1
|
Zhang B, Xu Y, Yan X, Pu T, Wang S, Yang X, Yang H, Zhang G, Zhang W, Chen T, Liu G. The diversity and risk of potential pathogenic bacteria on the surface of glaciers in the southeastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173937. [PMID: 38880135 DOI: 10.1016/j.scitotenv.2024.173937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Glaciers, which constitute the world's largest global freshwater reservoir, are also natural microbial repositories. The frequent pandemic in recent years underscored the potential biosafety risks associated with the release of microorganisms from the accelerated melting of glaciers due to global warming. However, the characteristics of pathogenic microorganisms in glaciers are not well understood. The glacier surface is the primary area where glacier melting occurs that is often the main subject of research on the dynamics of pathogenic microbial communities in efforts to assess glacier biosafety risks and devise preventive measures. In this study, high-throughput sequencing and quantitative polymerase chain reaction methods were employed in analyses of the composition and quantities of potential pathogenic bacteria on the surfaces of glaciers in the southeastern Tibetan Plateau. The study identified 441 potential pathogenic species ranging from 215 to 4.39 × 1011 copies/g, with notable seasonal and environmental variations being found in the composition and quantity of potential pathogens. The highest level of diversity was observed in April and snow, while the highest quantities were observed in October and cryoconite. Host analysis revealed that >70 % of the species were pathogens affecting animals, with the highest proportion of zoonotic pathogens being observed in April. Analysis of aerosols and glacial meltwater dispersion suggested that these microbes originated from West Asia, primarily affecting the central and southern regions of China. Null model analysis indicated that the assembly of potential pathogenic microbial communities on glacier surfaces was largely governed by deterministic processes. In conclusion, potential pathogenic bacteria on glacier surfaces mainly originated from the snow and exhibited significant temporal and spatial variation patterns. These findings can be used to enhance researchers' ability to predict potential biosafety risks associated with pathogenic bacteria in glaciers and to prevent their negative impact on populations and ecological systems.
Collapse
Affiliation(s)
- Binglin Zhang
- State Key Laboratory of Cryospheric Science, Yulong Snow Station of Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China
| | - Yeteng Xu
- State Key Laboratory of Cryospheric Science, Yulong Snow Station of Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China
| | - Xiao Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Pu
- State Key Laboratory of Cryospheric Science, Yulong Snow Station of Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shijin Wang
- State Key Laboratory of Cryospheric Science, Yulong Snow Station of Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinglou Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Yulong Snow Station of Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Lyu X, Cui W, Ji M, Wang W, Zhang Z, Liu Y. The distribution and drivers of microbial pigments in the cryoconite of four Tibetan glaciers. Environ Microbiol 2024; 26:e16550. [PMID: 38087431 DOI: 10.1111/1462-2920.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Microbial pigments play a significant role in glacier albedo reduction, thereby contributing to accelerated glacier retreat. The Tibetan Plateau has experienced rapid glacier retreat in recent decades due to global warming, yet there is limited understanding of microbial pigment distribution in the region. Here, we investigated the pigment concentration and composition in cryoconite from four glaciers. Our results showed that chlorophylls were the dominant pigments in Palong No. 4 (PL) and Jiemayangzong (JMYZ) glaciers located in the south of the Tibetan Plateau, while carotenoids were dominant in Qiangyong (QY) and Tanggula (TGL) glaciers located in the central region. Additionally, the chlorophyll b to chlorophyll a ratio, which is an indicator of the algae-to-cyanobacteria ratio, was higher in PL and JMYZ compared to QY and TGL. By using Random Forest Regression and Structural Equation Modelling, we determined that the concentrations of chlorophyll a, chlorophyll b, and carotenoids were associated with autotrophic bacteria relative abundance, climatic factors, and a combination of bacterial and climatic factors, respectively. This study is the first to describe the distribution of microbial pigments in cryoconite from Tibetan glaciers, providing additional support on the influence of algal pigment on glacier retreat.
Collapse
Affiliation(s)
- Xianfu Lyu
- The Environment Change & Multi-sphere Interaction Team (ECMI), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Wanzhe Cui
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Mukan Ji
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Wenqiang Wang
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Zhihao Zhang
- The Environment Change & Multi-sphere Interaction Team (ECMI), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- The Environment Change & Multi-sphere Interaction Team (ECMI), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Li Y, Kang S, Zhang X, Li C, Chen J, Qin X, Shao L, Tian L. Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159214. [PMID: 36208735 DOI: 10.1016/j.scitotenv.2022.159214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Dust and black carbon (BC) can darken snow and ice surface and play pivotal roles in glacier mass loss. Thus, a quantitative assessment of their contributions to glacier summer melting is critical. During the summer of 2018, surface snow and ice were sampled, and the albedo and mass balance were continuously measured in the ablation zone of Laohugou Glacier No. 12 in the western Qilian Mountains. The physical properties of dust and BC were measured in the laboratory, and their impacts on glacier surface albedo reduction and melting were simulated. The results indicate that the ice surface in the ablation zone was enriched with substantial amounts of particles, and the average particle concentrations of these samples were hundreds of times higher than those of fresh snow. The BC mass absorption cross-sections (MACs) ranged from 3.1 m2 g-1 at 550 nm for dirty ice to 4.6 m2 g-1 for fresh snow, largely owing to meltwater percolation and particle collapse. The spectral variations in dust MACs were significantly different in the visible light bands and near-infrared bands from those in the other areas. Moreover, the two-layer surface energy and mass balance model with the new albedo parameterization formula was validated and agreed well with the experimental measurements of spectral albedo, broadband albedo, and mass balance. BC and dust combined resulted in 26.7 % and 54.4 % of the total mass loss on the cleaner and dirtier (particle enriched) surfaces in the ablation zone, respectively, compared to particle-free surfaces, and although both impurities played vital roles, dust was the more prominent factor in accelerating glacier melting on the northeastern Tibetan Plateau. This study emphasizes the importance of dust in cryosphere changes where Tibetan glaciers are strongly affected by Asian dust deposition.
Collapse
Affiliation(s)
- Yang Li
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650500, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuelei Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chaoliu Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jizu Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiang Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lili Shao
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650500, China; School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Lide Tian
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650500, China
| |
Collapse
|
4
|
Li X, Guo J, Yu F, Tripathee L, Yan F, Hu Z, Gao S, He X, Li C, Kang S. Concentrations, sources, fluxes, and absorption properties of carbonaceous matter in a central Tibetan Plateau river basin. ENVIRONMENTAL RESEARCH 2023; 216:114680. [PMID: 36332672 DOI: 10.1016/j.envres.2022.114680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.10 ± 0.002, 0.04 ± 0.001, and 0.12 ± 0.002 g C m-2 yr-1 at DRB, respectively. The positive matrix factorization model identified four major sources (biomass burning source, secondary precursors, secondary aerosol, and dust source) of CM in precipitation at DRB. Two source areas (South Asia and the interior of TP) contributing to the pollution at DRB were identified using a potential source contribution function model, a concentration-weighted trajectory method, and the back-trajectory model. Moreover, the light-absorption by WSOC in the ultraviolet region was 23.0%, 12.1%, and 3.4% relative to the estimated total light-absorption in precipitation, snowpit, and surface snow/ice, respectively. Optical indices analysis revealed that WSOC in snowpit samples presented higher molecular weight, while presented higher aromatic and higher molecule sizes in surface snow/ice and precipitation samples, respectively. RF by WSOC relative to that of BC was estimated to be 17.6 ± 17.6% for precipitation, 10.9 ± 5.8% for snowpit, and 10.7 ± 11.6% for surface snow/ice, respectively, during the melt season in the central TP River Basin. These results help us understand how CM affects glaciers, and they can be utilized to create policies and recommendations that efficiently reduce emissions.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Tanggula Cryosphere and Environment Observation Station, Lanzhou, 730000, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jingning Guo
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Feng Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhaofu Hu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shaopeng Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobo He
- Tanggula Cryosphere and Environment Observation Station, Lanzhou, 730000, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chaoliu Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Li C, Zhang C, Yan F, Kang S, Xu Y, Liu Y, Gao Y, Chen P, He C. Importance of local non-fossil sources to carbonaceous aerosols at the eastern fringe of the Tibetan Plateau, China: Δ 14C and δ 13C evidences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119858. [PMID: 35964790 DOI: 10.1016/j.envpol.2022.119858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Carbonaceous particles are an important radiative forcing agent in the atmosphere, with large temporal and spatial variations in their concentrations and compositions, especially in remote regions. This study reported the Δ14C and δ13C of total carbon (TC) and water-insoluble particulate carbon (IPC) of the total suspended particles (TSP) and PM2.5 at a remote site of the eastern Tibetan Plateau (TP), a region that is influenced by heavy air pollution from Southwest China. The average organic carbon and elemental carbon concentrations of TSP samples in this study were 3.20 ± 2.38 μg m-3 and 0.68 ± 0.67 μg m-3, respectively, with low and high values in summer and winter, respectively. The fossil fuel contributions of TC in TSP and PM2.5 samples were 18.91 ± 7.22% and 23.13 ± 12.52%, respectively, both of which were far lower than that in Southwest China, indicating the importance of non-fossil contributions from local sources. The δ13C of TC in TSP samples of the study site was -27.06 ± 0.96‰, which is between the values of long-range transported sources (e.g., Southwest China) and local biomass combustion emissions. Therefore, despite the contribution from the long-range transport of particles, aerosols emitted from local biomass combustion also have an important influence on carbonaceous particles at the study site. The findings of this work can be applied to other remote sites on the eastern TP and should be considered in related research in the future.
Collapse
Affiliation(s)
- Chaoliu Li
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Chao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yinbo Xu
- School of Geographical Sciences, Southwest University, Chongqing, 400045, China
| | - Yixi Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yongheng Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Cenlin He
- Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, 80301, USA
| |
Collapse
|
6
|
Li X, Fu P, Tripathee L, Yan F, Hu Z, Yu F, Chen Q, Li J, Chen Q, Cao J, Kang S. Molecular compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau glaciers. ENVIRONMENT INTERNATIONAL 2022; 164:107276. [PMID: 35537366 DOI: 10.1016/j.envint.2022.107276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Brown carbon (BrC)/water-soluble organic carbon (WSOC) plays a crucial role in glacier melting. A quantitative evaluation of the light absorption characteristics of WSOC on glacier melting is urgently needed, as the WSOC release from glaciers potentially affects the hydrological cycle, downstream ecological balance, and the global carbon cycle. In this work, the optical properties and composition of WSOC in surface snow/ice on four Tibetan Plateau (TP) glaciers were investigated using a three-dimensional fluorescence spectrometer and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The total light-absorption of WSOC in snow/ice at 250-400 nm (ultraviolet region) and 400-600 nm (visible region) accounted for about 60.42% and 27.17% of the light absorption by the total organics, respectively. Two protein-like substances (PRLIS), one humic-like substance (HULIS), and one undefined species of chromophores in snow/ice on the TP glacier surfaces were identified. The lignins and lipids were the main compounds in the TP glaciers and were presented as CHO and CHNO molecules, while CHNOS molecules were only observed in the southeast TP glacier. The light absorption capacity of WSOC in snow/ice was mainly affected by their oxidizing properties. PRLIS and undefined species were closely linked to microbial sources and the local environment of the glaciers (lignins and lipids), while HULIS was significantly affected by anthropogenic emissions (protein/amino sugars). Radiative forcing (RF)-induced by WSOC relative to black carbon were accounted for about 11.62 ± 12.07% and 8.40 ± 10.37% in surface snow and granular ice, respectively. The RF was estimated to be 1.14 and 6.36 W m-2 in surface snow and granular ice, respectively, during the melt season in the central TP glacier. These findings contribute to our understanding of WSOC's impact on glaciers and could serve as a baseline for WSOC research in cryospheric science.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhaofu Hu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Li Y, Kang S, Zhang X, Chen J, Schmale J, Li X, Zhang Y, Niu H, Li Z, Qin X, He X, Yang W, Zhang G, Wang S, Shao L, Tian L. Black carbon and dust in the Third Pole glaciers: Revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147746. [PMID: 34082201 DOI: 10.1016/j.scitotenv.2021.147746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In snow and ice, light-absorbing particles (LAPs), such as black carbon (BC) and dust, accelerate the melting of Third Pole glaciers (TPGs). In this study, we revaluated LAP concentrations in the snow pits of TPGs (SP-TPGs), measured LAP mass absorption cross-sections (MACs), and simulated their effects on glacier darkening and melting based on the Spectral Albedo Model for Dirty Snow and a surface energy and mass balance model. The results indicated that because of their short distances to emission sources, the average BC concentrations measured in snow pits in the periphery of Third Pole were much higher than those measured in the inland Tibetan Plateau, and the average dust concentrations generally decreased from north to south. The average MACs of BC in the SP-TPGs varied from 3.1 to 7.7 m2 g-1 at 550 nm, most of the average spectral values were comparable in the visible and near-infrared bands to those calculated by Mie theory, except those in Urumqi Glacier No. 1 (UR), Syek Zapadniy Glacier (SZ), and Laohugou Glacier No.12 (LH), while the average spectral MACs of dust in the SP-TPGs were considerably smaller in magnitude than most of the variations measured in other regions. Compared with the pure snow surfaces, BC and dust played comparable roles in reducing albedo in UR, SZ, LH, and Renlongba Glacier, whereas BC was the most prominent absorber in the other glaciers. The combined effect of BC and dust accelerated melting by 30.4-345.9 mm w.e. (19.7-45.3% of the total mass balance) through surface albedo darkening (0.06-0.17) and increased radiation absorption (25.8-65.7 W m-2) within one month of the ablation season. This study provides a new data set of LAP concentrations and MACs and helps to clarify the roles of these factors in the cryospheric environment of the Third Pole.
Collapse
Affiliation(s)
- Yang Li
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuelei Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jizu Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Julia Schmale
- École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Xiaofei Li
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiang Qin
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo He
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Yang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoshuai Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijin Wang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lili Shao
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Lide Tian
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Seasonal Surface Change of Urumqi Glacier No. 1, Eastern Tien Shan, China, Revealed by Repeated High-Resolution UAV Photogrammetry. REMOTE SENSING 2021. [DOI: 10.3390/rs13173398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The seasonal surface changes of glaciers in Tien Shan have seen little prior investigation despite the increase in geodetic studies of multi-year changes. In this study, we analyzed the potential of an Unmanned Aerial Vehicle (UAV) to analyze seasonal surface change processes of the Urumqi Glacier No. 1 in eastern Tien Shan. We carried out UAV surveys at the beginning and the end of the ablation period in 2018. The high-precision evolution of surface elevation, geodetic mass changes, surface velocity, and terminus change in the surveyed ablation area were correspondingly derived in combination with ground measurements, including stake/snow-pit observation and GPS measurement. The derived mean elevation change in the surveyed ablation area was −1.64 m, corresponding to the geodetic mass balance of approximately −1.39 m w.e. during the ablation period in 2018. The mean surface velocity was 3.3 m/yr and characterized by the spatial change of the velocity, which was less in the East Branch than in the West Branch. The UAV survey results were a little less than those from the ground measurements, and the correlation coefficient was 0.88 for the surface elevation change and 0.87 for surface displacement. The relative error of the glacier terminus change was 4.5% for the East Branch and 6.2% for the West Branch. These results show that UAV photogrammetry is ideal for assessing seasonal glacier surface changes and has a potential application in the monitoring of detailed glacier changes.
Collapse
|
9
|
Summer Mass Balance and Surface Velocity Derived by Unmanned Aerial Vehicle on Debris-Covered Region of Baishui River Glacier No. 1, Yulong Snow Mountain. REMOTE SENSING 2020. [DOI: 10.3390/rs12203280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glacier retreat is a common phenomenon in the Qinghai-Tibetan Plateau (QTP) with global warming during the past several decades, except for several mountains, such as the glaciers in the Karakoram and the western Kunlun Mountains. The dynamic nature of glaciers significantly influences the hydrologic, geologic, and ecological systems in the mountain regions. The sensitivity and dynamic response to climate change make glaciers excellent indicators of regional and global climate change, such as glacier melting and retreat with the rise of local air temperature. Long-term monitoring of glacier change is important to understand and assess past, current, and possible future climate environments. Some glacier surfaces are safe and accessible by foot, and are monitored using mass balance stakes and snow pits. Meanwhile, some glaciers with inaccessible termini may be surveyed using satellite remote images and Unmanned Aerial Vehicles (UAVs). Those inaccessible glaciers are generally covered by debris in the southeast QTP, which is hardly accessible due to the wide distribution of crevasses and cliffs. In this paper, we used the UAV to monitor the dynamic features of mass balance and velocity of the debris-covered region of Baishui River Glacier No. 1 (BRG1) on the Yulong Snow Mountain (YSM), Southeast QTP. We obtained the Orthomosaic and DEM with a high resolution of 0.10 m on 20 May and 22 September 2018, respectively. The comparison showed that the elevation of the debris-covered region of the BRG1 decreased by 6.58 m ± 3.70 m on average, and the mean mass balance was −5.92 m w.e. ± 3.33 m w.e. during the summer, correspondingly. The mean displacement of debris-covered glacier surface was 18.30 m ± 6.27 m, that is, the mean daily velocity was 0.14 m/d ± 0.05 m/d during the summer. In addition, the UAV images not only revealed the different patterns of glacier melting and displacement but also captured the phenomena of mass loss due to ice avalanches at the glacier front and the development of large crevasses. This study provides a feasible method for understanding the dynamic features of global debris-covered glaciers which are inaccessible and unobservable by other means.
Collapse
|
10
|
Niu H, Kang S, Wang H, Du J, Pu T, Zhang G, Lu X, Yan X, Wang S, Shi X. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113541. [PMID: 31761593 DOI: 10.1016/j.envpol.2019.113541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Deposition of light-absorbing particles on glacier surfaces poses a series of adverse impacts on the cryospheric environment, climate and human health. Broad attention of the scientific community has been paid on insoluble light-absorbing impurities (ILAIs) in snow and ice on glaciers over the Tibetan Plateau (TP). However, systematic investigation of ILAIs in snowpack of glaciers on the TP is scarce. In this study, the properties and darkening effect of ILAIs in snowpack on glaciers are extensively investigated in the southeast of TP. Results show that ILAIs concentrations in multiple types of snow and ice samples were significantly different. Snowpit depths varied substantially from one profile to another during May and June 2016. The average concentrations of ILAIs in snowpits increase as snow melting progresses. Black carbon (BC) and dust cause snow albedo reduction more in snow with larger grain size Re. Based on a radiative transfer model calculation, the average albedo reduction induced by BC in the snowpack was 0.141 ± 0.02, and associated daily maximum radiative forcing (RF) was 72.97 ± 12.7 W m-2. BC is a controlling light-absorbing factor in snowpack and causes substantial albedo reduction and thus the associated daily maximum RF. The maximum reduction of snow cover duration was 4.56 ± 0.71 days caused by BC and dust in snowpack in southeastern TP. The average mass absorption cross-section (MAC) of BC from multiple snowpits was 3.26 ± 0.46 m2 g-1, which represents a typical value of MAC in snow on glaciers, but it is type-dependent of snow/ice samples. Tropospheric aerosols vertically extended up to 8 km over the TP and its surrounding areas, which indicates the transport of aerosols from remote sources through elevated pathways. A large amount of carbon stored in the brittle glaciers can be potentially released with meltwater runoff under a warming climate. This study provides a new insight for investigating carbonaceous and light-absorbing particles in glacierization areas.
Collapse
Affiliation(s)
- Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences (UCAS), Beijing, 10049, China.
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA.
| | - Jiankuo Du
- School of Historical Culture and Tourism, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Pu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guotao Zhang
- Institute of Mountain Hazards and Environments, Chinese Academy of Sciences, Chengdu, 610046, China
| | - Xixi Lu
- Department of Geography, National University of Singapore, 1 Arts Link, Singapore, 117570, Singapore
| | - Xingguo Yan
- College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shijin Wang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaofei Shi
- College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Li Y, Kang S, Chen J, Hu Z, Wang K, Paudyal R, Liu J, Wang X, Qin X, Sillanpää M. Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: Concentrations, radiative forcing and potential source from local topsoil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1030-1038. [PMID: 31200301 DOI: 10.1016/j.scitotenv.2019.05.469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Black carbon (BC), which consists of the strongest light-absorbing particles (LAP) in snow/ice, has been regarded as a potential factor accelerating the melting of glaciers and snow cover over the Third Pole. During the winter and summer of 2016, snow, ice and topsoil were sampled from the Laohugou basin located on the northeastern Tibetan Plateau. Concentrations of BC in Laohugou Glacier No. 12 (LG12) and snow cover in this basin (LSC) varied broadly (21.7-2700.1 and 89.6 to 6326.2 ng g-1, respectively), indicating large spatiotemporal variability in wet, dry and post depositional conditions. Further, internally mixed BC in snow grains enhanced the albedo reduction (15.0-26.3%) more than externally mixed BC in LG12 and LSC. Dust played a more important role than BC in accelerating the melting of LG12, whereas these components played comparable roles in accelerating the melting of LSC. In total, externally mixed BC and dust reduced the albedo by 0.075-0.423, with an associated mean radiative forcing (RF) of 97.5 ± 41.5 Wm-2 in LSC. This level was lower than those in the ablation zone (354.1 ± 81.2 Wm-2) and accumulation zone (145.6 ± 76.7 Wm-2) of LG12 because of discrepancies in LAP concentrations, solar zenith angles and incoming shortwave radiation. Furthermore, we observed that topsoil containing abundant BC was transported along the slope from the debris to the LG12 surface ice, and topsoil in this region could be lifted by strong mountain-valley winds and then deposited on snow/ice surfaces, which affected the LAP concentrations. Therefore, this study is important for understanding the role of BC and dust in the melting of snow/ice in the northeastern Tibetan Plateau.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli 50130, Finland; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jizu Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhaofu Hu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kun Wang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rukumesh Paudyal
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jingshi Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxiang Wang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiang Qin
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli 50130, Finland
| |
Collapse
|
12
|
Kang S, Zhang Q, Qian Y, Ji Z, Li C, Cong Z, Zhang Y, Guo J, Du W, Huang J, You Q, Panday AK, Rupakheti M, Chen D, Gustafsson Ö, Thiemens MH, Qin D. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev 2019; 6:796-809. [PMID: 34691935 PMCID: PMC8291388 DOI: 10.1093/nsr/nwz031] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 12/05/2018] [Accepted: 03/05/2019] [Indexed: 02/01/2023] Open
Abstract
The Tibetan Plateau and its surroundings are known as the Third Pole (TP). This region is noted for its high rates of glacier melt and the associated hydrological shifts that affect water supplies in Asia. Atmospheric pollutants contribute to climatic and cryospheric changes through their effects on solar radiation and the albedos of snow and ice surfaces; moreover, the behavior and fates within the cryosphere and environmental impacts of environmental pollutants are topics of increasing concern. In this review, we introduce a coordinated monitoring and research framework and network to link atmospheric pollution and cryospheric changes (APCC) within the TP region. We then provide an up-to-date summary of progress and achievements related to the APCC research framework, including aspects of atmospheric pollution's composition and concentration, spatial and temporal variations, trans-boundary transport pathways and mechanisms, and effects on the warming of atmosphere and changing in Indian monsoon, as well as melting of glacier and snow cover. We highlight that exogenous air pollutants can enter into the TP's environments and cause great impacts on regional climatic and environmental changes. At last, we propose future research priorities and map out an extended program at the global scale. The ongoing monitoring activities and research facilitate comprehensive studies of atmosphere-cryosphere interactions, represent one of China's key research expeditions to the TP and the polar regions and contribute to the global perspective of earth system science.
Collapse
Affiliation(s)
- Shichang Kang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianggong Zhang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Yun Qian
- Pacific Northwest National Laboratory (PNNL), Richland WA 99352, USA
| | - Zhenming Ji
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Chaoliu Li
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Zhiyuan Cong
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Yulan Zhang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Junming Guo
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Wentao Du
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Qinglong You
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
| | - Arnico K Panday
- International Centre for Integrated Mountain Development (ICIMOD), Kathmandu G. P. O. 3226, Nepal
| | - Maheswar Rupakheti
- Institute for Advanced Sustainability Studies (IASS), Potsdam 14467, Germany
| | - Deliang Chen
- Department of Earth Sciences, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Örjan Gustafsson
- Department of Environmental Science and Analytical Chemistry, The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Mark H Thiemens
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093, USA
| | - Dahe Qin
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Paudyal R, Kang S, Tripathee L, Guo J, Sharma CM, Huang J, Niu H, Sun S, Pu T. Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16457-16469. [PMID: 30980371 DOI: 10.1007/s11356-019-05005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The unique geographic location of Mt. Yulong in the Tibetan Plateau (TP) makes it a favorable site for mercury (Hg) study. Various snow samples, such as surface snow, snow pit, and snowmelt water were collected from Mt. Yulong in the southeastern TP. The average concentration of Hg was found to be 37 ± 26 ng L-1 (mean ± SD), comparable to Hg concentration from other parts of TP in the same year, though it was comparatively higher than those from previous years, suggesting a possible increase of Hg concentration over the TP. The concentration of Hg was higher in the lower elevation of the glaciers possibly due to the surface melting concentration of particulates. Higher concentration of Hg was observed in the fresh snow, suggesting the possibility of long-range transportation. The average concentration of Hg from the snow pit was 1.49 ± 0.78 ng L-1, and the concentration of Hg in the vertical profile of the snow pit co-varied with calcium ion (Ca2+) supporting the fact that the portion of Hg is from the crustal origin. In addition, the principal component analysis (PCA) confirmed that the source of Hg is from the crustal origin; however, the presence of anthropogenic source in the Mt. Yulong was also observed. In surface water around Mt. Yulong, the concentration of HgT was found in the order of Lashihai Lake > Reservoirs > Rivers > Swamps > Luguhu Lake. In lake water, the concentration of HgT showed an increasing trend with depth. Overall, the increased concentration of Hg in recent years from the TP can be of concern and may have an adverse impact on the downstream ecosystem, wildlife, and human health.
Collapse
Affiliation(s)
- Rukumesh Paudyal
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
| | - Chhatra Mani Sharma
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
- Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
- Yulong Snow Mountain Glacier and Environmental Observation Research Station, State Key Laboratory of Cryospheric Science, Lanzhou, 730000, China
| | - Shiwei Sun
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Pu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 320, Lanzhou, 730000, China
| |
Collapse
|
14
|
Pereira P, Brevik E, Trevisani S. Mapping the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:17-23. [PMID: 28802106 DOI: 10.1016/j.scitotenv.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Vilnius, Lithuania.
| | - Eric Brevik
- Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA
| | - Sebastiano Trevisani
- University IUAV of Venice, Department of Architecture, Construction and Conservation, Venezia, Italy
| |
Collapse
|
15
|
Zhang Y, Kang S, Li C, Gao T, Cong Z, Sprenger M, Liu Y, Li X, Guo J, Sillanpää M, Wang K, Chen J, Li Y, Sun S. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1237-1249. [PMID: 28732402 DOI: 10.1016/j.scitotenv.2017.07.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau.
Collapse
Affiliation(s)
- Yulan Zhang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China
| | - Shichang Kang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China; Unviersity of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaoliu Li
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Tanguang Gao
- Key laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiyuan Cong
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Michael Sprenger
- Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Yajun Liu
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China
| | - Xiaofei Li
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China; Unviersity of Chinese Academy of Sciences, Beijing 100049, China
| | - Junming Guo
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli 50130, Finland
| | - Kun Wang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China; Unviersity of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizu Chen
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China; Unviersity of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli 50130, Finland
| | - Shiwei Sun
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 73000, China; Unviersity of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Li X, Kang S, He X, Qu B, Tripathee L, Jing Z, Paudyal R, Li Y, Zhang Y, Yan F, Li G, Li C. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:482-490. [PMID: 28258749 DOI: 10.1016/j.scitotenv.2017.02.169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt. Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33°04'N, 92°04'E) in the central Tibetan Plateau (TP). The spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice>snowpit>aged snow>fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LAIs concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07±0.02 for OC, 0.07±0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52%±19% and 25%±14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74±40.96Wm-2 and 21.23±22.08Wm-2, respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China.
| | - Xiaobo He
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Tanggula Cryosphere and Environment Observation Station, State Key Laboratory of Cryospheric Sciences, Lanzhou 730000, China
| | - Bin Qu
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, FIN-50130 Mikkeli, Finland
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Zhefan Jing
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rukumesh Paudyal
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fangping Yan
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, FIN-50130 Mikkeli, Finland
| | - Gang Li
- Key Laboratory of Arid Climatic Change and Disaster Reducing of Gansu Province, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
| | - Chaoliu Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|