1
|
Heinonen-Tanski H. Arithmetic vs. Weighted Means in Fish Fillets Mercury Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:758. [PMID: 38929004 PMCID: PMC11203440 DOI: 10.3390/ijerph21060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Mercury (Hg) analyses in species of fish are performed for two reasons: (1) to safeguard human health; and (2) to assess environmental quality, since different environmental changes may increase the Hg concentrations in fish. These analyses are important since both natural and human activities can increase these Hg concentrations, which can vary extensively, depending on the species, age and catching location. Hg-contaminated fish or other marine foodstuffs can be only detected by chemical analysis. If the aim of Hg analysis is to protect the health of marine food consumers, researcher workers must consider the location where the fish were caught and interpret the results accordingly. Health and environmental officials must appreciate that in specific places, local people may have a daily diet consisting entirely of fish or other marine foods, and these individuals should not be exposed to high concentrations of Hg. Regional and national health and environmental officials should follow the recent guidance of international organizations when drawing their final conclusions about whether the products are safe or unsafe to eat. Correct statistical calculations are not always carried out; so, too high Hg amounts could be presented, and fish eaters could be protected. This work has been conducted to show the differences in Hg concentrations between weighted (weighted with fish weights) and arithmetic means. Thus, the mean that is only weighted also includes the Hg content in fishes; so, the exposure to Hg can be evaluated.
Collapse
Affiliation(s)
- Helvi Heinonen-Tanski
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
2
|
Zahran E, Ahmed F, Hassan Z, Ibrahim I, Khaled AA, Palić D, El Sebaei MG. Toxicity Evaluation, Oxidative, and Immune Responses of Mercury on Nile Tilapia: Modulatory Role of Dietary Nannochloropsis oculata. Biol Trace Elem Res 2024; 202:1752-1766. [PMID: 37491615 PMCID: PMC10859351 DOI: 10.1007/s12011-023-03771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
The current study evaluated the potential ameliorative effect of a dietary immune modulator, Nannochloropsis oculata microalga, on the mercuric chloride (HgCl2)-induced toxicity of Nile tilapia. Nile tilapia (45-50 g) were fed a control diet or exposed to ¼ LC50 of HgCl2 (0.3 mg/L) and fed on a medicated feed supplemented with N. oculata (5% and 10% (50 or 100 g/kg dry feed)) for 21 days. Growth and somatic indices, Hg2+ bioaccumulation in muscles, and serum acetylcholinesterase (AChE) activity were investigated. Antioxidant and stress-related gene expression analyses were carried out in gills and intestines. Histopathological examinations of gills and intestines were performed to monitor the traits associated with Hg2+ toxicity or refer to detoxification. Hg2+ toxicity led to significant musculature bioaccumulation, inhibited AChE activity, downregulated genes related to antioxidants and stress, and elicited histopathological changes in the gills and intestine. Supplementation with N. oculata at 10% was able to upregulate the anti-oxidative-related genes while downregulated the stress apoptotic genes in gills and intestines compared to the unexposed group. In addition, minor to no histopathological traits were detected in the gills and intestines of the N. oculata-supplemented diets. Our data showed the benefit of dietary N. oculata in suppressing Hg2+ toxicity, which might support its efficacy as therapeutic/preventive agent to overcome environmental heavy metal pollution in aquatic habitats.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Iman Ibrahim
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Liu X, Wang Z, Wang C, Wang B, Cao H, Shan J, Zhang X. Mercury distribution, exposure and risk in Poyang Lake and vicinity, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123409. [PMID: 38244906 DOI: 10.1016/j.envpol.2024.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Mercury (Hg), especially methylmercury (MeHg), which is highly neurotoxic, is a global pollutant that can affect human health because of its accumulation in aquatic products. Poyang Lake, an inland lake in China, has been significantly affected by human activity, yet there is limited understanding of local mercury contamination and potential exposure pathways to humans. In this study, we explored the risks of mercury exposure by sampling sediments, plants, and aquatic organisms in the lake and surrounding areas and analyzing total Hg (THg) and MeHg levels. Sediment sampling was conducted at the main lake, rivers, rice paddies, and fishponds. Two dominant species of plants and 15 species of aquatic organisms were sampled and analyzed. We assessed the characteristics of mercury in sediments using the geo-accumulation index (Igeo), mercury exposure using the biomagnification factor (BMF) and biota sediment accumulation factor (BSAF), and risks using thresholds for adverse effects. The highest THg concentrations (137.04 ± 44.3 ng g-1 dw) were detected in the main lake sediments, whereas the highest MeHg concentrations (0.47 ± 0.6 ng g-1 dw) were detected in fishpond sediments. Mercury accumulation in the main lake sediments could be assessed as contaminated (Igeo > 0: 81.6%). Yellow catfish had the highest mercury concentration (THg 770.69 ± 199.7 ng g-1 dw; MeHg 741.93 ± 168.8 ng g-1 dw). Piscivores were adversely affected by carnivorous fish (50.8%), but all fish concentrations did not exceed the food safety standards recommend by China and the WHO. The mercury exposure results revealed significant Hg biomagnification and enrichment (BMF >1: 94.55%; BSAFmax = 1218). Long-term monitoring of aquatic organisms is warranted.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunjie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jihong Shan
- Wildlife and Plant Protection Center, Jiangxi Provincial Department of Forestry, Nanchang, 330006, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
de Castro Moraes L, Bernardi JVE, de Souza JPR, Portela JF, Pereira HR, de Oliveira Barbosa H, Pires NL, Monteiro LC, Rodrigues YOS, Vieira LCG, Sousa Passos CJ, de Souza JR, Bastos WR, Dórea JG. Mercury Contamination as an Indicator of Fish Species' Trophic Position in the Middle Araguaia River, Brazil. TOXICS 2023; 11:886. [PMID: 37999538 PMCID: PMC10675111 DOI: 10.3390/toxics11110886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
This study evaluates the use of mercury (Hg) concentrations in fish muscle tissue to determine a species' trophic position (TP) in its environment. A campaign conducted in 2019 along 375 km in the middle Araguaia River basin, Brazil, resulted in 239 organisms from 20 species collected. The highest total mercury (THg) concentrations were found in Pellonacastelnaeana (6.93 µg·g-1, wet weight) and in Triportheus elongatus (3.18 µg·g-1, wet weight), whose TPs were different according to the FishBase database. However, they occupied the same trophic level in this study. The intra-specific comparison showed a difference in Hg concentrations between individuals captured in distinct sites. The study of the biota-sediment accumulation factor (BSAF) showed that spatiality interferes with a species' TP. Statistical analyses revealed that when we used a predicted species' TP based on each individual's size, it explained 72% of the variability in THg concentration across all fish species. Multiple regression analysis confirmed that standard length and FishBase values are positively associated with THg (R2 = 0.943). These results point to Hg as a viable indicator of a fish species' TP since it reflects regional, biological, and environmental factors, as demonstrated here for the middle Araguaia River.
Collapse
Affiliation(s)
- Lilian de Castro Moraes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil; (L.d.C.M.); (H.R.P.); (H.d.O.B.); (N.L.P.); (Y.O.S.R.)
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil
| | - João Pedro Rudrigues de Souza
- Laboratório de Química Analítica e Ambiental, Instituto de Química, Universidade de Brasília, Brasília 70919-970, DF, Brazil; (J.P.R.d.S.); (J.F.P.); (J.R.d.S.)
| | - Joelma Ferreira Portela
- Laboratório de Química Analítica e Ambiental, Instituto de Química, Universidade de Brasília, Brasília 70919-970, DF, Brazil; (J.P.R.d.S.); (J.F.P.); (J.R.d.S.)
| | - Hasley Rodrigo Pereira
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil; (L.d.C.M.); (H.R.P.); (H.d.O.B.); (N.L.P.); (Y.O.S.R.)
| | - Hugo de Oliveira Barbosa
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil; (L.d.C.M.); (H.R.P.); (H.d.O.B.); (N.L.P.); (Y.O.S.R.)
| | - Nayara Luiz Pires
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil; (L.d.C.M.); (H.R.P.); (H.d.O.B.); (N.L.P.); (Y.O.S.R.)
| | - Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil;
| | - Ygor Oliveira Sarmento Rodrigues
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil; (L.d.C.M.); (H.R.P.); (H.d.O.B.); (N.L.P.); (Y.O.S.R.)
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina 73345-010, DF, Brazil;
| | | | - Jurandir Rodrigues de Souza
- Laboratório de Química Analítica e Ambiental, Instituto de Química, Universidade de Brasília, Brasília 70919-970, DF, Brazil; (J.P.R.d.S.); (J.F.P.); (J.R.d.S.)
| | - Wanderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho 76901-000, RO, Brazil;
| | - José Garrofe Dórea
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília 70919-970, DF, Brazil;
| |
Collapse
|
5
|
Cyr A, Murillo-Cisneros DA, López JA, Furin C, O'Hara T. Comparison of Two Total Mercury Screening and Assessment Methods in Fishes: Biopsy Punch and Dried Muscle Samples. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:119-128. [PMID: 37573269 DOI: 10.1007/s00244-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Rapid and effective quantification of total mercury concentrations ([THg]) in fish muscle is an important part of ongoing monitoring to provide reliable and near real-time public health guidance. Methods for quantifying THg in fish muscle frequently require the use of large sample mass and numerous preparation steps. Wet (aka fresh weight) biopsy punch samples of fish muscle have been used to quantify THg directly, without drying and homogenization. Both methods have advantages and disadvantages. We compare the use of fresh weight biopsy punches for quantifying THg to using larger, dried homogenized samples. The [THg] determination for the two sampling methods was EPA method 7473. Three separate biopsy punch samples and a large muscle sample were taken from each fish and analyzed on a Direct Mercury Analyzer. There were no statistical differences between mean log transformed wet weight [THg] from biopsy punches and homogenized muscle across all samples or within individual species. Similarly, across the range of [THg] (7.5-612.7 ng/g ww), linear regression of [THg] from biopsy punch and homogenized muscle samples was not different from a 1:1 linear relationship. Linear regression statistics of [THg] with fish fork length produced similar results for both biopsy punch and homogenized muscle samples. However, the coefficient of variation among biopsy punch replicates for individual fish was frequently above the acceptable threshold of 15%. We recommend biopsy punches be used as an effective tool for broad-scale rapid monitoring of fish resources for Hg, while homogenized muscle samples be used for fine-scale ecological and health questions.
Collapse
Affiliation(s)
- Andrew Cyr
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyukuk Dr, Fairbanks, AK, 99775-7750, USA.
| | - Daniella A Murillo-Cisneros
- Centro de Investigaciones Biológicas Del Noroeste, S.C. Planeación Ambiental Y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico
| | - J Andrés López
- University of Alaska Museum of the North, University of Alaska, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 905 N Koyukuk Drive, Fairbanks, AK, 99775-7220, USA
| | - Christoff Furin
- Alaska Department of Environmental Conservation, 5251 Dr. Martin Luther King Jr. Ave., Anchorage, AK, 99507, USA
| | - Todd O'Hara
- Bilingual Laboratory of Toxicology, Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Chen B, Dong S. Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15929. [PMID: 36498005 PMCID: PMC9739465 DOI: 10.3390/ijerph192315929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a principal source of long-chain omega-3 fatty acids (3FAs), which provide vital health benefits, fish consumption also comes with the additional benefit of being rich in diverse nutrients (e.g., vitamins and selenium, high in proteins and low in saturated fats, etc.). The consumption of fish and other seafood products has been significantly promoted universally, given that fish is an important part of a healthy diet. However, many documents indicate that fish may also be a potential source of exposure to chemical pollutants, especially mercury (Hg) (one of the top ten chemicals or groups of chemicals of concern worldwide), and this is a grave concern for many consumers, especially pregnant women, as this could affect their fetuses. In this review, the definition of Hg and its forms and mode of entrance into fish are introduced in detail and, moreover, the bio-accumulation of Hg in fish and its toxicity and action mechanisms on fish and humans, especially considering the health of pregnant women and their fetuses after the daily intake of fish, are also reviewed. Finally, some feasible and constructive suggestions and guidelines are recommended for the specific group of pregnant women for the consumption of balanced and appropriate fish diets in a rational manner.
Collapse
Affiliation(s)
- Bojian Chen
- Food Science and Engineering, Haide College, Ocean University of China, Qingdao 266100, China
| | - Shiyuan Dong
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Murillo-Cisneros DA, McHuron EA, Zenteno-Savín T, Castellini JM, Field CL, O'Hara TM. Fetal mercury concentrations in central California Pacific harbor seals: Associated drivers and outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153246. [PMID: 35065116 DOI: 10.1016/j.scitotenv.2022.153246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a well-known toxicant in wildlife and humans. High total Hg concentrations ([THg]) have been reported in central California harbor seals Phoca vitulina richardii. We evaluated the effects of presence/absence of early natal coat (lanugo), year (2012 to 2017), sex, stranding location, and trophic ecology (ẟ13C and ẟ15N values) on hair [THg] along coastal central California. Also examined were [THg] effects on growth rates of pups in rehabilitation and probability of release (e.g., successful rehabilitation). The [THg] ranged from 0.46-81.98 mg kg-1 dw, and ẟ15N and ẟ13C ranged from 13.6-21.5‰, and -17.2 to -13.0‰, respectively. Stranding location, year, and presence of lanugo coat were important factors explaining variation in [THg]. Seals from Sonoma and San Mateo County had higher [THg] than other locations. Seals with full or partial lanugo coat had lower [THg]. Seals from 2016 and 2017 had higher [THg] than those from 2015. Hair [THg] exceeded lower and upper toxicological thresholds (>20 mg kg-1 by year (5.88% to 23.53%); >30 mg kg-1 (0% to 12.31%)) with a pronounced increase from 2015 to 2016. Pups in 2017 had significantly higher odds ratio of [THg] above 20 mg kg-1 than pups of 2015, and pups in 2016 had significantly higher odds ratio than those from 2013 and 2015 (similar when using 30 mg kg-1). Pups in Sonoma County had the highest odds ratio for [THg] in lanugo above 20 mg kg-1. ẟ15N values were higher in 2015-2017, particularly relative to 2014, probably associated with the El Niño event. The [THg] was not a good predictor for probability of release and mass-specific growth rates in captivity. Further investigation of temporal trends of [THg] in harbor seals is warranted given the relatively high percentage of samples exceeding threshold values, particularly in the most recent sampling years.
Collapse
Affiliation(s)
- Daniela A Murillo-Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Avenue NE, Seattle, WA 98195-5672, USA
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Todd M O'Hara
- Bilingual Laboratory of Toxicology, Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Ye X, Lee CS, Shipley ON, Frisk MG, Fisher NS. Risk assessment for seafood consumers exposed to mercury and other trace elements in fish from Long Island, New York, USA. MARINE POLLUTION BULLETIN 2022; 176:113442. [PMID: 35217419 DOI: 10.1016/j.marpolbul.2022.113442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
We determined concentrations of Hg, Pb, Cd, Cr, As, Ni, Ag, Se, Cu, and Zn in muscle tissue of six commonly consumed Long Island fish species (black seabass, bluefish, striped bass, summer flounder, tautog, and weakfish, total sample size = 1211) caught off Long Island, New York in 2018 and 2019. Long-term consumption of these coastal fish could pose health risks largely due to Hg exposure; concentrations of the other trace elements were well below levels considered toxic for humans. By combining the measured Hg concentrations in the fish (means ranging from 0.11 to 0.27 mg/kg among the fish species), the average seafood consumption rate, and the current US EPA Hg reference dose (0.0001 mg/kg/d), it was concluded that seafood consumption should be limited to four fish meals per month for adults for some fish (bluefish, tautog) and half that for young children. Molar ratios of Hg:Se exceeded 1 for some black seabass, bluefish, tautog, and weakfish.
Collapse
Affiliation(s)
- Xiayan Ye
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States of America.
| | - Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States of America; Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Michael G Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States of America
| |
Collapse
|
9
|
Clatterbuck CA, Lewison RL, Orben RA, Ackerman JT, Torres LG, Suryan RM, Warzybok P, Jahncke J, Shaffer SA. Foraging in marine habitats increases mercury concentrations in a generalist seabird. CHEMOSPHERE 2021; 279:130470. [PMID: 34134398 DOI: 10.1016/j.chemosphere.2021.130470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Methylmercury concentrations vary widely across geographic space and among habitat types, with marine and aquatic-feeding organisms typically exhibiting higher mercury concentrations than terrestrial-feeding organisms. However, there are few model organisms to directly compare mercury concentrations as a result of foraging in marine, estuarine, or terrestrial food webs. The ecological impacts of differential foraging may be especially important for generalist species that exhibit high plasticity in foraging habitats, locations, or diet. Here, we investigate whether foraging habitat, sex, or fidelity to a foraging area impact blood mercury concentrations in western gulls (Larus occidentalis) from three colonies on the US west coast. Cluster analyses showed that nearly 70% of western gulls foraged primarily in ocean or coastal habitats, whereas the remaining gulls foraged in terrestrial and freshwater habitats. Gulls that foraged in ocean or coastal habitats for half or more of their foraging locations had 55% higher mercury concentrations than gulls that forage in freshwater and terrestrial habitats. Ocean-foraging gulls also had lower fidelity to a specific foraging area than freshwater and terrestrial-foraging gulls, but fidelity and sex were unrelated to gull blood mercury concentrations in all models. These findings support existing research that has described elevated mercury levels in species using aquatic habitats. Our analyses also demonstrate that gulls can be used to detect differences in contaminant exposure over broad geographic scales and across coarse habitat types, a factor that may influence gull health and persistence of other populations that forage across the land-sea gradient.
Collapse
Affiliation(s)
| | | | - Rachael A Orben
- Oregon State University, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Newport, OR, USA
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Leigh G Torres
- Oregon State University, Department of Fisheries and Wildlife, Marine Mammal Institute, Hatfield Marine Science Center, Newport, OR, USA
| | - Robert M Suryan
- Oregon State University, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Newport, OR, USA
| | | | | | - Scott A Shaffer
- San José State University, Department of Biological Sciences, San Jose, CA, USA
| |
Collapse
|
10
|
Grieb TM, Fisher NS, Karimi R, Levin L. An assessment of temporal trends in mercury concentrations in fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1739-1749. [PMID: 31583510 DOI: 10.1007/s10646-019-02112-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 05/22/2023]
Abstract
The importance of fish consumption as the primary pathway of human exposure to mercury and the establishment of fish consumption advisories to protect human health have led to large fish tissue monitoring programs worldwide. Data on fish tissue mercury concentrations collected by state, tribal, and provincial governments via contaminant monitoring programs have been compiled into large data bases by the U.S. Environmental Protection Agency's Great Lakes National Monitoring Program Office (GLNPO), the Ontario Ministry of the Environment's Fish Contaminants Monitoring and Surveillance Program (FMSP), and many others. These data have been used by a wide range of governmental and academic investigators worldwide to examine long-term and recent trends in fish tissue mercury concentrations. The largest component of the trend literature is for North American freshwater species important in recreational fisheries. This review of temporal trends in fish tissue mercury concentrations focused on published results from freshwater fisheries of North America as well as marine fisheries worldwide. Trends in fish tissue mercury concentrations in North American lakes with marked overall decreases were reported over the period 1972-2016. These trends are consistent with reported mercury emission declines as well as trends in wet deposition across the U.S. and Canada. More recently, a leveling-off in the rate of decreases or increases in fish tissue mercury concentrations has been reported. Increased emissions of mercury from global sources beginning between 1990 and 1995, despite a decrease in North American emissions, have been advanced as an explanation for the observed changes in fish tissue trends. In addition to increased atmospheric deposition, the other factors identified to explain the observed mercury increases in the affected fish species include a systematic shift in the food-web structure with the introduction of non-native species, creating a new or expanding role for sediments as a net source for mercury. The influences of climate change have also been identified as contributing factors, including considerations such as increases in temperature (resulting in metabolic changes and higher uptake rates of methylmercury), increased rainfall intensity and runoff (hydrologic export of organic matter carrying HgII from watersheds to surface water), and water level fluctuations that alter either the methylation of mercury or the mobilization of monomethylmercury. The primary source of mercury exposure in the human diet in North America is from the commercial fish and seafood market which is dominated (>90%) by marine species. However, very little information is available on mercury trends in marine fisheries. Most of the data used in the published marine trend studies are assembled from earlier reports. The data collection efforts are generally intermittent, and the spatial and fish-size distribution of the target species vary widely. As a result, convincing evidence for the existence of fish tissue mercury trends in marine fish is generally lacking. However, there is some evidence from sampling of large, long-lived commercially-important fish showing both lower mercury concentrations in the North Atlantic in response to reduced anthropogenic mercury emission rates in North America and increases in fish tissue mercury concentrations over time in the North Pacific in response to increased mercury loading.
Collapse
Affiliation(s)
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, State University of New York, Stony Brook, NY, USA
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, State University of New York, Stony Brook, NY, USA
| | - Leonard Levin
- Electric Power Research Institute, Palo Alto, CA, USA
| |
Collapse
|
11
|
Cyr AP, López JA, Wooller MJ, Whiting A, Gerlach R, O'Hara T. Ecological drivers of mercury concentrations in fish species in subsistence harvests from Kotzebue Sound, Alaska. ENVIRONMENTAL RESEARCH 2019; 177:108622. [PMID: 31419713 DOI: 10.1016/j.envres.2019.108622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The State of Alaska assesses human exposure to mercury (Hg) via fish consumption producing consumption guidelines for fish tailored for children and women of childbearing age. Under these guidelines, unrestricted consumption is suggested for many fish species, while limited consumption is recommended for others. Subsequent questions have arisen regarding ecological drivers influencing [Hg] in fishes consumed by Alaskans. This community-assisted public health study evaluates [Hg] in fishes from Kotzebue Sound to examine factors that may drive observed [Hg]. We examined eight species of subsistence harvested fish (least cisco, chum salmon, Pacific herring, humpback whitefish, sheefish, starry flounder, Pacific tomcod, and fourhorn sculpin) from Kotzebue Sound. We report total Hg concentrations ([THg]) and monomethyl Hg+ concentrations ([MeHg+]) in the context of various factors (such as species, fork length, carbon and nitrogen stable isotope (δ15N or δ13C)) values that may influence [Hg] and [MeHg+]. Across all 297 fish, [THg] ranged from 3.4 - 235.2 ng/g ww. [THg] was positively correlated with fork length in six of eight fish species, as well as with trophic level (indicated by δ15N values) in five species. [MeHg+] was positively correlated with fork length in four species, and with δ15N values over all specimens examined, and specifically for three individual species. In six of the seven species analyzed, %MeHg was >80% of [THg]. This value decreased with fork length in three species, with no relationship for δ15N values in any species. Among top ranked models based on Akaike Information Criterion correction (AICc), fork length was more frequently included as an explanatory factor for [Hg] than δ15N or δ13C values. The food web magnification factor for [THg] was 11.3, and 12.6 for [MeHg+]. Biomagnification is likely driving [THg] and [MeHg+] over the entire food web, while within species, bioaccumulation is likely a stronger driver of [THg] and [MeHg+] than feeding ecology or trophic position. The [THg] for all species fell within the established unrestricted consumption guideline of 200 ng/g weight wet as established by the State of Alaska's fish consumption guidelines for Hg.
Collapse
Affiliation(s)
- Andrew P Cyr
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 905 N Koyukuk Drive, Fairbanks, AK, 99775-7220, USA.
| | - J Andrés López
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 905 N Koyukuk Drive, Fairbanks, AK, 99775-7220, USA; University of Alaska Museum of the North, University of Alaska, Fairbanks, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Matthew J Wooller
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 905 N Koyukuk Drive, Fairbanks, AK, 99775-7220, USA; Water and Environmental Research Center, Institute of Northern Engineering, 306 Tanana Loop, Fairbanks, AK, 99775-5860, USA; Alaska Stable Isotope Facility, University of Alaska, Fairbanks, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Alex Whiting
- Native Village of Kotzebue, 600 Fifth Ave., Kotzebue, AK, 99752, USA
| | - Robert Gerlach
- Office of the State Veterinarian, Alaska Division of Environmental Health, 5251 Drive. Martin Luther King Jr. Ave., Anchorage, AK, 99507, USA
| | - Todd O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, 901 Koyukuk Drive, Fairbanks, AK, 99775-7750, USA
| |
Collapse
|
12
|
Herring G, Eagles-Smith CA, Varland DE. Mercury and lead exposure in avian scavengers from the Pacific Northwest suggest risks to California condors: Implications for reintroduction and recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:610-619. [PMID: 30218871 DOI: 10.1016/j.envpol.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) and lead (Pb) are widespread contaminants that pose risks to avian scavengers. In fact, Pb exposure is the primary factor limiting population recovery in the endangered California condor (Gymnogyps californianus) and Hg can impair avian reproduction at environmentally relevant exposures. The Pacific Northwest region of the US was historically part of the condor's native range, and efforts are underway to expand recovery into this area. To identify potential threats to reintroduced condors we assessed foraging habitats, Hg and Pb exposure, and physiological responses in two surrogate avian scavenger species (common ravens [Corvus corax] and turkey vultures [Cathartes aura] across the region between 2012 and 2016. Mercury exposure near the Pacific coast was 17-27-fold higher than in inland areas, and stable carbon and sulfur isotopes ratios indicated that coastal scavengers were highly reliant on marine prey. In contrast, Pb concentrations were uniformly elevated across the region, with 18% of the birds exposed to subclinical poisoning levels. Elevated Pb concentrations were associated with lower delta-aminolevulinic acid dehydratase (δ-ALAD) activity, and in ravens there was an interactive effect between Hg and Pb on fecal corticosterone concentrations. This interaction indicated that the effects of Hg and Pb exposure on the stress axis are bidirectional, and depend on the magnitude of simultaneous exposure to the other contaminant. Our results suggest that condors released to the Pacific Northwest may be exposed to both elevated Hg and Pb, posing challenges to management of future condor populations in the Pacific Northwest. Developing a robust monitoring program for reintroduced condors and surrogate scavengers will help both better understand the drivers of exposure and predict the likelihood of impaired health. These findings provide a strong foundation for such an effort, providing resource managers with valuable information to help mitigate potential risks.
Collapse
Affiliation(s)
- Garth Herring
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA.
| | | |
Collapse
|
13
|
Martinez G, McCord SA, Driscoll CT, Todorova S, Wu S, Araújo JF, Vega CM, Fernandez LE. Mercury Contamination in Riverine Sediments and Fish Associated with Artisanal and Small-Scale Gold Mining in Madre de Dios, Peru. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081584. [PMID: 30049961 PMCID: PMC6121527 DOI: 10.3390/ijerph15081584] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 11/22/2022]
Abstract
Artisanal and small-scale gold mining (ASGM) in Madre de Dios, Peru, continues to expand rapidly, raising concerns about increases in loading of mercury (Hg) to the environment. We measured physicochemical parameters in water and sampled and analyzed sediments and fish from multiple sites along one ASGM-impacted river and two unimpacted rivers in the region to examine whether Hg concentrations were elevated and possibly related to ASGM activity. We also analyzed the 308 fish samples, representing 36 species, for stable isotopes (δ15N and δ13C) to estimate their trophic position. Trophic position was positively correlated with the log-transformed Hg concentrations in fish among all sites. There was a lack of relationship between Hg concentrations in fish and either Hg concentrations in sediments or ASGM activity among sites, suggesting that fish Hg concentrations alone is not an ideal bioindicator of site-specific Hg contamination in the region. Fish Hg concentrations were not elevated in the ASGM-impacted river relative to the other two rivers; however, sediment Hg concentrations were highest in the ASGM-impacted river. Degraded habitat conditions and commensurate shifts in fish species and ecological processes may influence Hg bioaccumulation in the ASGM-impacted river. More research is needed on food web dynamics in the region to elucidate any effects caused by ASGM, especially through feeding relationships and food sources.
Collapse
Affiliation(s)
- Gerardo Martinez
- Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA.
| | - Stephen A McCord
- Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA.
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University College of Engineering and Computer Science, Syracuse, NY 13244, USA.
| | - Svetoslava Todorova
- Department of Civil and Environmental Engineering, Syracuse University College of Engineering and Computer Science, Syracuse, NY 13244, USA.
| | - Steven Wu
- BioConsortia Inc., Davis, CA 95616, USA.
| | - Julio F Araújo
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios 17000, Peru.
- Center for Energy, Environmental and Sustainability (CEES), Wake Forest University, Winston-Salem, NC 27109, USA.
| | - Claudia M Vega
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios 17000, Peru.
- Center for Energy, Environmental and Sustainability (CEES), Wake Forest University, Winston-Salem, NC 27109, USA.
| | - Luis E Fernandez
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios 17000, Peru.
- Center for Energy, Environmental and Sustainability (CEES), Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
14
|
Ramírez-Islas ME, De la Rosa-Pérez A, Altuzar-Villatoro F, Ramírez-Romero P. Total mercury concentration in two marine fish species, mackerel (Scomberomorus sp.) and snapper (Lutjanus sp.), from several Mexican fishing ports. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13894-13905. [PMID: 29512013 DOI: 10.1007/s11356-018-1617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Mercury and methylmercury concentrations were evaluated in two marine fish species captured and consumed in Mexico, snapper (Lutjanus sp.) and mackerel (Scomberomorus sp.), obtained from several fish ports on the Pacific Ocean and the Gulf of Mexico. Significant differences were found between the median total mercury concentrations in snapper and mackerel, which were 0.187 and 0.125 μg/g (ww), respectively. Differences in the total mercury concentration in snapper were observed between the different oceans; snappers from the Gulf of Mexico registered a higher median mercury concentration (0.233 μg/g) than those caught in the Pacific Ocean (0.150 μg/g). Ninety-three percent of all samples presented had mercury concentrations that did not exceed the maximum limit (0.5 μg/g) specified by Mexican regulations, although 21% exceeded the US EPA limit of 0.3 μg/g, and three samples had mercury concentrations that were above the FDA recommended limit of 1 μg/g. Mackerel and snapper collected in the ports of Tampico and Mazatlan (economically important industrial cities and fishing sites) had the highest concentrations of total mercury, compared with those obtained from Acapulco and Ensenada (important touristic centers), which showed the lowest values. Recommendations should be made for the maximum allowed consumption of these fish in Mexico, especially for populations settled in shorelines where fish is essential for the daily diet.
Collapse
Affiliation(s)
- Martha Elena Ramírez-Islas
- National Institute of Ecology and Climate Change, Periférico 5000 Col. Insurgentes Cuicuilco, Delegación Coyoacán, 04530, México City, Mexico.
| | - Alejandro De la Rosa-Pérez
- National Institute of Ecology and Climate Change, Periférico 5000 Col. Insurgentes Cuicuilco, Delegación Coyoacán, 04530, México City, Mexico
| | - Fabiola Altuzar-Villatoro
- National Institute of Ecology and Climate Change, Periférico 5000 Col. Insurgentes Cuicuilco, Delegación Coyoacán, 04530, México City, Mexico
| | - Patricia Ramírez-Romero
- Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina. Delegación Iztapalapa, 09340, Mexico City, Mexico
| |
Collapse
|
15
|
Drevnick PE, Brooks BA. Mercury in tunas and blue marlin in the North Pacific Ocean. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1365-1374. [PMID: 28264147 DOI: 10.1002/etc.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 02/03/2017] [Indexed: 05/04/2023]
Abstract
Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC.
Collapse
Affiliation(s)
- Paul E Drevnick
- University of Michigan Biological Station and School of Natural Resources and Environment, Ann Arbor, Michigan, USA
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Calgary, Alberta, Canada
| | - Barbara A Brooks
- Hazard Evaluation and Emergency Response Office, Hawaii Department of Health, Honolulu, Hawaii, USA
| |
Collapse
|
16
|
Luengen AC, Foslund HM, Greenfield BK. Decline in methylmercury in museum-preserved bivalves from San Francisco Bay, California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:782-793. [PMID: 27622695 DOI: 10.1016/j.scitotenv.2016.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
There are ongoing efforts to manage mercury and nutrient pollution in San Francisco Bay (California, USA), but historical data on biological responses are limited. We used bivalves preserved in formalin or ethanol from museum collections to investigate long-term trends in methylmercury (MeHg) concentrations and carbon and nitrogen isotopic signatures. In the southern reach of the estuary, South Bay, MeHg in the Asian date mussel (Musculista senhousia) significantly declined over the study duration (1970 to 2012). Mean MeHg concentrations were highest (218ng/g dry weight, dw) in 1975 and declined 3.8-fold (to 57ng/g dw) by 2012. This decrease corresponded with closure of the New Almaden Mercury Mines and was consistent with previously observed declines in sediment core mercury concentrations. In contrast, across all sites, MeHg in the overbite clam (Potamocorbula amurensis) increased 1.3-fold from 64ng/g dw before 2000 to 81ng/g dw during the 2000s and was higher than in M. senhousia. Pearson correlation coefficients of the association between MeHg and δ13C or δ15N provided no evidence that food web alterations explained changing MeHg concentrations. However, isotopic composition shifted temporally. South Bay bivalve δ15N increased from 12‰ in the 1970s to 18‰ in 2012. This increase corresponded with increasing nitrogen loadings from wastewater treatment plants until the late 1980s and increasing phytoplankton biomass from the 1990s to 2012. Similarly, a 3‰ decline in δ13C from 2002 to 2012 may represent greater utilization of planktonic food sources. In a complimentary 90day laboratory study to validate use of these preserved specimens, preservation had only minor effects (<0.5‰) on δ13C and δ15N. MeHg increased following preservation but then stabilized. These are the first documented long-term trends in biota MeHg and stable isotopes in this heavily impacted estuary and support the utility of preserved specimens to infer contaminant and biogeochemical trends.
Collapse
Affiliation(s)
- Allison C Luengen
- Environmental Sciences Department, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, USA.
| | - Heather M Foslund
- Environmental Sciences Department, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, USA.
| | - Ben K Greenfield
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, 50 University Hall #7360, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Eagles-Smith CA, Ackerman JT, Willacker JJ, Tate MT, Lutz MA, Fleck JA, Stewart AR, Wiener JG, Evers DC, Lepak JM, Davis JA, Pritz CF. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1171-1184. [PMID: 27102274 DOI: 10.1016/j.scitotenv.2016.03.229] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/25/2023]
Abstract
Methylmercury contamination of fish is a global threat to environmental health. Mercury (Hg) monitoring programs are valuable for generating data that can be compiled for spatially broad syntheses to identify emergent ecosystem properties that influence fish Hg bioaccumulation. Fish total Hg (THg) concentrations were evaluated across the Western United States (US) and Canada, a region defined by extreme gradients in habitat structure and water management. A database was compiled with THg concentrations in 96,310 fish that comprised 206 species from 4262 locations, and used to evaluate the spatial distribution of fish THg across the region and effects of species, foraging guilds, habitats, and ecoregions. Areas of elevated THg exposure were identified by developing a relativized estimate of fish mercury concentrations at a watershed scale that accounted for the variability associated with fish species, fish size, and site effects. THg concentrations in fish muscle ranged between 0.001 and 28.4 (μg/g wet weight (ww)) with a geometric mean of 0.17. Overall, 30% of individual fish samples and 17% of means by location exceeded the 0.30μg/g ww US EPA fish tissue criterion. Fish THg concentrations differed among habitat types, with riverine habitats consistently higher than lacustrine habitats. Importantly, fish THg concentrations were not correlated with sediment THg concentrations at a watershed scale, but were weakly correlated with sediment MeHg concentrations, suggesting that factors influencing MeHg production may be more important than inorganic Hg loading for determining fish MeHg exposure. There was large heterogeneity in fish THg concentrations across the landscape; THg concentrations were generally higher in semi-arid and arid regions such as the Great Basin and Desert Southwest, than in temperate forests. Results suggest that fish mercury exposure is widespread throughout Western US and Canada, and that species, habitat type, and region play an important role in influencing ecological risk of mercury in aquatic ecosystems.
Collapse
Affiliation(s)
- Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Michael T Tate
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Michelle A Lutz
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Jacob A Fleck
- U.S. Geological Survey, California Water Science Center, 6000 J St. Placer Hall, Sacramento, CA 95819, USA
| | - A Robin Stewart
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA
| | - James G Wiener
- University of Wisconsin La Crosse, River Studies Center, 1725 State Street, La Crosse, WI 54601, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | - Jesse M Lepak
- Colorado Parks and Wildlife, 317 West Prospect Road, Fort Collins, CO 80526, USA
| | - Jay A Davis
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, USA
| | | |
Collapse
|
18
|
Eagles-Smith CA, Wiener JG, Eckley CS, Willacker JJ, Evers DC, Marvin-DiPasquale M, Obrist D, Fleck JA, Aiken GR, Lepak JM, Jackson AK, Webster JP, Stewart AR, Davis JA, Alpers CN, Ackerman JT. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1213-1226. [PMID: 27320732 DOI: 10.1016/j.scitotenv.2016.05.094] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 05/25/2023]
Abstract
Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.
Collapse
Affiliation(s)
- Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.
| | - James G Wiener
- University of Wisconsin La Crosse, River Studies Center, 1725 State Street, La Crosse, WI 54601, USA
| | - Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 2100 6th Ave., Suite 900, Seattle, WA 98101, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | | | - Daniel Obrist
- Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Jacob A Fleck
- U.S. Geological Survey, California Water Science Center, 6000 J St., Placer Hall, Sacramento, CA 95819, USA
| | - George R Aiken
- U.S. Geological Survey, National Research Program, 3215 Marine St., Boulder, CO 80303, USA
| | - Jesse M Lepak
- Colorado Parks and Wildlife, 317 West Prospect Road, Fort Collins, CO 80526, USA
| | - Allyson K Jackson
- Oregon State University, Department of Fisheries and Wildlife, 104 Nash Hall, Corvallis, OR 97331, USA
| | - Jackson P Webster
- University of Colorado, Civil, Environmental, and Architectural Engineering, Boulder, CO 80309, USA
| | - A Robin Stewart
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA
| | - Jay A Davis
- San Francisco Estuary Institute, 4911 Central Ave., Richmond, CA 94804, USA
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J St., Placer Hall, Sacramento, CA 95819, USA
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Dixon, CA 95620, USA
| |
Collapse
|