanced its bioaccumulation onto MPs until reaching saturation. This study strongly suggests a striking link between seawater copper content, biofilm community shaping and the resulting Cu bioaccumulation onto MPs.
Collapse
Affiliation(s)
- Kahina Djaoudi
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Javier Angel Tesán Onrubia
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Amine Boukra
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Lucas Guesnay
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Aurélie Portas
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | | | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Stéphane Mounier
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | | |
Collapse
|
10
|
Liu D, Xu Y, Faghihinia M, Kay P, Chan FKS, Wu N. Evolving framework of studies on global gulf ecosystems with Sustainable Development Goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18385-18397. [PMID: 35029833 DOI: 10.1007/s11356-021-18005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Gulf ecosystems provide many beneficial services to humanity and play a key role in achieving the Sustainable Development Goals (SDGs). However, the sustainability of gulf ecosystems has been severely threatened by climatic and anthropogenic stresses. Using network analysis of article records downloaded from Web of Science, we summarize the current research framework of gulf ecosystems via the perspectives of research themes, interdisciplinarity, and international collaborations. Research themes involve nutrient and eutrophication, biodiversity, mangrove and sediment pollution, and ecosystem service and climate change. Nevertheless, these themes usually focus on gulf ecosystems themselves with little consideration of their connectivity with other ecosystems. Interdisciplinarity has remained mostly within natural sciences while international collaborations exist mainly between developed and developing countries and among developed countries. Combined with the SDGs, we propose the future research framework where research themes should consider the impacts of terrestrial and freshwater ecosystems on gulf ecosystems at the watershed scale. Interdisciplinarity between natural and social and management sciences needs to be promoted by utilizing the advantages of data sciences. Collaborations with developing countries led by China, Mexico, Brazil, and India need to be strengthened. The evolved research framework could offer decision support for stakeholders to manage gulf ecosystems and achieve the SDGs.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Ave, Jimei District, Xiamen, 361021, Fujian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Ave, Jimei District, Xiamen, 361021, Fujian, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, Zhejiang, China.
| | - Maede Faghihinia
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Ave, Jimei District, Xiamen, 361021, Fujian, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, Zhejiang, China
| | - Paul Kay
- Water@Leeds Research Institute, University of Leeds, Leeds, LS2 9JT, UK
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Faith Ka Shun Chan
- Water@Leeds Research Institute, University of Leeds, Leeds, LS2 9JT, UK
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- School of Geographical Sciences, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
11
|
Yang J, Zhou M, Yu K, Gin KYH, Hassan M, He Y. Heavy metals in a typical city-river-reservoir system of East China: Multi-phase distribution, microbial response and ecological risk. J Environ Sci (China) 2022; 112:343-354. [PMID: 34955217 DOI: 10.1016/j.jes.2021.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/14/2023]
Abstract
The rapid construction of artificial reservoirs in metropolises has promoted the emergence of city-river-reservoir systems worldwide. This study investigated the environmental behaviors and risks of heavy metals in the aquatic environment of a typical system composed of main watersheds in Suzhou and Jinze Reservoir in Shanghai. Results shown that Mn, Zn and Cu were the dominant metals detected in multiple phases. Cd, Mn and Zn were mainly presented in exchangeable fraction and exhibited high bioavailability. Great proportion and high mobility of metals were found in suspended particulate matter (SPM), suggesting that SPM can greatly affect metal multi-phase distribution process. Spatially, city system (CiS) exhibited more serious metal pollution and higher ecological risk than river system (RiS) and reservoir system (ReS) owing to the diverse emission sources. CiS and ReS were regarded as critical pollution source and sink, respectively, while RiS was a vital transportation aisle. Microbial community in sediments exhibited evident spatial variation and obviously modified by exchangeable metals and nutrients. In particular, Bacteroidetes and Firmicutes presented significant positive correlations with most exchangeable metals. Risk assessment implied that As, Sb and Ni in water may pose potential carcinogenic risk to human health. Nevertheless, ReS was in a fairly safe state. Hg was the main risk contributor in SPM, while Cu, Zn, Ni and Sb showed moderate risk in sediments. Overall, Hg, Sb and CiS were screened out as priority metals and system, respectively. More attention should be paid to these priority issues to promote the sustainable development of the watershed.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore
| | - Mingrui Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Muhammad Hassan
- Ecology and Chemical Engineering Department, South Ural State University, Lenin Prospect 76, Chelyabinsk 454080, Russian Federation
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Yan X, An J, Yin Y, Gao C, Wang B, Wei S. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149871. [PMID: 34525770 DOI: 10.1016/j.scitotenv.2021.149871] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal pollution in coastal zone is a global environment problem concerning the international society. As an eco-friendly and economical method, phytoremediation is a promising strategy for improving heavy metal pollution in coastal soil. In order to alleviate the ecological risk of heavy metal pollution in Jinzhou Bay, a typical and important heavy industrial area in China, three local wetland plants (Scirpus validus, Typha orientalis and Phragmites australis) were selected and planted in the field. The plants showed strong tolerance of high concentrations of heavy metals. Stressed by the heavy metals, the root weight of S. validus and P. australis increased 114.74% and 49.91%, respectively. The concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, Hg) accumulated in the plant roots were 4-60 times higher than that in plant shoots. The SEM analysis found that abundant heavy metals were adhered to the root surface closely. Bioconcentration factor of heavy metals on the plant roots were 0.08-0.89 (except Cr, Ni), while the translocation factor from roots to above ground of plants were 0.02-0.27. Furthermore, the wetland plants improved the regional ecological environment quality. The concentrations of heavy metals in the rhizosphere soil decreased significantly. Compared with the bulk soil, the potential ecological risk index in the rhizosphere soil reduced 26.51%-69.14%. Moreover, the microbial diversity in rhizosphere soil increased significantly, and the abundances of Proteobacteria and Bacteroidetes also increased in rhizosphere soil. Pearson correlations indicated that Hg, As, Ni and Cr were negatively correlated with Proteobacteria (p < 0.05), and Cu was significantly negative correlated with Bacteroidetes (p < 0.05). The results support that using suitable local plants is a promising approach for repairing heavy metal contaminated costal soil, not only because it can improve the regional ecological environment quality, but also because it can enhance the landscape value of coastal zone.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongchao Yin
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Chengcheng Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyu Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
13
|
Bourhane Z, Lanzén A, Cagnon C, Ben Said O, Mahmoudi E, Coulon F, Atai E, Borja A, Cravo-Laureau C, Duran R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126789. [PMID: 34365235 DOI: 10.1016/j.jhazmat.2021.126789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/21/2023]
Abstract
Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Christine Cagnon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Emmanuel Atai
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | | | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France.
| |
Collapse
|
14
|
Semanti P, Robin RS, Purvaja R, Ramesh R. Fatty acid signatures of sediment microbial community in the chronically polluted mangrove ecosystem. MARINE POLLUTION BULLETIN 2021; 172:112885. [PMID: 34461371 DOI: 10.1016/j.marpolbul.2021.112885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Phospholipid fatty acid (PLFA) analysis was used to examine variation in the distribution of microbial communities in heavily polluted mangrove sediments of Thane creek, west coast of India. A total of 40 individual PLFAs representing 11 functional groups were identified in the sediment and were mainly dominated by saturated fatty acids (anaerobic prokaryotes) >50%. Significant dominance of PUFA, 16:3 ω6c (34.2%) indicators of micro-eukaryotes, in subsurface depth (p < 0.05) suggests input from the remnants of marine microalgae. Declined mean relative abundance of fungi (<6%) and actinomycetes (<1%) were detected in the sediment indicating their sensitivity to anthropic stressors. Homogenous profile of microbial diversity indicating active bioturbation. Cumulative metabolic stress evident from SAT/MUFA (>1), B/F (>1) and G+/G- (<1) ratio and prolonged hypoxia to be prevalent in the creek during the study. In conclusion, PLFA signatures can thus be used as potential biomarkers of environmental monitoring and proxy for interpreting ecosystem health.
Collapse
Affiliation(s)
- P Semanti
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India.
| |
Collapse
|
15
|
Paix B, Layglon N, Le Poupon C, D'Onofrio S, Misson B, Garnier C, Culioli G, Briand JF. Integration of spatio-temporal variations of surface metabolomes and epibacterial communities highlights the importance of copper stress as a major factor shaping host-microbiota interactions within a Mediterranean seaweed holobiont. MICROBIOME 2021; 9:201. [PMID: 34641951 PMCID: PMC8507236 DOI: 10.1186/s40168-021-01124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although considered as holobionts, macroalgae and their surface microbiota share intimate interactions that are still poorly understood. Little is known on the effect of environmental parameters on the close relationships between the host and its surface-associated microbiota, and even more in a context of coastal pollutions. Therefore, the main objective of this study was to decipher the impact of local environmental parameters, especially trace metal concentrations, on an algal holobiont dynamics using the Phaeophyta Taonia atomaria as a model. Through a multidisciplinary multi-omics approach combining metabarcoding and untargeted LC-MS-based metabolomics, the epibacterial communities and the surface metabolome of T. atomaria were monitored along a spatio-temporal gradient in the bay of Toulon (Northwestern Mediterranean coast) and its surrounding. Indeed, this geographical area displays a well-described trace metal gradient particularly relevant to investigate the effect of such pollutants on marine organisms. RESULTS Epibacterial communities of T. atomaria exhibited a high specificity whatever the five environmentally contrasted collecting sites investigated on the NW Mediterranean coast. By integrating metabarcoding and metabolomics analyses, the holobiont dynamics varied as a whole. During the occurrence period of T. atomaria, epibacterial densities and α-diversity increased while the relative proportion of core communities decreased. Pioneer bacterial colonizers constituted a large part of the specific and core taxa, and their decrease might be linked to biofilm maturation through time. Then, the temporal increase of the Roseobacter was proposed to result from the higher temperature conditions, but also the increased production of dimethylsulfoniopropionate (DMSP) at the algal surface which could constitute of the source of carbon and sulfur for the catabolism pathways of these taxa. Finally, as a major result of this study, copper concentration constituted a key factor shaping the holobiont system. Thus, the higher expression of carotenoids suggested an oxidative stress which might result from an adaptation of the algal surface metabolome to high copper levels. In turn, this change in the surface metabolome composition could result in the selection of particular epibacterial taxa. CONCLUSION We showed that associated epibacterial communities were highly specific to the algal host and that the holobiont dynamics varied as a whole. While temperature increase was confirmed to be one of the main parameters associated to Taonia dynamics, the originality of this study was highlighting copper-stress as a major driver of seaweed-epibacterial interactions. In a context of global change, this study brought new insights on the dynamics of a Mediterranean algal holobiont submitted to heavy anthropic pressures. Video abstract.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France
- Present adress: Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France.
- Present address: Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), UMR CNRS-IRD-Avignon Université-Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|
16
|
Zárate A, Dorador C, Valdés J, Molina V, Icaza G, Pacheco AS, Castillo A. Benthic microbial diversity trends in response to heavy metals in an oxygen-deficient eutrophic bay of the Humboldt current system offshore the Atacama Desert. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117281. [PMID: 33992902 DOI: 10.1016/j.envpol.2021.117281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Mejillones Bay is a coastal ecosystem situated in an oxygen-deficient upwelling area impacted by mining activities in the coastal desert region of northern Chile, where conspicuous microbial life develops in the sediments. Herein, heavy metal (loid)s (HMs) such as Cu, Pb, As, Zn, Al, Fe, Cd, Mo, Ni and V as well as benthic microbial communities were studied using spectrometry and iTag-16 S rRNA sequencing. Samples were taken from two contrasting sedimentary localities in the Bay named Punta Rieles (PR) and Punta Chacaya (PC) within 10-50 m water-depth gradient. PR sediments were organic matter rich (21.1% of TOM at 50 m) and overlaid with low-oxygen waters (<0.06 ml O2/L bottom layer) compared with PC. In general, HMs like Al, Ni, Cd, As and Pb tended to increase in concentration with depth in PR, while the opposite pattern was observed in PC. In addition, PR presented a higher number of unique families (72) compared to PC (35). Among the top ten microbial families, Desulfobulbaceae (4.6% vs. 3.2%), Flavobacteriaceae (2.8% vs. 2.3%) and Anaerolineaceae (3.3% vs. 2.3%) dominated in PR, meanwhile Actinomarinales_Unclassified (8.1% vs. 4.2%) and Sandaracinaceae (4.4% vs. 2.0%) were more abundant in PC. Multivariate analyses confirmed that water depth-related variation was a good proxy for oxygen conditions and metal concentrations, explaining the structure of benthic microbial assemblages. Cd, Ni, As and Pb showed uniformly positive associations with communities that represented the keystone taxa in the co-occurrence network, including Anaerolineaceae, Thiotrichaceae, Desulfobulbaceae, Desulfarculaceae and Bacteroidales_unclassified communities. Collectively, these findings provide new insights for establishing the ecological interconnections of benthic microorganisms in response to metal contamination in a coastal upwelling environment.
Collapse
Affiliation(s)
- Ana Zárate
- Doctorado en Ciencias Aplicadas Mención Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile; Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile; Humedales Del Caribe Colombiano, Universidad Del Atlántico, Barranquilla, Colombia.
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile; Departamento de Biotecnología, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Instituto de Ciencias Naturales A. von Humboldt, Facultad de Ciencias Del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Verónica Molina
- Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Aldo S Pacheco
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alexis Castillo
- Centro de Investigación y Estudios Avanzados Del Maule. Vicerrectoría de Investigación de Investigación y Posgrado. Universidad Católica Del Maule, Campus San Miguel. Talca, Chile
| |
Collapse
|
17
|
Gillmore ML, Golding LA, Chariton AA, Stauber JL, Stephenson S, Gissi F, Greenfield P, Juillot F, Jolley DF. Metabarcoding Reveals Changes in Benthic Eukaryote and Prokaryote Community Composition along a Tropical Marine Sediment Nickel Gradient. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1894-1907. [PMID: 33751674 DOI: 10.1002/etc.5039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The Southeast Asia and Melanesia region has extensive nickel (Ni)-rich lateritic regoliths formed from the tropical weathering of ultramafic rocks. As the global demand for Ni continues to rise, these lateritic regoliths are increasingly being exploited for their economic benefit. Mining of these regoliths contributes to the enrichment of coastal sediments in trace metals, especially Ni. The present study used high-throughput sequencing (metabarcoding) to determine changes in eukaryote (18s v7 recombinant DNA [rDNA] and diatom-specific subregion of the 18s v4 rDNA) and prokaryote (16s v4 rDNA) community compositions along a sediment Ni concentration gradient offshore from a large lateritized ultramafic regolith in New Caledonia (Vavouto Bay). Significant changes in the eukaryote, diatom, and prokaryote community compositions were found along the Ni concentration gradient. These changes correlated most with the dilute-acid extractable concentration of Ni in the sediments, which explained 26, 23, and 19% of the variation for eukaryote, diatom, and prokaryote community compositions, respectively. Univariate analyses showed that there was no consistent change in indices of biodiversity, evenness, or richness. Diatom richness and diversity did, however, decrease as sediment acid extractable-Ni concentrations increased. Threshold indicator taxa analysis was conducted separately for each of the 3 targeted genes to detect changes in taxa whose occurrences decreased or increased along the acid extractable-Ni concentration gradient. Based on these data, 46 mg acid extractable-Ni/kg was determined as a threshold value where sensitive species began to disappear. In the case of the estuarine sediments offshore from lateritized ultramafic regolith in New Caledonia, this is recommended as an interim threshold value until further lines of evidence can contribute to a region-specific Ni sediment quality guideline value. Environ Toxicol Chem 2021;40:1894-1907. © 2021 SETAC.
Collapse
Affiliation(s)
- Megan L Gillmore
- School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Lucas Heights, New South Wales, Australia
| | - Lisa A Golding
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Lucas Heights, New South Wales, Australia
| | - Anthony A Chariton
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jenny L Stauber
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Lucas Heights, New South Wales, Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation Oceans and Atmosphere, Lucas Heights, New South Wales, Australia
| | - Francesca Gissi
- School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Commonwealth Scientific and Industrial Research Organisation Oceans and Atmosphere, Lucas Heights, New South Wales, Australia
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation Energy, North Ryde, New South Wales, Australia
| | - Farid Juillot
- Institut de Recherche pour le Developpement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Noumea, New Caledonia
| | - Dianne F Jolley
- School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
18
|
Li Y, Chen H, Song L, Wu J, Sun W, Teng Y. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124472. [PMID: 33199139 DOI: 10.1016/j.jhazmat.2020.124472] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
This study aims to better understand the effects of heavy metal enrichment on microbiomes and resistomes and the source-specific ecological risks of metals in the sediments of an urban river. Geo-accumulation index and enrichment factor suggested the river sediments were contaminated by Cd, Cu, Pb, and Zn in varying degrees. High-throughput sequencing-based metagenomics analysis identified 430 types of antibiotic resistance genes (ARGs), dominated by the multidrug, MLS, bacitracin, quinolone, and aminoglycoside ARGs, and 52 metal resistance genes (MRGs) mainly conferring resistance to zinc, copper, cadmium, lead, mercury and multiple metals. Spearman correlation analysis and Mantel test showed the heavy metal enrichment exerted significant effects on the microbial community, ARGs and MRGs. Source apportionment using positive matrix factorization revealed that natural source (42.8%) was the largest contributor of metals in the river sediments, followed by urban activities (35.4%) and a mixed source (21.7%). However, when incorporating the apportionment results into a modified risk model to evaluate the source-specific ecological risks, results showed human activities dominated the risks of metals. Comparatively, the urban activities majorly caused moderate- and considerable- ecological risks, while the mixed source with respect to agricultural and industrial activities contributed higher percentages on high- and extremely high- ecological risks.
Collapse
Affiliation(s)
- Yuezhao Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Liuting Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jin Wu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wenchao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
19
|
Misson B, Garnier C, Poulain AJ. Limited influence of marine sediment lyophilization on prokaryotic community structure assessed via amplicon sequencing: an example from environmentally contrasted sediment layers in Toulon harbor (France). PeerJ 2021; 9:e11075. [PMID: 33868808 PMCID: PMC8035903 DOI: 10.7717/peerj.11075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Sediment lyophilization is a common process that allows for long-term conservation and sharing of marine sediments for multiple downstream analyses. Although it is often used for geochemical studies, the effects of lyophilization on prokaryotic taxonomic diversity assessment remained to be assessed. Here, we tested the effect of lyophilization on microbial diversity assessment using three sediment layers corresponding to various sediment ages and chemical contamination levels sampled from a marine Mediterranean harbor. Duplicate DNA samples were extracted from wet frozen or lyophilized sediments, and 16S rRNA gene amplicon sequence variants were analyzed. We detected changes in community structure over depth linked to both dominant and less abundant taxa whether sediments were lyophilized or not. Data from both wet frozen and lyophilized sediments led us to conclude that historical chemical contamination of the sediment of Toulon Bay did not appear to be the main environmental variable shaping prokaryotic community structure on the vertical dimension, but that sediment diagenesis was. We conclude that sediment lyophilization is compatible with marine biogeochemical and ecotoxicological studies but that caution should be used when discussing small variations among samples.
Collapse
Affiliation(s)
- Benjamin Misson
- Université de Toulon, Aix Marseille University, CNRS, IRD, MIO, Toulon, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille University, CNRS, IRD, MIO, Toulon, France
| | | |
Collapse
|
20
|
Coclet C, Garnier C, D’Onofrio S, Durrieu G, Pasero E, Le Poupon C, Omanović D, Mullot JU, Misson B, Briand JF. Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area. Front Microbiol 2021; 12:589948. [PMID: 33679628 PMCID: PMC7933014 DOI: 10.3389/fmicb.2021.589948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022] Open
Abstract
Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Sébastien D’Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Emilie Pasero
- Microbia Environnement Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruðer Bošković Institute, Zagreb, Croatia
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | | |
Collapse
|
21
|
Catao ECP, Gallois N, Fay F, Misson B, Briand JF. Metal resistance genes enrichment in marine biofilm communities selected by biocide-containing surfaces in temperate and tropical coastal environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115835. [PMID: 33099201 DOI: 10.1016/j.envpol.2020.115835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms able to form biofilms in marine ecosystems are selected depending on immersed surfaces and environmental conditions. Cell attachment directly on toxic surfaces like antifouling coatings suggests a selection of tolerant (or resistant) organisms with characteristics conferring adaptive advantages. We investigated if environment would drive metal resistance gene abundance in biofilms on artificial surfaces. Biofilms were sampled from three surfaces (a PVC reference and two antifouling coatings) deployed in three coastal waters with dissimilar characteristics: The Mediterranean Sea (Toulon) and Atlantic (Lorient) and Indian (Reunion) Oceans. The two coatings differed in metals composition, either Cu thiocyanate and Zn pyrithione (A3) or Cu2O (Hy). Metal resistance genes (MRG) specific to copper (cusA, copA, cueO) or other metals (czcA and pbrT) were monitored with qPCR in parallel to the microbial community using 16S rRNA gene metabarcoding. A lower α-diversity on A3 or Hy than on PVC was observed independent on the site. Weighted Unifrac suggested segregation of communities primarily by surface, with lower site effect. Metacoder log2 fold change ratio and LeFSe discrimination suggested Marinobacter to be specific of Hy and Altererythrobacter, Erythrobacter and Sphingorhabdus of A3. Likewise, the relative abundance of MRG (MRG/bacterial 16S rRNA) varied between surfaces and sites. A3 presented the greatest relative abundances for cusA, cueO and czcA. The latter could only be amplified from A3 communities, except at Toulon. Hy surface presented the highest relative abundance for copA, specifically at Lorient. These relative abundances were correlated with LeFSe discriminant taxa. Dasania correlated positively with all MRG except cueO. Marinobacter found in greater abundance in Hy biofilm communities correlated with the highest abundances of copA and Roseovarius with czcA. These results prove the selection of specific communities with abilities to tolerate metallic biocides forming biofilms over antifouling surfaces, and the secondary but significant influence of local environmental factors.
Collapse
Affiliation(s)
- Elisa C P Catao
- Laboratoire MAPIEM, EA 4323, Université de Toulon, 83041, Toulon, France
| | - Nicolas Gallois
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Fabienne Fay
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | - Benjamin Misson
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | | |
Collapse
|
22
|
Hao X, Zhu J, Rensing C, Liu Y, Gao S, Chen W, Huang Q, Liu YR. Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 2020; 19:94-109. [PMID: 33425244 PMCID: PMC7771044 DOI: 10.1016/j.csbj.2020.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Li N, Chen X, Zhao H, Tang J, Jiang G, Li Z, Li X, Chen S, Zou S, Dong K, Xu Q. Spatial distribution and functional profile of the bacterial community in response to eutrophication in the subtropical Beibu Gulf, China. MARINE POLLUTION BULLETIN 2020; 161:111742. [PMID: 33075697 DOI: 10.1016/j.marpolbul.2020.111742] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
In this study, we investigated the specific bacterial distribution and the response of bacterial communities to shifts in environmental factors in the subtropical Beibu Gulf, southern China. The abundances of Actinobacteria, Bacilli, Planctomycetia, Thermoleophilia, Anaerolineae, and Synechococcophycideae were significantly higher in high eutrophic samples than in medium eutrophic and oligotrophic samples. Bacterial alpha-diversity was found greater in high eutrophication samples than in the other samples. Besides, Ponticaulis koreensis, Nautella italic, Anaerospora hongkongensis, Candidatus Aquiluna rubra, and Roseovarius pacificus were sensitive to trophic variation and thus could be used as eco-markers. In addition, the relative abundances of functional genes involving carbohydrate and amino acid metabolism were very high among the samples. We also found temperature, Chl-a, TDN and NO3- were the main environmental drivers of bacterial community structure. Overall, this study provides new insight into the composition of bacterial community and function response to gradients of eutrophication in Beibu Gulf.
Collapse
Affiliation(s)
- Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xing Chen
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China; College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Huaxian Zhao
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Jinli Tang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Gonglingxia Jiang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhuoting Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xiaoli Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Si Chen
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Shuqi Zou
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Qiangsheng Xu
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China.
| |
Collapse
|
24
|
Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.
Collapse
Affiliation(s)
- Andrea Di Cesare
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Petra Pjevac
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090, Vienna, Austria
| | - Ester Eckert
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Neven Curkov
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | - Gianluca Corno
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Material Chemistry, Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia.
| |
Collapse
|
25
|
Tangherlini M, Corinaldesi C, Rastelli E, Musco L, Armiento G, Danovaro R, Dell'Anno A. Chemical contamination can promote turnover diversity of benthic prokaryotic assemblages: The case study of the Bagnoli-Coroglio bay (southern Tyrrhenian Sea). MARINE ENVIRONMENTAL RESEARCH 2020; 160:105040. [PMID: 32907739 DOI: 10.1016/j.marenvres.2020.105040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Chemical contamination of marine ecosystems represents a major concern for the detrimental consequences at different levels of biological organization. However, the impact of chronic contamination on the diversity and assemblage composition of benthic prokaryotes is still largely unknown, and this limits our understanding of the potential implications on ecosystem functioning. The Bagnoli-Coroglio bay (Gulf of Naples, Tyrrhenian Sea) is a typical example of coastal area heavily contaminated by metals and hydrocarbons, released for decades by industrial activities, which ceased at the beginning of nineties. In the present study we analyzed the abundance, diversity and assemblage composition of benthic prokaryotic assemblages at increasing distance from the historical source of contamination in relation to the heavy hydrocarbons (C > 12), polycyclic aromatic hydrocarbons (PAHs) and heavy metal concentrations in the sediments. Prokaryotic abundance in the sediments differed among sites, and was mostly driven by environmental factors rather than by contamination levels. Conversely, the richness of prokaryotic taxa was relatively high in all samples, was driven by contamination levels and decreased significantly with increasing contamination (15-38%). Moreover, our results indicate large variations in the composition of the benthic prokaryotic assemblages among sites, mostly explained by the different levels and types of chemical contaminants found in the sediments. Overall, our findings suggest that chemical contaminants, even after decades from the end of their release, can profoundly influence the richness and turnover diversity of the benthic prokaryotic assemblages, in turn promoting a high diversification of the benthic bacterial and archaeal assemblages by selecting those lineages more adapted to specific mixtures of different contaminants. Our results open new perspectives for understanding of the long-term effects of chemical contamination on the benthic prokaryotic assemblages and the ecological processes they mediate.
Collapse
Affiliation(s)
- M Tangherlini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - C Corinaldesi
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente Ed Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - E Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - L Musco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - G Armiento
- ENEA - Agenzia per le Nuove Tecnologie, L'Energia e Lo Sviluppo Economico Sostenibile, Via Anguillarese 301, 00123, Roma, Italy
| | - R Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A Dell'Anno
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
26
|
Layglon N, Misson B, Durieu G, Coclet C, D'Onofrio S, Dang DH, François D, Mullot JU, Mounier S, Lenoble V, Omanović D, Garnier C. Long-term monitoring emphasizes impacts of the dredging on dissolved Cu and Pb contamination along with ultraplankton distribution and structure in Toulon Bay (NW Mediterranean Sea, France). MARINE POLLUTION BULLETIN 2020; 156:111196. [PMID: 32510358 DOI: 10.1016/j.marpolbul.2020.111196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
A long-term monitoring during dredging and non-dredging periods was performed. Total and dissolved Cu and Pb concentrations, DGT-labile Pb, ultraphytoplankton abundance and structure were monitored at four sites: dredging site, dumping site (inside/outside of a geotextile bag) and reference site. During the reference period (non-dredging), an increasing contamination in Pb, Cu and a progressive shift from Synechococcus to photosynthetic picoeukaryotes dominance was observed from reference to dumping site. Pb concentrations were significantly higher during dredging period, pointing out sediment resuspension as Pb major source of contamination. Unlike Pb, Cu concentrations were not statistically different during the two periods. Dredging period did not impact on ultraphytoplankton abundance and structure but influence heterotrophic prokaryotes abundance. Sediment resuspension is therefore a major driver of chemical and biological qualities in Toulon Bay. Furthermore, although the geotextile bag reduces particulate transport of the dredged sediment, the transport in the dissolved phase remains a major problem.
Collapse
Affiliation(s)
- Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France.
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Gaël Durieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Clément Coclet
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France; MAPIEM, EA4323, Université de Toulon, Toulon, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Duc Huy Dang
- School of the Environment, Chemistry Department, Trent University, Peterborough, ON, Canada
| | - David François
- LASEM-Toulon, Base Navale De Toulon, BP 61, 83800 Toulon, France
| | | | - Stéphane Mounier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| |
Collapse
|
27
|
Tamburini E, Doni L, Lussu R, Meloni F, Cappai G, Carucci A, Casalone E, Mastromei G, Vitali F. Impacts of Anthropogenic Pollutants on Benthic Prokaryotic Communities in Mediterranean Touristic Ports. Front Microbiol 2020; 11:1234. [PMID: 32655521 PMCID: PMC7326019 DOI: 10.3389/fmicb.2020.01234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 02/04/2023] Open
Abstract
Ports and marinas are central nodes in transport network and play a strategic role in coastal development. They receive pollution from land-based sources, marine traffic and port infrastructures on one side and constitute a potential pollution source for the adjacent coastal areas on the other. The aim of the present study was to evaluate the effects of organic and inorganic co-contamination on the prokaryotic communities in sediments from three Mediterranean ports. The structure and composition of the bacterial and archaeal communities were assessed by targeted metagenomic analysis of the 16S rRNA gene, and the links of prokaryotic communities with environmental and pollution variables were investigated. The harbors presented pronounced site-specificity in the environmental properties and pollution status. Consistently, the structure of archaeal and bacterial communities in surface sediments exhibited a strong spatial variation among the three investigated ports. On the contrary, a wide overlap in composition of prokaryotic assemblages among sites was found, but local variation in the community composition and loss of prokaryotic diversity was highlighted in a heavily impacted port sector near a shipyard. We provided evidences that organic matter, metals and PAHs as well as temperature and salinity play a strong role in structuring benthic bacterial communities significantly contributing to the understanding of their responses to anthropogenic perturbations in marine coastal areas. Among metals, copper was recognized as strongly associated with the observed changes in bacterial assemblages. Overall, this study provides the first assessment of the effects exerted by multiple organic and inorganic contaminations on benthic prokaryotes in ports over a large spatial scale and designates bacterial community as a candidate tool for the monitoring of the sediment quality status in harbors.
Collapse
Affiliation(s)
- Elena Tamburini
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Lapo Doni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Department of Biology, University of Florence, Florence, Italy
| | - Raffaela Lussu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Federico Meloni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Alessandra Carucci
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Enrico Casalone
- Department of Biology, University of Florence, Florence, Italy
| | | | - Francesco Vitali
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| |
Collapse
|
28
|
Dang DH, Layglon N, Ferretto N, Omanović D, Mullot JU, Lenoble V, Mounier S, Garnier C. Kinetic processes of copper and lead remobilization during sediment resuspension of marine polluted sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134120. [PMID: 31505358 DOI: 10.1016/j.scitotenv.2019.134120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Contaminated sediments could act as a source of contamination to the surrounding environments by several processes (e.g., diffusive flux, sediment resuspension). This study aimed at highlighting the mechanisms of copper and lead mobilization from resuspended particles to the aqueous phase using laboratory experiments and a kinetic model. Three sediments, differed by their compositions and metal partition from Toulon Bay (SE France) were used. In addition, three solid/liquid ratios (0.1, 1 and 10 g L-1) allowed simulating at best natural and anthropogenic scenarios (e.g., storm, nautical traffic, dredging). We monitored metal concentrations, physicochemical parameters (pH, Eh, [O2]) and organic matter concentration along with their optical properties. Experimental results showed successive reactions over short and long terms (hour and day scale, respectively) that controlled Cu and Pb exchanges between particles and the aqueous phase over 4 weeks. The quick Cu removal was attributed to the implications of newly formed oxides while the long-term Cu release in the dissolved fraction from the more refractory solid pool is more likely related to organic complexation. In fact, we observed a transformation of the dissolved organic matter: an increase in molecular weight and in humic fluorescence properties. However, the Pb removal toward the end of the experiment could be explained by a migration toward the exchangeable sites of higher energy, which could correspond to the particulate organic matter or a combination with organic-coating carrier phases. Both kinetic rate and system response times (τi) were coherent despite the variability of parameters intrinsic to sediments (e.g., sediment composition and initial metal repartition) but also extrinsic parameters (solid/liquid ratios). Such a coherence would imply the universality of the obtained constants to be used in a more predictive approach to assess the potential of metal mobility using metal repartition in contaminated sediments when combined with hydrological and sedimentological models.
Collapse
Affiliation(s)
- Duc Huy Dang
- School of the Environment and Chemistry Department, Trent University, Peterborough, ON, Canada.
| | - Nicolas Layglon
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Nicolas Ferretto
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruder Bošković Institute, Zagreb, Croatia
| | | | - Véronique Lenoble
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Stéphane Mounier
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Cédric Garnier
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| |
Collapse
|
29
|
Ben Salem F, Ben Said O, Cravo-Laureau C, Mahmoudi E, Bru N, Monperrus M, Duran R. Bacterial community assemblages in sediments under high anthropogenic pressure at Ichkeul Lake/Bizerte Lagoon hydrological system, Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:644-656. [PMID: 31185353 DOI: 10.1016/j.envpol.2019.05.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Bacterial communities inhabiting sediments in coastal areas endure the effect of strong anthropogenic pressure characterized by the presence of multiple contaminants. Understanding the effect of pollutants on the organization of bacterial communities is of paramount importance in order to unravel bacterial assemblages colonizing specific ecological niches. Here, chemical and molecular approaches were combined to investigate the bacterial communities inhabiting the sediments of the Ichkeul Lake/Bizerte Lagoon, a hydrological system under anthropogenic pressure. Although the microbial community of the Ichkeul Lake sediment was different to that of the Bizerte Lagoon, common bacterial genera were identified suggesting a lake-lagoon continuum probably due to the hydrology of the system exchanging waters according to the season. These genera represent bacterial "generalists" maintaining probably general biogeochemical functions. Linear discriminant analysis effect size (LEfSe) showed significant differential abundance distribution of bacterial genera according to the habitat, the pollution type and level. Further, correlation analyses identified specific bacterial genera which abundance was linked with pesticides concentrations in the lake, while in the lagoon the abundance of specific bacterial genera was found linked with the concentrations of PAHs (Polycyclic aromatic hydrocarbons) and organic forms of Sn. As well, bacterial genera which abundance was not correlated with the concentrations of pollutants were identified in both lake and lagoon. These findings represent valuable information, pointing out specific bacterial genera associated with pollutants, which represent assets for developing bacterial tools for the implementation, the management, and monitoring of bioremediation processes to mitigate the effect of pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Fida Ben Salem
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia; MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia; MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Cristiana Cravo-Laureau
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia
| | - Noëlle Bru
- Laboratoire de Mathématiques et de leurs Applications, PAU UMR CNRS 5142, Université de Pau et des Pays de l'Adour, E2S-UPPA, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Mathilde Monperrus
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Robert Duran
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France.
| |
Collapse
|
30
|
Catão ECP, Pollet T, Misson B, Garnier C, Ghiglione JF, Barry-Martinet R, Maintenay M, Bressy C, Briand JF. Shear Stress as a Major Driver of Marine Biofilm Communities in the NW Mediterranean Sea. Front Microbiol 2019; 10:1768. [PMID: 31608016 PMCID: PMC6774042 DOI: 10.3389/fmicb.2019.01768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
While marine biofilms depend on environmental conditions and substrate, little is known about the influence of hydrodynamic forces. We tested different immersion modes (dynamic, cyclic and static) in Toulon Bay (north-western Mediterranean Sea; NWMS). The static mode was also compared between Toulon and Banyuls Bays. In addition, different artificial surfaces designed to hamper cell attachment (self-polishing coating: SPC; and fouling-release coating: FRC) were compared to inert plastic. Prokaryotic community composition was affected by immersion mode, surface characteristics and site. Rhodobacteriaceae and Flavobacteriaceae dominated the biofilm community structure, with distinct genera according to surface type or immersion mode. Cell density increased with time, greatly limited by hydrodynamic forces, and supposed to delay biofilm maturation. After 1 year, a significant impact of shear stress on the taxonomic structure of the prokaryotic community developed on each surface type was observed. When surfaces contained no biocides, roughness and wettability shaped prokaryotic community structure, which was not enhanced by shear stress. Conversely, the biocidal effect of SPC surfaces, already major in static immersion mode, was amplified by the 15 knots speed. The biofilm community on SPC was 60% dissimilar to the biofilm on the other surfaces and was distinctly colonized by Sphingomonadaceae ((Alter)Erythrobacter). At Banyuls, prokaryotic community structures were more similar between the four surfaces tested than at Toulon, due possibly to a masking effect of environmental constraints, especially hydrodynamic, which was greater than in Toulon. Finally, predicted functions such as cell adhesion confirmed some of the hypotheses drawn regarding biofilm formation over the artificial surfaces tested here.
Collapse
Affiliation(s)
| | - Thomas Pollet
- Laboratoire MAPIEM (EA 4323), Université de Toulon, Toulon, France
- UMR BIPAR, INRA, ANSES, ENVA, Université Paris-Est, Maisons-Alfort, France
| | - Benjamin Misson
- CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, University of Toulon – Aix-Marseille University, La Garde, France
| | - Cédric Garnier
- CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, University of Toulon – Aix-Marseille University, La Garde, France
| | - Jean-Francois Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d’Océanographie Microbienne, Banyuls-sur-Mer, France
| | | | - Marine Maintenay
- Laboratoire MAPIEM (EA 4323), Université de Toulon, Toulon, France
| | - Christine Bressy
- Laboratoire MAPIEM (EA 4323), Université de Toulon, Toulon, France
| | | |
Collapse
|
31
|
Branchet P, Ariza Castro N, Fenet H, Gomez E, Courant F, Sebag D, Gardon J, Jourdan C, Ngounou Ngatcha B, Kengne I, Cadot E, Gonzalez C. Anthropic impacts on Sub-Saharan urban water resources through their pharmaceutical contamination (Yaoundé, Center Region, Cameroon). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:886-898. [PMID: 30743974 DOI: 10.1016/j.scitotenv.2018.12.256] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 05/23/2023]
Abstract
Sub-Saharan urban centers have to tackle high population growth, lack of sanitation infrastructures and the need for good quality water resources. To characterize the impacts of anthropization on the water resources of the capital of Cameroon (Yaoundé), a multi-disciplinary approach was used in ten sub-watersheds (peri-urban and urban) of the Méfou watershed. Pharmaceutical residues were used as tracers of surface and groundwater contamination caused by the release of domestic wastewater from pit latrines and landfills. A water use survey was conducted in the vicinity of the sampling sites to better assess water use, treatment and management. Available land use and hydro-geomorphological data completed characterization of the sub-watersheds. The combined data showed that natural features (elevation, slope, and hydrography) and human activities (land use) favor rainfall-runoff events and hence surface water contamination. Pharmaceutical monitoring revealed contamination of both surface and groundwater especially in the urban sub-watersheds. Analgesics/anti-inflammatory drugs and anti-epileptic carbamazepine were the most frequently found compounds (in up to 91% of water samples) with concentrations of acetaminophen reaching 5660 ng/L. In urban sub-watersheds, 50% of the groundwater sites used for drinking water were contaminated by diclofenac (476-518 ng/L), carbamazepine (263-335 ng/L), ibuprofen (141-276 ng/L), sulfamethoxazole (<2-1285 ng/L) and acetaminophen (110-111 ng/L), emphasizing the need for a deeper understanding of the interactions between surface and groundwater. The use of groundwater as drinking water by 68% of the total population surveyed raises concerns about population exposure and potential health risks. This case study highlights the need for strategies to limit contamination of the water resource given the predicted future expansion of Sub-Saharan urban centers.
Collapse
Affiliation(s)
- P Branchet
- Laboratoire de Génie de l'Environnement Industriel, IMT Mines Alès, University of Montpellier, Alès, France.
| | - N Ariza Castro
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
| | - H Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - E Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
| | - F Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - D Sebag
- Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, Rouen, France.
| | - J Gardon
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - C Jourdan
- Observatoire de Recherche Méditerranéen de l'Environnement (OREME), University of Montpellier, Montpellier, France; Laboratoire d'étude des Interactions entre Sol, Agrosystème et Hydrosystème (LISAH), INRA, Montpellier, France
| | - B Ngounou Ngatcha
- Department of Earth Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - I Kengne
- Wastewater Research Unit, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - E Cadot
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - C Gonzalez
- Laboratoire de Génie de l'Environnement Industriel, IMT Mines Alès, University of Montpellier, Alès, France.
| |
Collapse
|
32
|
Coclet C, Garnier C, Durrieu G, Omanović D, D’Onofrio S, Le Poupon C, Mullot JU, Briand JF, Misson B. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Front Microbiol 2019; 10:257. [PMID: 30853948 PMCID: PMC6395402 DOI: 10.3389/fmicb.2019.00257] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/31/2019] [Indexed: 01/21/2023] Open
Abstract
Unraveling the relative importance of both environmental conditions and ecological processes regulating bacterioplankton communities is a central goal in microbial ecology. Marine coastal environments are among the most urbanized areas and as a consequence experience environmental pressures. The highly anthropized Toulon Bay (France) was considered as a model system to investigate shifts in bacterioplankton communities along natural and anthropogenic physicochemical gradients during a 1-month survey. In depth geochemical characterization mainly revealed strong and progressive Cd, Zn, Cu, and Pb contamination gradients between the entrance of the Bay and the north-western anthropized area. On the other hand, low-amplitude natural gradients were observed for other environmental variables. Using 16S rRNA gene sequencing, we observed strong spatial patterns in bacterioplankton taxonomic and predicted function structure along the chemical contamination gradient. Variation partitioning analysis demonstrated that multiple metallic contamination explained the largest part of the spatial biological variations observed, but DOC and salinity were also significant contributors. Network analysis revealed that biotic interactions were far more numerous than direct interactions between microbial groups and environmental variables. This suggests indirect effects of the environment, and especially trace metals, on the community through a few taxonomic groups. These spatial patterns were also partially found for predicted bacterioplankton functions, thus indicating a limited functional redundancy. All these results highlight both potential direct influences of trace metals contamination on coastal bacterioplankton and indirect forcing through biotic interactions and cascading.
Collapse
Affiliation(s)
- Clément Coclet
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
- MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Cédric Garnier
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Gaël Durrieu
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sébastien D’Onofrio
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Christophe Le Poupon
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | | | | | - Benjamin Misson
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| |
Collapse
|
33
|
New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. SUSTAINABILITY 2019. [DOI: 10.3390/su11041039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enclosed coastal seas and wetlands are areas of high ecological value with singular fauna and flora, but several cases of environmental catastrophes in recent decades can easily be referenced in the international literature. The management of these natural territories is complex in developed countries since they are usually subjected to intense human activity with a varied catalog of activities and anthropizing features that alter the balance of the ecosystem. In this article, the concept of the Socio-Ecological System (SES) to diagnose and achieve a sustainable cohabitation between human anthropization and the natural values based on the tool of GIS participatory mapping is proposed as an innovative approach for the management and recovery of these complex areas. The article develops a comprehensive general methodology of spatial GIS diagnosis, planning, and co-management implementation between public and private stakeholders combined with economic tools such as the Willingness to Pay (WTP) and the Cost Transfer Sector (CTS). This innovative approach is applied to the Mar Menor lagoon, which is an international and successful case study of environmental recovery on the Spanish Mediterranean coast. The coastal lagoon suffered an unprecedented eutrophication crisis in 2015, but it managed to recover in the summer of 2018 without the need to implement major structural measures. In this case study, several solutions to redress the current impacts will be developed through a participatory process based on GIS mapping. Lastly, the discussion reflects the concept of self-resilience of an ecosystem based on the unexpected positive turn of the environmental crisis in the lagoon ending.
Collapse
|
34
|
Corcoll N, Yang J, Backhaus T, Zhang X, Eriksson KM. Copper Affects Composition and Functioning of Microbial Communities in Marine Biofilms at Environmentally Relevant Concentrations. Front Microbiol 2019; 9:3248. [PMID: 30671047 PMCID: PMC6331542 DOI: 10.3389/fmicb.2018.03248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/14/2018] [Indexed: 02/01/2023] Open
Abstract
Copper (Cu) pollution in coastal areas is a worldwide threat for aquatic communities. This study aims to demonstrate the usefulness of the DNA metabarcoding analysis in order to describe the ecotoxicological effect of Cu at environmental concentrations on marine periphyton. Additionally, the study investigates if Cu-induced changes in community structure co-occurs with changes in community functioning (i.e., photosynthesis and community tolerance to Cu). Periphyton was exposed for 18 days to five Cu concentrations, between 0.01 and 10 μM, in a semi-static test. Diversity and community structure of prokaryotic and eukaryotic organisms were assessed by 16S and 18S amplicon sequencing, respectively. Community function was studied as impacts on algal biomass and photosynthetic activity. Additionally, we studied Pollution-Induced Community Tolerance (PICT) using photosynthesis as the endpoint. Sequencing results detected an average of 9,504 and 1,242 OTUs for 16S and 18S, respectively, reflecting the high biodiversity of marine periphytic biofilms. Eukaryotes represent the most Cu-sensitive kingdom, where effects were seen already at concentrations as low as 0.01 μM. The structure of the prokaryotic part of the community was impacted at slightly higher concentrations (0.06 μM), which is still in the range of the Cu concentrations observed in the area (0.08 μM). The current environmental quality standard for Cu of 0.07 μM therefore does not seem to be sufficiently protective for periphyton. Cu exposure resulted in a more Cu-tolerant community, which was accompanied by a reduced total algal biomass, increased relative abundance of diatoms and a reduction of photosynthetic activity. Cu exposure changed the network of associations between taxa in the communities. A total of 23 taxa, including taxa within Proteobacteria, Bacteroidetes, Stramenopiles, and Hacrobia, were identified as being particularly sensitive to Cu. DNA metabarcoding is presented as a sensitive tool for community-level ecotoxicological studies that allows to observe impacts simultaneously on a multitude of pro- and eukaryotic taxa, and therefore to identify particularly sensitive, non-cultivable taxa.
Collapse
Affiliation(s)
- Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jianghua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Karl Martin Eriksson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
35
|
Favre L, Ortalo-Magné A, Kerloch L, Pichereaux C, Misson B, Briand JF, Garnier C, Culioli G. Metabolomic and proteomic changes induced by growth inhibitory concentrations of copper in the biofilm-forming marine bacteriumPseudoalteromonas lipolytica. Metallomics 2019; 11:1887-1899. [DOI: 10.1039/c9mt00184k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper exposure inP. lipolyticaTC8 revealed changes in cell membrane lipid composition and in copper cell homeostasis protein regulation.
Collapse
Affiliation(s)
| | | | | | - Carole Pichereaux
- Fédération de Recherche FR3450
- Agrobiosciences
- Interaction et Biodiversité (AIB)
- CNRS
- Toulouse
| | | | | | | | | |
Collapse
|
36
|
GIS Assessment of Mass Tourism Anthropization in Sensitive Coastal Environments: Application to a Case Study in the Mar Menor Area. SUSTAINABILITY 2018. [DOI: 10.3390/su10051344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Guigue C, Tedetti M, Dang DH, Mullot JU, Garnier C, Goutx M. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: Insights from Toulon Bay (France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:627-638. [PMID: 28689151 DOI: 10.1016/j.envpol.2017.06.090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and organic matter contents were measured in seawater during resuspension experiments using sediments collected from Toulon Bay (Northwestern Mediterranean Sea, France). The studied sediments were very highly contaminated in PAHs, especially in 4-ring compounds emitted from combustion processes. The sediments used for resuspension experiments were collected at 0-2 cm (diagenetically new organic matter, OM) and 30-32 cm depths (diagenetically transformed OM). They were both mostly composed of fine particles (<63 μm), enriched in organic carbon (8.2 and 6.3%, respectively) and in PAHs (concentration of Σ34 PAHs: 38.2 and 35.7 × 103 ng g-1, respectively). The resuspension of these sediments led to an increase in concentrations of dissolved Σ34 PAHs, dissolved organic carbon (DOC) and dissolved humic- and tryptophan-like fluorophores in seawater up to 10-, 1.3-, 4.4- and 5.7-fold, respectively. The remobilization in seawater was higher for 4-6 ring PAHs, especially benzo(g,h,i)perylene, whose concentration exceeded the threshold values of the European Water Framework Directive. This noted the potential harmful effects of sediment resuspension on marine biota. From these sediment resuspension experiments, we determined OC-normalized partition coefficients of PAHs between sediment and water (Koc) and found that during such events, the transfer of PAHs from sediment particles to seawater was lower than that predicted from octanol-water partition coefficients (Kow) (i.e., measured Koc > Koc predicted from Kow). The results confirmed the sequestration role of sedimentary OC quality and grain size on PAHs; the OM diagenetic state seemed to impact the partition process but in a relatively minor way. Furthermore, differences were observed between 2-4 ring and 5-6 ring PAHs, with the latter displaying a relatively higher mobility towards seawater. These differences may be explained by the distribution of these two PAH pools within different OM moieties, such as humic substances and black carbon.
Collapse
Affiliation(s)
- Catherine Guigue
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France.
| | - Marc Tedetti
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Duc Huy Dang
- Laboratoire PROTEE, EA 3819, Université de Toulon, BP 20132, 83957 La Garde, France
| | | | - Cédric Garnier
- Laboratoire PROTEE, EA 3819, Université de Toulon, BP 20132, 83957 La Garde, France; Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UMR7294, 83041 Toulon Cedex 9, France
| | - Madeleine Goutx
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
38
|
Cabrol L, Quéméneur M, Misson B. Inhibitory effects of sodium azide on microbial growth in experimental resuspension of marine sediment. J Microbiol Methods 2017; 133:62-65. [DOI: 10.1016/j.mimet.2016.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
|
39
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|