1
|
Soares MP, De Angelis CF, Taylor EW, Silva LM, Montanari BH, Azevedo VC, da Costa Souza I, Monferrán MV, Wunderlin DA, Fernandes MN, Leite CAC. Dynamics of metal/metalloid bioaccumulation and sensitivity in post-larvae shrimp (Macrobrachium rosenbergii) exposed to settleable atmospheric particulate matter from an industrial source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177355. [PMID: 39489450 DOI: 10.1016/j.scitotenv.2024.177355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The metallurgy industry is a potent global source of particulate matter (PM) atmospheric emissions. A portion of this PM may settle in aquatic (SePM) carrying metal/metalloid particles and metallic nanoparticles. Surprisingly, this form of contamination has not received due attention from most environmental monitoring agencies. We analyzed the effect of exposure to SePM on shrimp post-larvae, a critical stage for the viability of shrimp populations and for the trophic chain. After acclimation, shrimp were exposed to contaminants using a randomized experimental design-a 4 × 4 factorial arrangement with 2 factors: exposure time (24, 48, 72, and 96 h) and SePM concentration (0.00, 0.01, 0.10, and 1.00 g L-1). The bioaccumulation of metals, contamination rates, mortality, and ROS-related biomarkers (lipid peroxidation - LPO; DNA strand breakage DNA SB and metallothionein content - MTs;) were evaluated. After contamination, the water contained 27 different metals/metalloids. Post-larvae accumulated metals, such as Cd, Pb, Al, As, Se, Sr, Zr, Ba, La, Ce, W, and Hg. However, the rise in SePM did not result in a proportional bioaccumulation rise, indicating that effective biological barriers may work for some metals. Although the different levels of SePM changed mortality dynamics, they resulted in a similar final lethality (60-80 %). SePM caused significant damage to lipids (increased LPO), genetic material (DNA SB), and increased Mts. Such effects may reflect a particularly deleterious ecological problem as it is present at such an early stage of life. These results identified a clear environmental risk since the lower level of exposure used was 102 times lower than that measured in the habitats affected by local industry. Consequently, our results emphasize the need for clear protocols for monitoring the effects of SePM in aquatic environments.
Collapse
Affiliation(s)
- Michelly Pereira Soares
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Carolina Fernandes De Angelis
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Edwin W Taylor
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ludmila Mendes Silva
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Beatriz Helena Montanari
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | | | - Iara da Costa Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Magdalena V Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina; Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CONICET, CIBICI, Ciudad Universitaria, Medina Allende Esq. Haya de La Torre S/n, 5000 Cordoba, Argentina.
| | - Daniel A Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Cléo Alcantara Costa Leite
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Saldaña-Serrano M, Bastolla CLV, Mattos JJ, de Lima D, Piazza CE, Righetti BPH, Martiol R, Dias VHV, Ferreira CP, Nogueira DJ, de Miranda Gomes CHA, Taniguchi S, Bícego MC, Bainy ACD. Biochemical responses in Pacific oysters Magallana gigas (Thunberg, 1793): Tools to evaluate the environmental quality of aquaculture areas. MARINE POLLUTION BULLETIN 2024; 201:116244. [PMID: 38489909 DOI: 10.1016/j.marpolbul.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.
Collapse
Affiliation(s)
- Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Daína de Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Bárbara Pacheco Harrison Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Renata Martiol
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Vera Helena Vidal Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Clarissa Pellegrini Ferreira
- Department of Fisheries Engineering and Biological Sciences, University of Santa Catarina State, UDESC, Laguna, SC 88.790-000, Brazil
| | - Diego José Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Carlos Henrique Araujo de Miranda Gomes
- Laboratory of Marine Mollusks-LMM, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88040900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Marcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
3
|
Lu G, Wang WX. Tissue-based trace element pollution of clam Ruditapes philippinarum in China: Hotspot identification and multiple nonlinear analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161598. [PMID: 36646227 DOI: 10.1016/j.scitotenv.2023.161598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Considering the complexity of coastal and estuarine systems, a great challenge of environmental health assessment is to distinguish between natural and anthropogenically induced stress. Quantification of trace element accumulation in the tissues of sedentary bivalves with subsequent hotspot identification is important to assess the pollution status. The present study conducted a nationwide mapping of bioavailable macro- and trace elements in a widely distributed biomonitoring clam Ruditapes philippinarum from China. Ag, As, Cd, Cr, Cu, and Zn concentrations in the clams showed similar levels as those documented previously in mussels, but were lower than those in oysters at similar sites from China. Notably, the total As concentrations in clams at Xinkai Estuary and Beibu Bay were relatively higher than those at other sites in China. After normalization by tissue biomass, salinity (Na) and nutrient (P), some hotspots were identified with high pollution of trace elements at Liaodong Bay of Bohai Sea, Gold Beach of Qingdao, Dongling Port of Yellow Sea, Hangzhou Bay and adjacent coasts of East China Sea, and Pearl River Estuary and Beibu Bay of South China Sea. This study demonstrated that most trace elements had a path-dependent effect of biomass, except for Cd which showed an indirect pathway of AgNi related accumulation. Results showed significant correlations between Cd, Zn, Ag and Ni, and between Pb/Cr and Ti in clams. After mass normalization, all trace elements displayed significantly positive correlations with Na or P. Simultaneously, the clam biomass played an intermediary role in trace element accumulation in non-linear patterns related to salinity and nutrient. These results are important in evaluating the composite ambiguous information of the historical data of trace element biomonitoring.
Collapse
Affiliation(s)
- Guangyuan Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China
| | - Wen-Xiong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Research Center for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 51807, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Khatir Z, Hizam Z, Lyons B, Leitão A. Aneuploidy in the Pearl Oyster Pinctada radiata (Leach, 1814): Evidence for Nonrandom Chromosome Loss and Gain in Marine Bivalves. MALACOLOGIA 2022. [DOI: 10.4002/040.065.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zenaba Khatir
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zainab Hizam
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| | - Brett Lyons
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, UK
| | - Alexandra Leitão
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
5
|
Methylmercury, Trace Metals, Organotins and Their Effects on the Qatari Mangrove Shrimp, Palaemon khori. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Qatari mangroves of Al-Khor are being increasingly exposed to a wide variety of anthropogenic pollutants due to land reclamation and urban expansion. In this study, we evaluated the lethal and genotoxic effects of methylmercury, trace metals, and organotins, assessing mortality and aneuploidy levels (abnormal number of chromosomes) in the endemic shrimp Palaemon khori under laboratory conditions. In the experimental design, two different concentrations were used for each family of contaminant (single or combined): an environmental concentration equivalent to the maximum value reported in the environment and a value ten times higher, for a period of eight weeks. Survival decreased significantly when pollutants were administrated in combination, even at environmental concentrations (as shown by Cox proportional hazards ratios): similar levels of mortality would be reached by individual type of pollutants only at ten times the environmental concentration. This critical result, under controlled lab conditions, highlights the importance of monitoring mixtures of contaminant types over single ones in the marine environment. Aneuploidy was reported in all treatments and control ranging from 5% to 19% at week four and from 7% to 21% at week eight. All treatments presented significantly higher aneuploidy levels when compared to the control. However, no significant difference was observed between the two time periods, even though 30% of the treatments could not be assessed at week eight, as not enough animals were still alive. In conclusion, the use of endemic species should be considered a valuable tool to determine local perturbations, representing a regional bioindicator of multiple environmental stressors from the initial stages of contamination.
Collapse
|
6
|
Investigation of Apoptotic and Inflammatory Activity in Liver Tissue of Rats Fed with Clam (Pecten maximus, Linnaeus 1758). REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
One of the most important threats for living things in aquatic ecosystems is environmental pollution. The changes in water quality caused by environmental pollution also reduce the quality of life for organisms in the environment. Among these, the crustaceans which are most affected by the negative changes of environment, fed by the filtration method, are seen as pollution indicator. The consumption of these creatures reaches all steps of the pyramid, especially humans, through the food chain. People who frequently use seafood in their diets may be affected by these negative changes. Heavy metal contents of the clams obtained from Dardanelles were determined by the ICPOES. Twenty-four female Wistar albino rats were fed for 30 days with the experimental diet using clams (Pecten maximus), which was dried and formed into pellets and added to the food in certain proportions. At the end of the study, the subjects were sacrificed under anesthesia, liver tissues were taken, and histochemical examination was performed. TUNEL method was performed to detect apoptotic activity, and immunohistochemical staining with TNF-α and NF-κB antibodies to determine inflammation. Concluding from the results, it was observed that the degeneration of vital digestive system tissues such as liver was inevitable in living creatures that frequently consume seafood obtained from unhealthy environment in their daily diets. The high analysis values of the heavy metal (P. maximus) in food additive can be considered as a reason for histopathological results.
Collapse
|
7
|
Greggio N, Capolupo M, Donnini F, Birke M, Fabbri E, Dinelli E. Integration of physical, geochemical and biological analyses as a strategy for coastal lagoon biomonitoring. MARINE POLLUTION BULLETIN 2021; 164:112005. [PMID: 33517082 DOI: 10.1016/j.marpolbul.2021.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Coastal lagoons are complex environments threatened by natural and anthropogenic stressors. Here, we tested the effectiveness of combining physical, geochemical and chemical measurements with biomarker data obtained in field-exposed marine mussels (Mytilus galloprovincialis) as a biomonitoring strategy for a highly pressured lagoon (Pialassa Baiona, Ravenna, Italy). Data showed a spatial trend of sediment contamination by Hg, Pt, Au, Ag, Mo, Re, Cd, Pd and Zn. Local conditions of high water temperature/low conductivity were detected among selected sites. After a 30-day in situ exposure, Ag and Hg were the most bioaccumulated elements (10 and 5 folds, respectively) in mussels followed by Sb, Al, Ti and Fe. Decreased survival, lysosomal dysfunctions, increased metallothionein content and peroxisome proliferation were observed in mussels in relation to metal spatial distribution and physico-chemical fluctuations. Overall, this study provides a further confirmation of the role of biomonitoring to reliably assess the environmental quality of highly pressured lagoons.
Collapse
Affiliation(s)
- Nicolas Greggio
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy.
| | - Marco Capolupo
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| | - Filippo Donnini
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Manfred Birke
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany
| | - Elena Fabbri
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| | - Enrico Dinelli
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| |
Collapse
|
8
|
Britto RS, Nascimento JP, Serodre T, Santos AP, Soares AMVM, Furtado C, Ventura-Lima J, Monserrat JM, Freitas R. Oxidative stress in Ruditapes philippinarum after exposure to different graphene oxide concentrations in the presence and absence of sediment. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108922. [PMID: 33164844 DOI: 10.1016/j.cbpc.2020.108922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 11/30/2022]
Abstract
The use of carbon nanomaterials (CNMs) is growing in different technological fields, raising concern on their potential impacts on the environment. Given its diverse nanothenological applications, graphene oxide (GO) stands out among the most widely used CNMs. Its hydrophilic capacity enables it to remain stable in suspension in water allowing that GO can be accessible for accumulation by aquatic organisms through ingestion, filtration and superficial dermal contact when present in aquatic ecosystems. Considering that the effects induced to aquatic organisms may depend on environment characteristics, such as temperature, salinity, water pH as well as the presence/absence of sediment, the present study aimed to investigate the influence of sediment on the impacts caused by GO exposure. For this, oxidative stress parameters were measured in the clam Ruditapes philippinarum, exposed to different GO concentrations (0.01, 0.1 and 1 mg/L), in the presence and absence of sediment, for a 28-days experimental period. The results here presented showed that regardless the presence or absence of sediment, most of the biochemical parameters considered were altered when clams were exposed to the highest concentration. The present findings further revealed that in the presence of sediment, clams mostly invested in non-enzymatic defenses (such as reduced glutathione, GSH), while animals exposed to GO in the absence of sediment favored their enzymatic antioxidant defense capacity (catalase, CAT and superoxide dismutase, SOD). This study highlights the relevance of environmental variations as key factors influencing organisms' responses to pollutants.
Collapse
Affiliation(s)
- Roberta Socoowski Britto
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), FURG, Brazil; Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| | | | - Tiago Serodre
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | | | | | - Clascídia Furtado
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | - Juliane Ventura-Lima
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), FURG, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), FURG, Brazil.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
9
|
Chaâbane M, Bejaoui S, Trabelsi W, Telahigue K, Chetoui I, Chalghaf M, Zeghal N, El Cafsi M, Soudani N. The potential toxic effects of hexavalent chromium on oxidative stress biomarkers and fatty acids profile in soft tissues of Venus verrucosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110562. [PMID: 32276164 DOI: 10.1016/j.ecoenv.2020.110562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium (chromium (VI)), a highly toxic heavy metal, is a common pollutant of aquatic ecosystems. The present study aimed to elucidate the potential toxic effects of chromium (VI) on oxidative stress biomarkers and fatty acids profile in the gills and digestive gland of Venus verrucosa, an ecologically and economically important bivalve species. Three doses of chromium (VI) (1, 10 and 100 μg.L-1) were chosen for V. verrucosa exposure during 7 days under controlled conditions. A significant increase in the levels of malondialdehyde, lipid hydroperoxides and hydrogen peroxide was observed in the gills and digestive gland of chromium (VI)-exposed V. verrucosa as compared to the control group. Furthermore, an induction of enzymatic antioxidant activities (superoxide dismutase, glutathione peroxidase and glutathione S-transferase) and an enhancement of non-enzymatic antioxidant levels (non-protein thiols, glutathione and vitamin C) were marked. An alteration of fatty acids composition was also noted following chromium (VI) exposure. The obtained results highlighted the importance of assessing oxidative damage biomarkers and fatty acids profile in the study of chromium (VI)-induced toxicity in V. verrucosa.
Collapse
Affiliation(s)
- Mariem Chaâbane
- Animal Physiology Laboratory, Department of Life Sciences, Faculty of Sciences of Sfax, University of Sfax, 3000, Sfax, Tunisia.
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Khaoula Telahigue
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Imene Chetoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Chalghaf
- Higher Institute of Fisheries and Aquaculture of Bizerte, University of Carthage, BP15, 7080, Menzel Jemil, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Department of Life Sciences, Faculty of Sciences of Sfax, University of Sfax, 3000, Sfax, Tunisia
| | - M'hamed El Cafsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nejla Soudani
- Animal Physiology Laboratory, Department of Life Sciences, Faculty of Sciences of Sfax, University of Sfax, 3000, Sfax, Tunisia; Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
10
|
Yuan Y, Sun T, Wang H, Liu Y, Pan Y, Xie Y, Huang H, Fan Z. Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. MARINE POLLUTION BULLETIN 2020; 150:110717. [PMID: 31753566 DOI: 10.1016/j.marpolbul.2019.110717] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Bivalves are one of the key components of the biogeochemical cycle in the marine system, and respond to heavy metal (HM) sensitively as filter feeders. To determine relationship of HMs in edible bivalve and seawater and HM effects on human health when digesting bivalves, HMs were analyzed in bivalves and seawater. The results showed that the mean HM concentrations in bivalves decreased in the order of Zn > Cu > Cr > Pb > As > Cd > Hg. Generally, all the bioconcentration factor values of bivalves were higher than 100, suggesting that bivalves have a high bioaccumulation ability. Nonmetric multidimensional scaling analysis indicated that all bivalves have a high bioaccumulation capacity for Cu and Zn. It was found that there are health risks associated with consuming bivalves, and children are more vulnerable than adults. Finally, the maximum allowable consumption rates of non-carcinogenic and carcinogenic risk were determined. These results provide the underlying insights needed to guide the consumption of seafood.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ting Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Huijuan Wang
- Guangdong Provincial Key Lab of Fishery Ecology and Environment; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yafeng Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ye Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yujing Xie
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Honghui Huang
- Guangdong Provincial Key Lab of Fishery Ecology and Environment; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
11
|
Moltedo G, Martuccio G, Catalano B, Gastaldi L, Maggi C, Virno-Lamberti C, Cicero AM. Biological responses of the polychaete Hediste diversicolor (O.F.Müller, 1776) to inorganic mercury exposure: A multimarker approach. CHEMOSPHERE 2019; 219:989-996. [PMID: 30682764 DOI: 10.1016/j.chemosphere.2018.12.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) is a global priority pollutant given its relevance in terms of environmental damage and threat to human health. Its ecotoxicity was tested using the benthic keystone species Hediste diversicolor as target species. After 10 days of exposure to different levels of inorganic Hg (10 and 50 μg L-1), bioaccumulation and a wide range of biological responses were evaluated at different biological levels, including biomarkers of exposure, neurotoxicity, oxidative stress, genotoxicity and cytochemistry. In controlled laboratory conditions, Hg was taken up by H. diversicolor in a dose-response manner and caused a range of biological responses, including oxidative stress (GSTs, GPx, GSH-2GSSG, and TOSCA), neurotoxicity (AChE), and cellular damages at the membrane level (LFs, NLs, Ca2+-ATPase); however, it did not cause significant DNA damage or mortality. This study confirms the capability of H. diversicolor to tolerate high levels of metals and clarifies the mechanisms underlying the damage caused by waterborne Hg and the defense mechanisms, activated in this species. In particular, detoxification of the inorganic form of Hg in this species was found to be strongly related to glutathione expression and several antioxidant enzymes of the antioxidant system. This process also efficiently minimized negative effects on DNA and prevented death, but was not sufficient to avoid neurotoxicity and some cellular damages, mainly at the intestinal level.
Collapse
Affiliation(s)
- Ginevra Moltedo
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy.
| | - Giacomo Martuccio
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy
| | - Barbara Catalano
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy
| | - Laura Gastaldi
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy
| | - Chiara Maggi
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy
| | - Claudia Virno-Lamberti
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy
| | - Anna Maria Cicero
- ISPRA Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100, 00128 Rome, Italy
| |
Collapse
|
12
|
Chunduri NK, Storchová Z. The diverse consequences of aneuploidy. Nat Cell Biol 2019; 21:54-62. [PMID: 30602769 DOI: 10.1038/s41556-018-0243-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Aneuploidy, or imbalanced chromosome number, has profound effects on eukaryotic cells. In humans, aneuploidy is associated with various pathologies, including cancer, which suggests that it mediates a proliferative advantage under these conditions. Here, we discuss physiological changes triggered by aneuploidy, such as altered cell growth, transcriptional changes, proteotoxic stress, genomic instability and response to interferons, and how cancer cells adapt to the changing aneuploid genome.
Collapse
Affiliation(s)
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
13
|
Pereira R, Leite E, Raimundo J, Guilherme S, Puga S, Pinto-Ribeiro F, Santos MA, Canário J, Almeida A, Pacheco M, Pereira P. Metals(loids) targeting fish eyes and brain in a contaminated estuary - Uncovering neurosensory (un)susceptibility through bioaccumulation, antioxidant and morphometric profiles. MARINE ENVIRONMENTAL RESEARCH 2018; 140:403-411. [PMID: 30054132 DOI: 10.1016/j.marenvres.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
This study examined the susceptibility of fish (Liza aurata) eyes and brain to metals(loids) contamination under realistic exposure conditions. A multidimensional approach was applied to fish caught at a chronically contaminated site (BAR) and at a reference site of the Tagus estuary (Portugal), which comprised metals(loids) accumulation in eyes and brain together with a battery of enzymatic and non-enzymatic antioxidants, as well as brain morphometry (i.e. cell density). Trace element levels in the blood, gills, liver and kidney allowed interpretations on their preferential pathway(s) to the eyes and brain. Metals(loids) accumulation pointed out the elevated vulnerability of the fish eyes at BAR, probably related with the direct waterborne uptake. Pb uptake in L. aurata eyes could be associated both with water and indirect pathways. At the most contaminated site, metals(loids) were on the basis of pro-oxidant conditions in the ocular tissues, while no indication of toxicity was recorded in the brain. Overall, the results disclosed a differential bioaccumulation among fish organs, suggesting that, in the L. aurata population studied, metal organotropism underlie the lower susceptibility of the brain comparing to the eyes. However, mechanisms remain little understood and further work is needed.
Collapse
Affiliation(s)
- Ricardo Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Leite
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Sofia Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Ana Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Merad I, Bellenger S, Hichami A, Khan NA, Soltani N. Effect of cadmium exposure on essential omega-3 fatty acids in the edible bivalve Donax trunculus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18242-18250. [PMID: 28484978 DOI: 10.1007/s11356-017-9031-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Donax trunculus is the most consumed bivalve by the local population of the Northeast Algeria for its nutritional value. Therefore, the aim of the current study was to determine the effects of cadmium (Cd), a known toxic metal, on the alterations in main essential omega-3 fatty acids, i.e., eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), in male and female gonads of D. trunculus during the reproduction period at spring (before spawning). Additionally, this work seeks to describe the relation between EPA and DHA with non-methylene-interrupted dienoic (NMID) fatty acids, and explores their possible contribution of to protect against Cd stress. The samples were collected at El Battah, a relatively clean sea shore, and reared in the laboratory. Physico-chemical parameters such as temperature, pH, salinity, and dissolved oxygen were measured. Cd was added to the rearing water at two sublethal concentrations (LC10 and LC25-96h, as determined previously). A two-way ANOVA analysis indicated significant effects of concentrations and genders for both fatty acids. Our results showed a significant reduction in EPA and DHA concentrations in the both genders, with a strong effect in females. There was also a negative correlation between NMID fatty acids and the two essential omega-3 fatty acids for each gender.
Collapse
Affiliation(s)
- Isma Merad
- Laboratory of Applied Animal Biology, University Badji Mokhtar of Annaba, 23000, Annaba, Algeria.
| | - Sandrine Bellenger
- INSERM UMR 1231 Equipe - Lipoproteins and lipid transfers in sterile and septic inflammation (LIPNESS), Université Bourgogne Franche Comté (UBFC), UFR SVTE, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Aziz Hichami
- INSERM UMR 1231 Equipe Physiologie de Nutrition & Toxicologie (NUTox), UFR SVTE, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Naim Akhtar Khan
- INSERM UMR 1231 Equipe Physiologie de Nutrition & Toxicologie (NUTox), UFR SVTE, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, University Badji Mokhtar of Annaba, 23000, Annaba, Algeria
| |
Collapse
|
15
|
Rodrigues R, Lourenço J, Pereira P, Carvalho S, Mendo S. Effects of metal contamination on the gene expression profile of two benthic species: Cerastoderma edule and Ruditapes philippinarum. MARINE POLLUTION BULLETIN 2017; 125:157-165. [PMID: 28811037 DOI: 10.1016/j.marpolbul.2017.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to identify new biomarkers for metal exposure in two bivalve species. Suppressive Subtractive Hybridization (SSH) was employed to evaluate the transcriptomic response of Cerastoderma edule and Ruditapes philippinarum to metal pollution. Protein synthesis and catalytic activity were the most affected metabolic processes in C. edule and R. philippinarum, respectively. Also, different genes responded to the effect of contamination in each species. The different response observed in both species reinforces the importance of including more than one bioindicator species in risk assessment studies. These results provide the basis for new studies, which are necessary for further validation of the use of the identified genes as molecular biomarkers for metal exposure.
Collapse
Affiliation(s)
- Raquel Rodrigues
- Centre for Environmental and Marine Studies and Department of Biology (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana Lourenço
- Centre for Environmental and Marine Studies and Department of Biology (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia Pereira
- Centre for Environmental and Marine Studies and Department of Biology (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; IPMA - Portuguese Institute for the Sea and Atmosphere, Avenida Brasília, 1449-006 Lisbon, Portugal
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Sonia Mendo
- Centre for Environmental and Marine Studies and Department of Biology (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R. Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:793-801. [PMID: 28578237 DOI: 10.1016/j.scitotenv.2017.05.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Cetirizine (CTZ) is an antihistaminic drug present in the aquatic environment, with limited information on its toxicity to organisms inhabiting this system. This study intended to evaluate the effects of CTZ on oxidative stress and energy metabolism biomarkers in the edible clam Ruditapes philippinarum after a 28days exposure to environmentally relevant CTZ concentrations (0.0, 0.3, 3.0, 6.0 and 12.0μg/L). The results obtained showed that CTZ was accumulated by clams reaching maximum concentrations (up to ~22ng/g FW) at the highest CTZ exposure concentrations (6.0 and 12.0μg/L). The bioconcentration factor (average maximum values of ~5) decreased at 12.0μg/L reflecting a reduction in clams uptake or increase of excretion capacity at this condition. The present study revealed that, in general, clams decreased the metabolic potential after exposure to CTZ (decrease in electron transport system activity), a response that led to the maintenance of glycogen content in organisms exposed to CTZ in comparison to control values. Our findings also showed that, CTZ did not exert significant levels of oxidative injury to clams. However, comparing the control with the highest exposure concentrations (6.0 and 12.0μg/L) a significant increase of the antioxidant enzyme superoxide activity (~53 and ~44%) was observed in clams exposed to CTZ. Moreover, a tendency to increase lipid peroxidation (~14 and ~9%) and carbonyl groups on proteins (~11 and ~3%) was observed in clams exposed to CTZ (6.0 and 12.0μg/L) compared to control condition. Overall the present study suggests that toxic impacts may be induced in R. philippinarum if exposed for longer periods or higher CTZ concentrations.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Capolupo M, Franzellitti S, Kiwan A, Valbonesi P, Dinelli E, Pignotti E, Birke M, Fabbri E. A comprehensive evaluation of the environmental quality of a coastal lagoon (Ravenna, Italy): Integrating chemical and physiological analyses in mussels as a biomonitoring strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:146-159. [PMID: 28441593 DOI: 10.1016/j.scitotenv.2017.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
This study aimed at evaluating the environmental quality of a coastal lagoon (Pialassa Piomboni, NW-Adriatic, Italy) by combining analyses of biomarkers of environmental stress and bioaccumulation of contaminants in marine mussels (Mytilus galloprovincialis) transplanted for 28days to six selected sites. Assessed biomarkers encompassed lysosomal endpoints, oxidative stress and detoxification parameters, specific responses to metals, neuro- and genotoxic substances; chemical analyses focused on PAHs, metals, pesticide and pharmaceuticals. Results showed up to a 67-fold bioaccumulation of 4- to 6-ring PAHs, including pyrene, fluoranthene, chrysene and benzo(ghi)perylene in transplanted mussels compared to reference conditions (T0). A 10-fold increase of Fe, Cr and Mn was observed, while pesticides and pharmaceuticals were not or slightly detected. The onset of a significant (p<0.05) general stress syndrome occurred in exposed mussels, as outlined by a 50-57.7% decrease in haemocytes lysosomal membrane stability and an increased lysosomal volume (22.6-26.9%) and neutral lipid storage (18.9-48.8%) observed in digestive gland. Data also revealed a diffuse lipofuscin accumulation (86.5-139.3%; p<0.05) in digestive gland, occasionally associated to a catalase activity inhibition in gill, indicating an increased vulnerability toward pro-oxidant factors. Higher levels of primary DNA damage (258%; p<0.05) and PAH accumulation were found in mussels exposed along the eastern shoreline, hosting a petrochemical settlement. Bioaccumulated metals showed a positive correlation with increased metallothionein content (85-208%; p<0.05) observed in mussels from most sites. Overall, the use of physiological and chemical analyses detected chronic alterations of the mussel health status induced by specific toxicological pathways, proving a suitable approach in the framework of biomonitoring programs of coastal lagoons.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy.
| | - Silvia Franzellitti
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Alisar Kiwan
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Paola Valbonesi
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Enrico Dinelli
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Emanuela Pignotti
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Manfred Birke
- Federal Institute for Geosciences and Natural Resources (BGR), Stillweg, 2, 30655 Hannover, Germany
| | - Elena Fabbri
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| |
Collapse
|