1
|
Câmara I, Ventura de Souza V, Brasileiro Vidal AC, Soares Fernandes B, Magalhães Amaral F, Motteran F, Gavazza S. Optimizing intermittent micro-aeration as a strategy for enhancing aniline anaerobic biodegradation: kinetic, ecotoxicity, and microbial community dynamics analyses. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1181-1197. [PMID: 39215731 DOI: 10.2166/wst.2024.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.
Collapse
Affiliation(s)
- Isabelle Câmara
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Victor Ventura de Souza
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Ana Christina Brasileiro Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Bruna Soares Fernandes
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Fernanda Magalhães Amaral
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Fabrício Motteran
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil E-mail:
| |
Collapse
|
2
|
Estévez S, Mosca Angelucci D, Moreira MT, Tomei MC. Techno-environmental and economic assessment of color removal strategies from textile wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169721. [PMID: 38171461 DOI: 10.1016/j.scitotenv.2023.169721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
The textile industry is one of the most chemical-intensive processes, resulting in the unquestionable pollution of more than a quarter of the planet's water bodies. The high recalcitrant properties of some these pollutants resulted on the development of treatment technologies looking at the larger removal efficiencies, due to conventional systems are not able to completely remove them in their effluents. However, safeguarding the environment also implies taking into account indirect pollution from the use of chemicals and energy during treatment. On the other hand, the emerged technologies need to be economically attractive for investors and treatment managers. Therefore, the costs should be kept under control. For this reason, the present study focuses on a comparative Life Cycle Assessment and Life Cycle Costing of four scale-up scenarios aiming at mono and di-azo reactive dyes removal from textile wastewater. Two reactors (sequencing batch reactor and two-phase partitioning) were compared for different reaction environments (i.e., single anaerobic and sequential anaerobic-aerobic) and conditions (different pH, organic loading rates and use of polymer). In accordance with the results of each scenario, it was found that the three technical parameters leading to a change in the environmental profiles were the removal efficiency of the dyes, the type of dye eliminated, and the pollutant influent concentration. The limitation of increasing organic loading rates related to the biomass inhibition could be overcame through the use of a novel two-phased partitioning bioreactor. The use of a polymer at this type of system may help restore the technical performance (84.5 %), reducing the toxic effects of effluents and consequently decreasing the environmental impact. In terms of environmental impact, this is resulting into a reduction of the toxic effects of textile effluents in surface and marine waters compared to the homologous anaerobic-aerobic treatment in a sequencing batch reactor. However, the benefits achieved for the nature comes with an economic burden related to the consumption of the polymer. It is expected that the cost of investment of the treatment with the two-phase partitioning bioreactor rises 0.6-8.3 %, depending on market prices, compared to the other analyzed sequential anaerobic-aerobic technologies. On the other side, energy and chemical consumption did not prove to be limiting factors for economic feasibility.
Collapse
Affiliation(s)
- Sofía Estévez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Domenica Mosca Angelucci
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Concetta Tomei
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy
| |
Collapse
|
3
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
4
|
Rai A, Sirotiya V, Mourya M, Khan MJ, Ahirwar A, Sharma AK, Kawatra R, Marchand J, Schoefs B, Varjani S, Vinayak V. Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. CHEMOSPHERE 2022; 305:135371. [PMID: 35724717 DOI: 10.1016/j.chemosphere.2022.135371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.
Collapse
Affiliation(s)
- Anshuman Rai
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anil K Sharma
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Rajeev Kawatra
- Forensic Science Laboratory, Haryana, Madhuban, Karnal, 132037, India
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
5
|
Deka R, Shreya S, Mourya M, Sirotiya V, Rai A, Khan MJ, Ahirwar A, Schoefs B, Bilal M, Saratale GD, Marchand J, Saratale RG, Varjani S, Vinayak V. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. ENVIRONMENTAL RESEARCH 2022; 212:113454. [PMID: 35597291 DOI: 10.1016/j.envres.2022.113454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.
Collapse
Affiliation(s)
- Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Shristi Shreya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana,133203, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Justine Marchand
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India.
| |
Collapse
|
6
|
Marathe D, Singh A, Raghunathan K, Thawale P, Kumari K. Current available treatment technologies for saline wastewater and land-based treatment as an emerging environment-friendly technology: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2461-2504. [PMID: 34453764 DOI: 10.1002/wer.1633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Different industrial activities such as agro-food processing and manufacturing, leather manufacturing, and paper and pulp production generate highly saline wastewater. Direct discharge of saline wastewater has resulted in pollution of waterbodies by very high magnitudes. Consequently, an enormous number of pollutants such as heavy metals, salts, and organic matter are also released into the environment threatening the survival of human and biota. Saline wastewater also has significant effects on survival of plants, agricultural activities, and groundwater systems. Several treatments and disposal technologies are available for saline wastewater, but the selection of the most appropriate treatment and disposal technology still remains a major challenge with respect to the economic or technical constraints. Considering the sustainable management of saline wastewater, the present review is an attempt to compile the existing and emerging technologies for the treatment of saline wastewater. Among all the individual and hybrid technologies, land-based treatment systems are proven to be the most efficient technologies considering the energy demands, economic, and treatment efficiencies. Likewise, new and sustainable technologies are the need of hour integrating both the treatment and management and the resource recovery factors along with the ultimate goal of the protection in terms of human health and environmental aspect. PRACTITIONER POINTS: Physico-chemical treatment technologies for saline wastewater. Combined/Hybrid technologies for the treatment of saline wastewater. Land-based treatments as the environment friendly and sustainable method for saline wastewater treatment and disposal. Role of phytoremediation in land-based treatment.
Collapse
Affiliation(s)
- Deepak Marathe
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Thawale
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kanchan Kumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700 107, India
| |
Collapse
|
7
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Gebregiorgis T. Photocatalytic and Biological Oxidation Treatment of Real Textile Wastewater. Mol Biotechnol 2021. [DOI: 10.5772/intechopen.89587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With rapidly growing urbanization and industrialization in developing countries, a large volume of wastewater is produced from industries that contain chemicals generating high environmental risks, which could affect health and socio-economic activities if not treated properly. In this study, the discoloration of wastewater containing azo dyes by chemical oxidation process combined with a biological treatment was evaluated and applied on real textile wastewater generated from one Ethiopian industrial site. The use of TiO2 as a photocatalyst and the effect of the addition of H2O2 on color removal were investigated. Photocatalysis was followed by aerobic biological treatment and their combination resulted in 93.3 and 90.4% removal of color and chemical oxygen demand (COD), respectively. These results revealed that the combination of photocatalytic and biological treatment approach shows a promising potential for the removal of color from real textile wastewater.
Collapse
|
9
|
Tomei MC, Mosca Angelucci D, Daugulis AJ. Self-regenerating tubing bioreactor for removal of toxic substrates: Operational strategies in response to severe dynamic loading conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138019. [PMID: 32213416 DOI: 10.1016/j.scitotenv.2020.138019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
A tubing TPPB (Two-Phase Partitioning Bioreactor) was operated with the objective of verifying the effective treatment of a phenolic synthetic wastewater with simultaneous polymeric tubing bioregeneration by introducing tubing effluent recycle and modifications to the Hydraulic Retention Time (HRT). 2,4-dichlorophenol (DCP) was employed as the target substrate and the bioreactor was operated for a 3 month period under severe loading conditions (from 77 to 384 mg/L d) with HRT in the tubing in the range of 2-4 h. Tubing effluent recycle (recycle flow rate/influent flow rate ratio = 0.3) was applied when a loss of performance was detected arising from the increased load. For HRT values of 3 and 4 h, almost complete DCP removal was achieved after a few days (1-5) of operation while for the 2 h HRT (i.e. in the most severe loading condition) the DCP removal was ≥97%. A beneficial effect on the process performance arising from recycle application was evident for all the operating conditions investigated, and was confirmed by statistical analysis. Essentially complete polymer bioregeneration was achieved when the bioreactor was operated at the lowest HRT (i.e. 2 h), combined with the application of tubing effluent recycle. The results of this study highlighted several advantages of the tubing TPPB configuration in a comparative analysis of different regeneration options, including the possibility of operating continuously with simultaneous bioregeneration and without the need for additional units or operational steps and extra-energy consumption.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
10
|
|
11
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.09.001] [Citation(s) in RCA: 704] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Xue F, Tang B, Bin L, Ye J, Huang S, Fu F, Li P, Cui J. Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:696-703. [PMID: 30677935 DOI: 10.1016/j.scitotenv.2018.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
This work investigated the biotoxicity and the residual dissolved organic matter (DOM) of the effluents from nine typical full-scale textile plants located at Pearl River Delta (PRD) in Guangdong province, China. The fluorescence regional integration (FRI) analysis showed that the tryptophan-like (II), soluble microbial product-like (IV) and fulvic acid-like substances (III) were the dominant compounds in the DOM. The acute toxicity test showed toxic effects still remained in most textile effluents, which might attribute to the undegraded dyes or aromatic compounds. Combining with the results from multiple methods, it indicated that the selected nine textile wastewater treatment plants (tWWTPs) all contained some residual micro organic pollutants in their effluents, and the residual benzene-derived products or aromatic amines were probably the toxicity-causing substances. Both ozonization and membrane filtration were capable of further decreasing the content of residual DOM, but by comprehensively considering the effects of removing DOM and biotoxicity, membrane filtration was better than ozonization.
Collapse
Affiliation(s)
- Feifei Xue
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China.
| | - Liying Bin
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Jianwen Ye
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Jiao Cui
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Tang W, Xu X, Ye BC, Cao P, Ali A. Decolorization and degradation analysis of Disperse Red 3B by a consortium of the fungus Aspergillus sp. XJ-2 and the microalgae Chlorella sorokiniana XJK. RSC Adv 2019; 9:14558-14566. [PMID: 35519313 PMCID: PMC9064126 DOI: 10.1039/c9ra01169b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022] Open
Abstract
Disperse Red 3B, an anthraquinone dye, was decolorized by a consortium, which was constituted of the fungus (Aspergillus sp. XJ-2) and the microalgae (Chlorella sorokiniana XJK). The consortium performed better than the single system in terms of decolorization and nutrient removal simultaneously in the simulated wastewater of Dispersed Red 3B. The decolorization rate could reach 98.09% by the consortium under the optimized conditions. The removal rate of COD (Chemical Oxygen Demand), TP (Total Phosphorus), and ammonia nitrogen reached 93.9%, 83.9% and 87.6%. Also, the consortium could tolerate higher salt and dye concentration than the single system did. In this co-cultural system, the lignin peroxidase and manganese peroxidase enzyme activities contributed to the degradation of Disperse Red 3B, which reached 86.7 U L−1 and 122.5 U L−1. The result of fermentation liquid analysis with UV-vis, FTIR and GC-MS showed that the colored functional group of the dye was broken and the Dispersed Red 3B was degraded into small molecular compounds with low toxicity. It was suggested that degradation plays a major role during the color removal process. The consortium exhibited greater potential in terms of color removal and water pollutant removal than the separate system did. The consortium of fungi and microalgae exhibited simultaneous removal of color, nutrients and COD in simulated wastewater.![]()
Collapse
Affiliation(s)
- Weihua Tang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| | - Xiaolin Xu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| | - Bang-Ce Ye
- School of Biological Engineering
- East China University of Science and Technology
- Shanghai
- People's Republic of China
| | - Peng Cao
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| | - Asghar Ali
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| |
Collapse
|
14
|
Jawad AH, Sabar S, Ishak MAM, Wilson LD, Ahmad Norrahma SS, Talari MK, Farhan AM. Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4activation for methylene blue adsorption. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1347565] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali H. Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - S. Sabar
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - M. K. Talari
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Ahlam M. Farhan
- Department of Chemistry, College of Sciences for Women, Baghdad University, Baghdad, Iraq
| |
Collapse
|