1
|
Panda A, Fatnani D, Parida AK. Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109578. [PMID: 39913980 DOI: 10.1016/j.plaphy.2025.109578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 03/11/2025]
Abstract
Heavy metals (HMs) pose severe threats to both the environment and its inhabitants, leading to reduced crop productivity and hazardous impacts on human and animal health. Metallurgical activities in peri-urban areas are major contributors to the terrestrial deposition of various HMs. Upon entering plant the cells, HMs disrupt structural and physiological processes, inducing stress responses and triggering metabolic pathways for stress adaptations. The plants have evolved specialized transport systems to regulate the uptake, transport, and cellular concentrations of these metals. HMs often exploit transporters of essential nutrients, such as phosphate, hexose, and sulfate to gain entry into plant cells. Key players include zinc receptor transporter (ZRT1) and iron receptor transporter (IRT1), both part of the ZIP (Zinc Iron Permease) family, as well as heavy metal-associated ATPases (HMAs) and ATP binding cassette transporter C (ABCC-type transporters). Hyperaccumulating plants thrive in harsh environments with elevated concentrations of toxic ions, such as sodium, chloride, and heavy metals including arsenic (As), mercury (Hg), cadmium (Cd), lead (Pb), silicon (Si), boron (B), antimony (Sb), germanium (Ge), and tellurium (Te), by compartmentalizing these ions into vacuoles. The accumulation of heavy metals or metalloids like cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), manganese (Mn), zinc (Zn), thallium (Tl), cobalt (Co), cupper (Cu), and selenium (Se) has been extensively reported in various hyperaccumulating plant species. The halophytes, known for their inherent salinity tolerance, exhibit superior resilience to HM stress due to overlapping mechanisms of ion compartmentatlization and detoxification. This review provides an in-depth analysis on the effects of heavy metals on the metabolic processes, growth, and development of plants, emphasizing heavy tolerance mechanisms with a particular focus on halophytes. The role of HM transporters in metal sequestration and detoxification is discussed, along with the potential of hyperaccumulating halophytes for phytoremediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
3
|
Bray SM, Hämälä T, Zhou M, Busoms S, Fischer S, Desjardins SD, Mandáková T, Moore C, Mathers TC, Cowan L, Monnahan P, Koch J, Wolf EM, Lysak MA, Kolar F, Higgins JD, Koch MA, Yant L. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep 2024; 43:114576. [PMID: 39116207 DOI: 10.1016/j.celrep.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
Collapse
Affiliation(s)
- Sian M Bray
- The University of Nottingham, Nottingham NG7 2RD, UK; The John Innes Centre, Norwich NR4 7UH, UK
| | - Tuomas Hämälä
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Silvia Busoms
- The John Innes Centre, Norwich NR4 7UH, UK; Department of Plant Physiology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sina Fischer
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart D Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Chris Moore
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura Cowan
- The University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | - Eva M Wolf
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Kolar
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic; The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Levi Yant
- The University of Nottingham, Nottingham NG7 2RD, UK; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic.
| |
Collapse
|
4
|
Kim J, Lim J, Kim M, Lee YK. Whole-genome sequencing of 13 Arctic plants and draft genomes of Oxyria digyna and Cochlearia groenlandica. Sci Data 2024; 11:793. [PMID: 39025921 PMCID: PMC11258133 DOI: 10.1038/s41597-024-03569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
To understand the genomic characteristics of Arctic plants, we generated 28-44 Gb of short-read sequencing data from 13 Arctic plants collected from the High Arctic Svalbard. We successfully estimated the genome sizes of eight species by using the k-mer-based method (180-894 Mb). Among these plants, the mountain sorrel (Oxyria digyna) and Greenland scurvy grass (Cochlearia groenlandica) had relatively small genome sizes and chromosome numbers. We obtained 45 × and 121 × high-fidelity long-read sequencing data. We assembled their reads into high-quality draft genomes (genome size: 561 and 250 Mb; contig N50 length: 36.9 and 14.8 Mb, respectively), and correspondingly annotated 43,105 and 29,675 genes using ~46 and ~85 million RNA sequencing reads. We identified 765,012 and 88,959 single-nucleotide variants, and 18,082 and 7,698 structural variants (variant size ≥ 50 bp). This study provided high-quality genome assemblies of O. digyna and C. groenlandica, which are valuable resources for the population and molecular genetic studies of these plants.
Collapse
Affiliation(s)
- Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Jiseon Lim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Moonkyo Kim
- Korea Polar Research Institute, Incheon, 21990, Korea
- Department of Life Sciences, Incheon National University, Incheon, 22012, Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon, 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Korea.
| |
Collapse
|
5
|
Qiao Q, Huang Y, Dong H, Xing C, Han C, Lin L, Wang X, Su Z, Qi K, Xie Z, Huang X, Zhang S. The PbbHLH62/PbVHA-B1 module confers salt tolerance through modulating intracellular Na +/K + homeostasis and reactive oxygen species removal in pear. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108663. [PMID: 38678947 DOI: 10.1016/j.plaphy.2024.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.
Collapse
Affiliation(s)
- Qinghai Qiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Science, Nanjing Agricultural University, Nanjing210095, China.
| | - Yongdan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caihua Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenyang Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Likun Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyuan Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Science, Nanjing Agricultural University, Nanjing210095, China.
| |
Collapse
|
6
|
Nawaz I, Mehboob A, Khan AHA, Naqvi TA, Bangash N, Aziz S, Khan W, Shahzadi I, Barros R, Ullah K, Shah MM. Higher cadmium and zinc accumulation in parsley (Petroselinum crispum) roots activates its antioxidants defense system. Biometals 2024; 37:87-100. [PMID: 37702876 DOI: 10.1007/s10534-023-00529-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parsley (Petroselinum crispum) is herb with many biological and medicinal benefits for humans. However, growth on zinc (Zn) and cadmium (Cd) contaminated sites might get severely affected due to over accumulation of heavy metals (HM) in different plant tissues. Antioxidants play a crucial role in minimizing the negative effects of HM. The present study investigates the effects of Zn and Cd stress on P. crispum morphological parameters, enzymatic/non-enzymatic antioxidant profiling and metal accumulation in shoot/root. Plants were exposed to different concentrations of Zn (50, 100, 150 and 200 µM) and Cd (10, 20, 40 and 80 µM) along with control (no stress), in soil-less Hoagland's solution. The results showed that Zn and Cd substantially decrease the growth parameters with increased contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL). Non-enzymatic antioxidant activities, like total phenolic contents (TPC) and ferric reducing antioxidant power (FRAP), were induced high in leaves only upon Cd stress and contrarily decreased upon Zn stress. Total flavonoid contents (TFC) were decreased under Zn and Cd stress. Enzymatic antioxidant activities like superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also strongly induced upon Cd stress. At the same time, SOD and guaiacol peroxidase (GPX) activity was induced significantly upon Zn stress. Cd uptake and accumulation was notably high in roots as compared to shoots, which suggests P. crispum have a reduced ability to translocate Cd towards aboveground parts (leaves). Additionally, strong induction of antioxidants by P. crispum under Cd stress might indicate the capacity to effectively re-modulate its physiological response. However, further investigations regarding other HMs and experiments at the molecular level are still needed.
Collapse
Affiliation(s)
- Ismat Nawaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Atifa Mehboob
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, 09001, Burgos, Spain
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Nazneen Bangash
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Aziz
- Islamabad Model College for Girls, F-7/4, Islamabad, Pakistan
| | - Wajiha Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Rocío Barros
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, 09001, Burgos, Spain
| | - Kifayat Ullah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mohammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| |
Collapse
|
7
|
Wiszniewska A, Makowski W. Assessment of Shoot Priming Efficiency to Counteract Complex Metal Stress in Halotolerant Lobularia maritima. PLANTS (BASEL, SWITZERLAND) 2023; 12:1440. [PMID: 37050070 PMCID: PMC10096694 DOI: 10.3390/plants12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The study investigated whether short-term priming supports plant defense against complex metal stress and multiple stress (metals and salinity) in halophyte Lobularia maritima (L.) Desv. Plants were pre-treated with ectoine (Ect), nitric oxide donor-sodium nitroprusside (SNP), or hydrogen sulfide donor-GYY4137 for 7 days, and were transferred onto medium containing a mixture of metal ions: Zn, Pb, and Cd. To test the effect of priming agents in multiple stress conditions, shoots were also subjected to low salinity (20 mM NaCl), applied alone, or combined with metals. Hydropriming was a control priming treatment. Stress impact was evaluated on a basis of growth parameters, whereas defense responses were on a basis of the detoxification activity of glutathione S-transferase (GST), radical scavenging activity, and accumulation of thiols and phenolic compounds. Exposure to metals reduced shoot biomass and height but had no impact on the formation of new shoots. Priming with nitric oxide annihilated the toxic effects of metals. It was related to a sharp increase in GST activity, glutathione accumulation, and boosted radical scavenging activity. In NO-treated shoots level of total phenolic compounds (TPC) and flavonoids remained unaffected, in contrast to other metal-treated shoots. Under combined metal stress and salinity, NO and H2S were capable of restoring or improving growth parameters, as they stimulated radical scavenging activity. Ect and H2S did not exert any effect on metal-treated shoots in comparison to hydropriming. The results revealed the stimulatory role of nitric oxide and low doses of NaCl in combating the toxic effects of complex metal stress in L. maritima. Both NO and NaCl interfered with thiol metabolism and antioxidant activity, whereas NaCl also contributed to the accumulation of phenolic compounds.
Collapse
|
8
|
Similar Responses of Relatively Salt-Tolerant Plants to Na and K during Chloride Salinity: Comparison of Growth, Water Content and Ion Accumulation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101577. [PMID: 36295012 PMCID: PMC9605674 DOI: 10.3390/life12101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to compare changes in growth, ion accumulation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity in a form of chloride salts were found for all model plants, including growth stimulation at low concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic effects of monovalent cations or/and the specific effect of Cl−.
Collapse
|
9
|
Labudda M, Dziurka K, Fidler J, Gietler M, Rybarczyk-Płońska A, Nykiel M, Prabucka B, Morkunas I, Muszyńska E. The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. PLANTS 2022; 11:plants11192544. [PMID: 36235410 PMCID: PMC9571535 DOI: 10.3390/plants11192544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 12/04/2022]
Abstract
Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59326-61
| |
Collapse
|
10
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Karlsons A, Osvalde A, Ievinsh G. Comparison of In Vitro and In Planta Heavy Metal Tolerance and Accumulation Potential of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162104. [PMID: 36015407 PMCID: PMC9413919 DOI: 10.3390/plants11162104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to compare the tolerance to several heavy metals and their accumulation potential of Armeria maritima subsp. elongata accessions from relatively dry sandy soil habitats in the Baltic Sea region using both in vitro cultivated shoot explants and long-term soil-cultivated plants at the flowering stage as model systems. The hypothesis that was tested was that all accessions will show a relatively high heavy metal tolerance and a reasonable metal accumulation potential, but possibly to varying degrees. Under the conditions of the tissue culture, the explants accumulated extremely high concentration of Cd and Cu, leading to growth inhibition and eventual necrosis, but the accumulation of Pb in their tissues was limited. When grown in soil, the plants from different accessions showed a very high heavy metal tolerance, as the total biomass was not negatively affected by any of the treatments. The accumulation potential for heavy metals in soil-grown plants was high, with several significant accession- and metal-related differences. In general, the heavy metal accumulation potential in roots and older leaves was similar, except for Mn, which accumulated more in older leaves. The absolute higher values of the heavy metal concentrations reached in the leaves of soil-grown A. maritima plants (500 mg Cd kg-1, 600 mg Cu kg-1, 12,000 mg Mn kg-1, 1500 mg Pb kg-1, and 15,000 mg Zn kg-1) exceeded the respective threshold values for hyperaccumulation. In conclusion, A. maritima can be characterized by a species-wide heavy metal tolerance and accumulation potential, but with a relatively high intraspecies diversity.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
11
|
Wolf E, Gaquerel E, Scharmann M, Yant L, Koch MA. Evolutionary footprints of a cold relic in a rapidly warming world. eLife 2021; 10:e71572. [PMID: 34930524 PMCID: PMC8741218 DOI: 10.7554/elife.71572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
With accelerating global warming, understanding the evolutionary dynamics of plant adaptation to environmental change is increasingly urgent. Here, we reveal the enigmatic history of the genus Cochlearia (Brassicaceae), a Pleistocene relic that originated from a drought-adapted Mediterranean sister genus during the Miocene. Cochlearia rapidly diversified and adapted to circum-Arctic regions and other cold-characterized habitat types during the Pleistocene. This sudden change in ecological preferences was accompanied by a highly complex, reticulate polyploid evolution, which was apparently triggered by the impact of repeated Pleistocene glaciation cycles. Our results illustrate that two early diversified Arctic-alpine diploid gene pools contributed differently to the evolution of this young polyploid genus now captured in a cold-adapted niche. Metabolomics revealed central carbon metabolism responses to cold in diverse species and ecotypes, likely due to continuous connections to cold habitats that may have facilitated widespread adaptation to alpine and subalpine habitats, and which we speculate were coopted from existing drought adaptations. Given the growing scientific interest in the adaptive evolution of temperature-related traits, our results provide much-needed taxonomic and phylogenomic resolution of a model system as well as first insights into the origins of its adaptation to cold.
Collapse
Affiliation(s)
- Eva Wolf
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| | - Mathias Scharmann
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Levi Yant
- Future Food Beacon and School of Life Sciences, the University of NottinghamNottinghamUnited Kingdom
| | - Marcus A Koch
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| |
Collapse
|
12
|
Santiago‐Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 2021; 11:14231-14249. [PMID: 34707851 PMCID: PMC8525147 DOI: 10.1002/ece3.8138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue-sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non-crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total-plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Bret D. Elderd
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Pamela B. Hart
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
13
|
Wang Q, Lu X, Chen X, Zhao L, Han M, Wang S, Zhang Y, Fan Y, Ye W. Genome-wide identification and function analysis of HMAD gene family in cotton (Gossypium spp.). BMC PLANT BIOLOGY 2021; 21:386. [PMID: 34416873 PMCID: PMC8377987 DOI: 10.1186/s12870-021-03170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| |
Collapse
|
14
|
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. PHYSIOLOGIA PLANTARUM 2021; 171:578-594. [PMID: 32770745 DOI: 10.1111/ppl.13185] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na+ /H+ exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India
| | - Mudasir A Mir
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Wasia Wani
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
15
|
Ali A, Raddatz N, Pardo JM, Yun D. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. PHYSIOLOGIA PLANTARUM 2021; 171:546-558. [PMID: 32652584 PMCID: PMC8048799 DOI: 10.1111/ppl.13166] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 05/10/2023]
Abstract
High salinity induces osmotic stress and often leads to sodium ion-specific toxicity, with inhibitory effects on physiological, biochemical and developmental pathways. To cope with increased Na+ in soil water, plants restrict influx, compartmentalize ions into vacuoles, export excess Na+ from the cell, and distribute ions between the aerial and root organs. In this review, we discuss our current understanding of how high-affinity K+ transporters (HKT) contribute to salinity tolerance, focusing on HKT1-like family members primarily involved in long-distance transport, and in the recent research in the model plant Arabidopsis and its halophytic counterparts of the Eutrema genus. Functional characterization of the salt overly sensitive (SOS) pathway and HKT1-type transporters in these species indicate that they utilize similar approaches to deal with salinity, regardless of their tolerance.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease ControlKonkuk UniversitySeoul05029South Korea
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Dae‐Jin Yun
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| |
Collapse
|
16
|
Halophyte Plants and Their Residues as Feedstock for Biogas Production—Chances and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The importance of green technologies is steadily growing. Salt-tolerant plants have been proposed as energy crops for cultivation on saline lands. Halophytes such as Salicornia europaea, Tripolium pannonicum, Crithmum maritimum and Chenopodium quinoa, among many other species, can be cultivated in saline lands, in coastal areas or for treating saline wastewater, and the biomass might be used for biogas production as an integrated process of biorefining. However, halophytes have different salt tolerance mechanisms, including compartmentalization of salt in the vacuole, leading to an increase of sodium in the plant tissues. The sodium content of halophytes may have an adverse effect on the anaerobic digestion process, which needs adjustments to achieve stable and efficient conversion of the halophytes into biogas. This review gives an overview of the specificities of halophytes that needs to be accounted for using their biomass as feedstocks for biogas plants in order to expand renewable energy production. First, the different physiological mechanisms of halophytes to grow under saline conditions are described, which lead to the characteristic composition of the halophyte biomass, which may influence the biogas production. Next, possible mechanisms to avoid negative effects on the anaerobic digestion process are described, with an overview of full-scale applications. Taking all these aspects into account, halophyte plants have a great potential for biogas and methane production with yields similar to those produced by other energy crops and the simultaneous benefit of utilization of saline soils.
Collapse
|
17
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Boulc'h PN, Caullireau E, Faucher E, Gouerou M, Guérin A, Miray R, Couée I. Abiotic stress signalling in extremophile land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5771-5785. [PMID: 32687568 DOI: 10.1093/jxb/eraa336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.
Collapse
Affiliation(s)
- Pierre-Nicolas Boulc'h
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Emma Caullireau
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Elvina Faucher
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Maverick Gouerou
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Amandine Guérin
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Romane Miray
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Ivan Couée
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| |
Collapse
|
19
|
Wiszniewska A, Kamińska I, Hanus-Fajerska E, Sliwinska E, Koźmińska A. Distinct co-tolerance responses to combined salinity and cadmium exposure in metallicolous and non-metallicolous ecotypes of Silene vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110823. [PMID: 32540619 DOI: 10.1016/j.ecoenv.2020.110823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
This study compared co-tolerance to salinity and cadmium and investigated its mechanisms in a facultative metallophyte Silene vulgaris originating from distinct habitats. Shoots of calamine (Cal) and non-metallicolous (N-Cal) ecotypes grown in vitro were exposed to 10 and 100 mM NaCl, 5 μM CdCl2 and their combinations. Stress effects were evaluated based on growth, oxidative stress parameters, and DNA content and damage. Tolerance mechanisms were assessed by analyzing non-enzymatic antioxidants, osmolytes and ion accumulation. Irrespective of the ecotype, Cd stimulated shoot proliferation (micropropagation coefficients MC = 15.2 and 12.1 for Cal and N-Cal, respectively, growth tolerance index GTI = 148.1 and 156.7%). In Cal ecotype this was attributed to an increase in glutathione content and reorganization of cell membrane structures under Cd exposure, whereas in N-Cal to enhanced synthesis of other non-enzymatic antioxidants, mainly carotenoids and ascorbate. Low salinity stimulated growth of Cal ecotype due to optimizing Cl- content. High salinity inhibited growth, especially in Cal ecotype, where it enhanced DNA damage and disturbed ionic homeostasis. Species-specific reaction to combined salinity and Cd involved a mutual inhibition of Na+, Cl- and Cd2+ uptake. N-Cal ecotype responded to combined stresses by enhancing its antioxidant defense, presumably induced by Cd, whereas the metallicolous ecotype triggered osmotic adjustment. The study revealed that in S. vulgaris Cd application ameliorated metabolic responses to simultaneous salinity exposure. It also shed a light on distinct strategies of coping with combined abiotic stresses in two ecotypes of the species showing high plasticity in environmental conditions.
Collapse
Affiliation(s)
- Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology, Al. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
20
|
Wagner C, De Gezelle J, Komarnytsky S. Celtic Provenance in Traditional Herbal Medicine of Medieval Wales and Classical Antiquity. Front Pharmacol 2020; 11:105. [PMID: 32184721 PMCID: PMC7058801 DOI: 10.3389/fphar.2020.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/28/2020] [Indexed: 11/13/2022] Open
Abstract
The Celtic linguistic community dominated large spans of Central and Western Europe between 800 BC and 500 AD, but knowledge of their traditional medicine is very limited. Multiple progressive plant gains in Neolithic settlements along the Danube and up the Rhine valleys suggested that taxon diversity of gathered plants peaked at the Balkans and was subsequently reduced as crop and gathered plants packages were adopted and dispersed throughout Neolithic Europe. This process coincided with the Bronze Age migration of the R1b proto-Celtic tribes, and their herbal traditions were occasionally recorded in the classic Greco-Roman texts on herbal medicines. The provenance of Celtic (Gallic) healing methods and magical formulas as recorded by Pliny, Scribonius Largus, and Marcellus Empiricus can still be found in the first part of the medieval Welsh (Cymry) herbal manuscript Meddygon Myddfai (recipes 1–188). Although the majority of Myddfai I recipes were based on the Mediterranean herbal tradition of Dioscorides and Macer Floridus, they preserved the unique herbal preparation signatures distinct from continental and Anglo-Saxon counterparts in increased use of whey and ashes as vehicles for formulation of herbal remedies. Six plants could be hypothetically attributed to the Celtic (Welsh) herbal tradition including foxglove (Digitalis purpurea L.), corn bellflower (Legousia speculum-veneris L.), self-heal (Prunella vulgaris L.), sharp dock (Rumex conglomeratus Murray), water pimpernel (Samolus valerandi L.), and river startip (Scapania undulata L.) This review provides initial evidence for traces of Celtic framework in the Welsh herbal tradition and warrants further investigations of bioactivity and clinical applications of the described plant leads.
Collapse
Affiliation(s)
- Charles Wagner
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Jillian De Gezelle
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
21
|
Chen HC, Zhang SL, Wu KJ, Li R, He XR, He DN, Huang C, Wei H. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109790. [PMID: 31639642 DOI: 10.1016/j.ecoenv.2019.109790] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 05/25/2023]
Abstract
We studied the effects of three organic acids (citric acid, tartaric acid and malic acid) on the biomass, photosynthetic pigment content and photosynthetic parameters of Salix variegata under Cd stress and observed the ultrastructure of mesophyll cells in each treatment. Cd stress significantly reduced photosynthesis by reducing the content of pigments and disrupting chloroplast structure, which consequently decreased the biomass. However, respective addition of three organic acids greatly increased the biomass of S. variegata under Cd stress. Among them, the effect of malic acid or tartaric acid on shoot and total biomass accumulation was greater than that of citric acid. The alleviation of biomass probably related with the photosynthetic process. Results revealed that treatment with each organic acid enhanced the net photosynthesis rate under Cd stress. Malic acid promoted plant growth and biomass by increasing the chlorophyll content and mitigating damage to the photosynthetic apparatus resulting from Cd stress. Tartaric acid had little impact on the photosynthetic pigment content, but it was important in mitigating the ultrastructural damage of plants caused by Cd. Addition of citric acid significantly increased the carotenoid as well as the number and volume of chloroplasts in mesophyll cells, while the mitigation of structural damage in the photosynthetic apparatus was weaker than that in tartaric acid or malic acid treatment. It is concluded that application of tartaric acid or malic acid is effective in increasing the growth potential of S. variegata under Cd stress and thus can be a promising approach for the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Hong-Chun Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Guizhou Provincial Water Conservancy Research Institute, Guiyang, 550002, China
| | - Song-Lin Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ke-Jun Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xin-Rui He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dan-Ni He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chao Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hong Wei
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Zhang S, Chen H, He D, He X, Yan Y, Wu K, Wei H. Effects of Exogenous Organic Acids on Cd Tolerance Mechanism of Salix variegata Franch. Under Cd Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:594352. [PMID: 33193554 PMCID: PMC7644951 DOI: 10.3389/fpls.2020.594352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 05/10/2023]
Abstract
Chelate induction of organic acids has been recognized to enhance metal uptake and translocation in plants, but the underlying mechanism remains unclear. In this study, seedlings of Salix variegata were hydroponically exposed to the combinations of Cd (0 and 50 μM) and three exogenous organic acids (100 μM of citric, tartaric, or malic acid). Plant biomass, antioxidant enzymes, non-protein thiol compounds (NPT) content, and the expression of candidate genes associated with Cd accumulation and tolerance were determined. Results showed that Cd significantly inhibited plant biomass but stimulated the activity of antioxidant enzymes in the roots and leaves, while the lipid peroxidation increased as well. Respective addition of three organic acids greatly enhanced plant resistance to oxidative stress and reduced the lipid peroxidation induced by Cd, with the effect of malic acid showing greatest. The addition of organic acids also significantly increased the content of glutathione in the root, further improving the antioxidant capacity and potential of phytochelatin biosynthesis. Moreover, Cd induced the expression level of candidate genes in roots of S. variegata. The addition of three organic acids not only promoted the expression of candidate genes but also drastically increased Cd accumulation in S. variegata. In summary, application of citric, tartaric, or malic acid alleviated Cd-imposed toxicity through the boost of enzymatic and non-enzymatic antioxidants and candidate gene expression, while their effects on Cd tolerance and accumulation of S. variegata differed.
Collapse
Affiliation(s)
- Songlin Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hongchun Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Guizhou Provincial Water Conservancy Research Institute, Guiyang, China
| | - Danni He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Ya Yan
- Guizhou Provincial Water Conservancy Research Institute, Guiyang, China
| | - Kejun Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hong Wei
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Hong Wei,
| |
Collapse
|
23
|
Nawaz I, Iqbal M, Hakvoort HWJ, de Boer AH, Schat H. Analysis of Arabidopsis thaliana HKT1 and Eutrema salsugineum/botschantzevii HKT1;2 Promoters in Response to Salt Stress in Athkt1:1 Mutant. Mol Biotechnol 2019; 61:442-450. [DOI: 10.1007/s12033-019-00175-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Sychta K, Słomka A, Suski S, Fiedor E, Gregoraszczuk E, Kuta E. Suspended cells of metallicolous and nonmetallicolous Viola species tolerate, accumulate and detoxify zinc and lead. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:666-674. [PMID: 30368166 DOI: 10.1016/j.plaphy.2018.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
We studied the zinc and lead accumulation and tolerance level of suspended cells of four Viola species with different metallophyte statuses: Viola lutea ssp. westfalica (obligate metallophyte), V. tricolor (facultative metallophyte), V. arvensis (accidental metallophyte) and V. uliginosa (nonmetallophyte), in order to determine the correlation between cell and plant tolerance. Cells of all studied species/genotypes were tolerant to metal concentrations applied to the medium for 24, 48 and 72 h, more for zinc than for lead, as estimated by cell viability using the alamarBlue assay. Viable cells of each analyzed species/genotype accumulated zinc and particularly lead in very high amounts after treatment with 2000 μM for 72 h (1500-4500 mg kg-1, 24 000-32 000 mg kg-1, respectively), determined by atomic absorption spectrometry. The bioaccumulation factor values confirmed the cells' hyperaccumulation strategy. The cell-activated detoxification mechanism, consisting in deposition of metals in the cell wall and vacuoles, as shown by transmission electron microscopy with X-ray microanalysis, allows the cells to survive despite the high level of metal accumulation. These results indicate innate high tolerance to zinc and lead in violets with different metallophyte statuses and also in the nonmetallophyte, suggesting that evolutionarily developed hypertolerance may occurs in this group as a whole.
Collapse
Affiliation(s)
- Klaudia Sychta
- Department of Plant Cytology and Embryology, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Elżbieta Fiedor
- Department of Physiology and Toxicology of Reproduction, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| | - Ewa Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| | - Elżbieta Kuta
- Department of Plant Cytology and Embryology, Jagiellonian University, 9 Gronostajowa Str., 30-387, Cracow, Poland
| |
Collapse
|
25
|
Zhou MX, Dailly H, Renard ME, Han RM, Lutts S. NaCl impact on Kosteletzkya pentacarpos seedlings simultaneously exposed to cadmium and zinc toxicities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17444-17456. [PMID: 29656355 DOI: 10.1007/s11356-018-1865-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Data regarding NaCl impact on halophyte plant species exposed to a polymetallic contamination remain scarce. Seedlings of the salt marsh species Kosteletzkya pentacarpos were simultaneously exposed to cadmium (10 μM) and zinc (100 μM) in the absence or presence of 50 mM NaCl. Heavy metal exposure reduced plant growth and increased Cd and Zn concentrations in all organs. Cd and Zn accumulation reduced net photosynthesis in relation to stomatal closure, decreased in chlorophyll concentration and alteration in chlorophyll fluorescence-related parameters. Salinity reduced Cd and Zn bioaccumulation and translocation, with a higher impact on Cd than Zn. It mitigated the deleterious impact of heavy metals on photosynthetic parameters. NaCl reduced the heavy metal-induced oxidative stress assessed by malondialdehyde, carbonyl, and H2O2 concentration. Subcellular distribution revealed that Cd mainly accumulated in the cell walls, but NaCl increased it in the cytosol fraction in the leaf and in the metal-rich granule fraction in the roots. It had no impact on Zn subcellular distribution. The additional NaCl contributed to a higher sequestration of Cd on phytochelatins and stimulated glutathione synthesis. The positive impact of NaCl on K. pentacarpos response to polymetallic pollution made this species a promising candidate for revegetation of heavy metal-contaminated salt areas.
Collapse
Affiliation(s)
- Ming-Xi Zhou
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Hélène Dailly
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Eve Renard
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Rui-Ming Han
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|