1
|
Vaňková M, Domingues Vieira AM, Ettler V, Vaněk A, Trubač J, Penížek V, Mihaljevič M. Tracing anthropogenic mercury in soils from Fe-Hg mining/smelting area: Isotopic and speciation insights. CHEMOSPHERE 2024; 357:142038. [PMID: 38621486 DOI: 10.1016/j.chemosphere.2024.142038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Mercury (Hg) stable isotope ratios supplemented by Hg solid speciation data were determined in soils in a former Fe-Hg mining/smelting area (Jedová hora, Czech Republic, Central Europe). The dominant Hg phase in the studied soils was found to be cinnabar (HgS). A secondary form of soil Hg(II) was represented by Hg weakly and strongly bound to mineral (micro)particles, as revealed by thermo-desorption analysis. These Hg species probably play a key role in local soil Hg processes and biogeochemical cycling. The Hg isotopic data generally showed small differences between HgS (-1.1 to -0.8‰; δ202Hg) and the soil samples (-1.4 to -0.9‰; δ202Hg), as well as limited isotopic variability within the two studied soil profiles. On the other hand, the detected negative δ202Hg shift (∼0.4‰) in organic horizons compared to mineral soils in the highly contaminated profile suggests the presence of secondary post-depositional Hg processes, such as sorption or redox changes. For the less contaminated profile, the observed Hg isotopic variation (∼0.3‰; δ202Hg) in the subsurface mineral soil compared to both overlying and underlying horizons is likely due to cyclic redox reactions associated with Hg isotopic fractionation. We assume that the adsorption of Hg(II) to secondary Fe(III)/Mn(III,IV)-oxides could be of major importance in such cases.
Collapse
Affiliation(s)
- Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Alda Maria Domingues Vieira
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic.
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Vít Penížek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
2
|
Liu R, Hu B, Dannenmann M, Giesemann A, Geilfus CM, Li C, Gao L, Flemetakis E, Haensch R, Wang D, Rennenberg H. Significance of phosphorus deficiency for the mitigation of mercury toxicity in the Robinia pseudoacacia L.- rhizobia symbiotic association. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133717. [PMID: 38325100 DOI: 10.1016/j.jhazmat.2024.133717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Nitrogen (N2)-fixing legumes can be used for phytoremediation of toxic heavy metal Mercury (Hg) contaminated soil, but N2-fixation highly relies on phosphorus (P) availability for nodule formation and functioning. Here, we characterized the significance of P deficiency for Hg accumulation and toxicity in woody legume plants. Consequences for foliar and root traits of rhizobia inoculation, Hg exposure (+Hg) and low P (-P) supply, individually and in combination were characterized at both the metabolite and transcriptome levels in seedlings of two Robinia pseudoacacia L. provenances originating from contrasting climate and soil backgrounds, i.e., GS in northwest and the DB in northeast China. Our results reveal that depleted P mitigates the toxicity of Hg at the transcriptional level. In leaves of Robinia depleted P reduced oxidative stress and improved the utilization strategy of C, N and P nutrition; in roots depleted P regulated the expression of genes scavenging oxidative stress and promoting cell membrane synthesis. Rhizobia inoculation significantly improved the performance of both Robinia provenances under individual and combined +Hg and -P by promoting photosynthesis, increasing foliar N and P content and reducing H2O2 and MDA accumulation despite enhanced Hg uptake. DB plants developed more nodules, had higher biomass and accumulated higher Hg amounts than GS plants and thus are suggested as the high potential Robinia provenance for future phytoremediation of Hg contaminated soils with P deficiency.
Collapse
Affiliation(s)
- Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, China; College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, China.
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Anette Giesemann
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, 38116 Braunschweig, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Canbo Li
- Shanghai OE Biotech. Co., Ltd., No. 1188, Lianhang Rd., Minhang district, Shanghai 201212, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, China; College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Robert Haensch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, China; Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Dingyong Wang
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, China
| |
Collapse
|
3
|
Manivannan N, Subirana MA, Boada R, Marini C, Llugany M, Valiente M, Simonelli L. Mercury speciation in selenium enriched wheat plants hydroponically exposed to mercury pollution. Sci Rep 2023; 13:21132. [PMID: 38036518 PMCID: PMC10689832 DOI: 10.1038/s41598-023-46056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Mercury (Hg) pollution in agricultural soils and its potential pathway to the human food chain can pose a serious health concern. Understanding the pathway of Hg in plants and how the speciation may change upon interaction with other elements used for biofortification can be critical to assess the real implications for the final plant-based product. In that respect, selenium (Se) biofortification of crops grown in Se-poor soil regions is becoming a common practice to overcome Se deficient diets. Therefore, it is important to assess the interplay between these two elements since Se may form complexes with Hg reducing its bioavailability and toxicity. In this work, the speciation of Hg in wheat plants grown hydroponically under the presence of Hg (HgCl2) and biofortified with Se (selenite, selenate, or a 1:1 mixture of both) has been investigated by X-ray absorption spectroscopy at the Hg L3-edge. The main Hg species found in wheat grains was the highly toxic methylmercury. It was found that the Se-biofortification of wheat did not prevent, in general, the Hg translocation to grains. Only the 1:1 mixture treatment seemed to have an effect in reducing the levels of Hg and the presence of methylmercury in grains.
Collapse
Affiliation(s)
- Nithyapriya Manivannan
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Angels Subirana
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Roberto Boada
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Carlo Marini
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Simonelli
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain.
| |
Collapse
|
4
|
Sun R, Zhao T, Fan L, Zhang Y, Wang J, Yang Y, Jiang T, Tong Y. The transformation of soil Hg oxidation states controls elemental Hg release in the greenhouse with applying organic fertilizer. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131520. [PMID: 37146329 DOI: 10.1016/j.jhazmat.2023.131520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The foliage vegetables cultivated in greenhouse of Hg-contaminated regions suffer from severe Hg contamination issues because of soil elemental Hg (Hg(0)) release. Application of organic fertilizer (OF) is the indispensable part of farming, but its influences on soil Hg(0) release are unclear. A new method of thermal desorption coupled with cold vapor atomic fluorescence spectrometry was developed to measure transformations of Hg oxidation states to elucidate the impact mechanism of OF on Hg(0) release process. Our results showed that the soil Hg(0) concentrations can directly determine its release fluxes. The application of OF causes that oxidizing reactions of Hg(0)/Hg(I) and Hg(I)/Hg(II) are excited; then soil Hg(0) concentrations decreases. Besides, the elevated soil organic matter by amending OF can complex with Hg(II), resulting in that the reductions of Hg(II) to Hg(I) and Hg(0) are inhibited. Additionally, the OF can directly adsorb soil Hg(0), decreasing the removability of Hg(0). Subsequently, the application of OF can significantly inhibit soil Hg(0) release, resulting in a pronounced decrease in interior atmospheric Hg(0) concentrations. Our results provide a novel perspective for enriching the fate of soil Hg that transformation of soil Hg oxidation states plays a crucial role in affecting soil Hg(0) release process.
Collapse
Affiliation(s)
- Rongguo Sun
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Tao Zhao
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Li Fan
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China.
| | - Yutao Zhang
- Engineering Technology Center for Control and Remediation of Soil Contamination, Anshun University, Anshun 561000, China
| | - Jun Wang
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Yang Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Zhang Y, Wang X, Yang Y, Huang Y, Li X, Hu S, Liu K, Pang Y, Liu T, Li F. Retention and transformation of exogenous Hg in acidic paddy soil under alternating anoxic and oxic conditions: Kinetic and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121335. [PMID: 36828356 DOI: 10.1016/j.envpol.2023.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
To estimate the risks and developing remediation strategies for the mercury (Hg)-contaminated soils, it is crucial to understand the mechanisms of Hg transformation and migration in the redox-changing paddy fields. In present study, a Hg-spiked acidic paddy soil (pH 4.52) was incubated under anoxic conditions for 40 d and then under oxic conditions for 20 d. During anoxic incubation, the water-soluble, exchangeable, specifically adsorbed, and fulvic acid-complexed Hg decreased sharply, whereas the humic acid-complexed Hg, organic, and sulfide-bound Hg gradually increased, which were mainly ascribed to the enhanced adsorption on the surface of soil minerals with an increase in soil pH, complexation by organic matters, precipitation as HgS, and absorption by soil colloids triggered by reductive dissolution of Fe(III) oxides. By contrast, after oxygen was introduced into the system, a gradual increase in available Hg occurred with decreasing soil pH, decomposition of organic matters and formation of Fe(III) oxides. A kinetic model was established based on the key elementary reactions to quantitatively estimate transformation processes of Hg fractions. The model matched well with the modified Tessier sequential extraction data, and suggested that large molecular organic matter and humic acid dominated Hg complexation and immobilization in acidic paddy soils. The content of methylmercury increased and reached its peak on anoxic 20 d. Sulfate-reducing bacteria Desulfovibrio and Desulfomicrobium were the major Hg methylating bacteria in the anoxic stage whereas demethylating microorganisms Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_12 began to grow after oxygen was introduced. These new dynamic results provided new insights into the exogenous Hg transformation processes and the model could be used to predict Hg availability in periodically flooded acidic paddy fields.
Collapse
Affiliation(s)
- Yufan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiangqin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Kexue Liu
- School of Resources and Planning, Guangzhou Xinhua University, Guangzhou, 510310, China
| | - Yan Pang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
6
|
Floreani F, Zappella V, Faganeli J, Covelli S. Gaseous mercury evasion from bare and grass-covered soils contaminated by mining and ore roasting (Isonzo River alluvial plain, Northeastern Italy). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120921. [PMID: 36565908 DOI: 10.1016/j.envpol.2022.120921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
High amounts of mercury (Hg) can be released into the atmosphere from soil surfaces of legacy contaminated areas as gaseous elemental mercury (Hg0). The alluvial plain of the Isonzo River (NE Italy) suffered widespread Hg contamination due to the re-distribution of Hg-enriched material discharged by historical cinnabar mining at the Idrija mine (Slovenia), but an assessment of Hg0 releases from the soils of this area is still lacking. In this work, Hg0 fluxes at the soil-air interface were evaluated using a non-steady state flux chamber coupled with a real-time Hg0 analyser at 6 sites within the Isonzo River plain. Measurements were performed in summer, autumn, and winter both on bare and grass-covered soil plots at regular time intervals during the diurnal period. Moreover, topsoils were analysed for organic matter content and Hg total concentration and speciation. Overall, Hg0 fluxes tracked the incident UV radiation during the sampling periods with daily averages significantly higher in summer (62.4 ± 14.5-800.2 ± 178.8 ng m-2 h-1) than autumn (15.2 ± 4.7-280.8 ± 75.6 ng m-2 h-1) and winter (16.9 ± 7.9-187.8 ± 62.7 ng m-2 h-1) due to higher irradiation and temperature, which favoured Hg reduction reactions. In summer and autumn significant correlations were observed between Hg0 fluxes and soil Hg content (78-95% cinnabar), whereas this relationship was not observed in winter likely due to relatively low emissions found in morning measurements in all sites coupled with low temperatures. Finally, vegetation cover effectively reduced Hg0 releases in summer (∼9-68%) and autumn (∼41-78%), whereas the difference between fluxes from vegetated and bare soils was not evident during winter dormancy due to scarce soil shading. These results suggest the opportunity of more extended spatial monitoring of Hg0 fluxes particularly in the croplands covering most of the Isonzo River alluvial plain and where bare soils are frequently disturbed by agricultural practices and directly exposed to radiation.
Collapse
Affiliation(s)
- Federico Floreani
- Department of Mathematics and Geosciences, University of Trieste, Via E. Weiss 2, Trieste, Italy; Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, Trieste, Italy.
| | - Valeria Zappella
- Department of Mathematics and Geosciences, University of Trieste, Via E. Weiss 2, Trieste, Italy
| | - Jadran Faganeli
- Marine Biology Station, National Institute of Biology, Fornace 41, Piran, Slovenia
| | - Stefano Covelli
- Department of Mathematics and Geosciences, University of Trieste, Via E. Weiss 2, Trieste, Italy
| |
Collapse
|
7
|
Mir Y, Wu S, Ma M, Ran Y, Zhu K, Mangwandi C, Mirza ZA. Mercury contamination in the riparian ecosystem during the reservoir discharging regulated by a mega dam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4405-4422. [PMID: 35089477 DOI: 10.1007/s10653-022-01205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is extremely poisonous and can be absorbed through touch, inhalation, or consumption. In the living environment, Hg in contaminated sediment can be transferred into grass by the direct absorption through the roots or shoots. The intake of Hg due to Hg emissions may pose a threat to living bodies especially to human beings. The present study aims to provide a novel insight about total mercury (THg) and methyl mercury (MeHg) in a riparian grass (Cynodon dactylon (L).Pers) and sediments during the discharging phase (summertime at 145 m water level) in Three Gorges Reservoir (TGR-China); where C. dactylon is a dominant perennial herb in the riparian zone. Yet, the potential risk of Hg contamination in the riparian ecosystem is not thoroughly assessed in the dam regulated reservoir. This study was conducted in the riparian zones of the reservoir formed by a mega dam (Three Gorge Dam) which regulates the water levels during the summer and winter period in the TGR. Our results showed that riparian sediments were acting as a sink for THg and MeHg. Insignificant correlation of THg and MeHg was found between the amphiphyte C. dactylon and its surrounding sediments in the TGR. Bioconcentration factors values for MeHg were found higher than 1 in all study locations in the riparian zones in TGR, which could be due to action of certain bacteria/purely chemical-based methylation on inorganic form of Hg. Additionally, translocation factor indices also highlighted that the amphiphyte C. dactylon was MeHg accumulator in riparian zones. These results suggested that since riparian sediment was found acting as the sink for THg and MeHg during discharging phase, MeHg contamination in the amphiphyte C. dactylon in riparian zones was not caused by the riparian sediments but by other factors, for instance, the anthropogenic activities in the TGR. Finally, this study leads to conclude that amphiphyte C. dactylon can be used as biomonitoring agent for Hg pollution in the TGR.
Collapse
Affiliation(s)
- Yaseen Mir
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Maohua Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yiguo Ran
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chirangano Mangwandi
- School of Chemistry and Chemical Engineering, David Kier Building Queen's University Belfast, Belfast, BT95AG, UK
| | - Zakaria Ahmed Mirza
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
8
|
Hussain S, Yang J, Hussain J, Sattar A, Ullah S, Hussain I, Rahman SU, Zandi P, Xia X, Zhang L. Mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil-wheat systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157432. [PMID: 35853525 DOI: 10.1016/j.scitotenv.2022.157432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Soil mercury (Hg) and its bioaccumulation in food crops have attracted widespread concerns globally due to its harmful effects on biota. However, soil mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil-wheat-systems have not been thoroughly explored. Twenty-one (21) soil samples collected throughout China with a wide spectrum of physico-chemical characteristics were contaminated with HgCl2 and winter wheat (Triticum aestivum L.) was grown on the soils in a greenhouse pot-culture experiment for 180 days. A four-step sequential extraction was used segregating soil Hg into water-soluble (F1, 0.21 %), exchangeable (F2, 0.07 %), organically bound (F3, 16.40 %), and residual fractions (F4, 83.32 %). Step-wise multiple linear regression (SMLR) and path analysis (PA) were used to develop a prediction model and identify the major controlling factors of soil-wheat Hg transference. The SMLR results revealed that wheat Hg in leaves, husk, and grain was positively correlated with soil total and available Hg, and crystalline manganese (Cryst-Mn), while negatively correlated with soil pH, amorphous manganese (Amor-Mn) and crystalline aluminium (Cryst-Al). Bioconcentration factor (BCF) values were significantly higher in acidic soils (highest 0.05), with phytotoxic effects in some soils, as compared to alkaline soils (lowest 0.006). Furthermore, wheat grain Hg was significantly correlated with total (R2 = 0.25), water-soluble (R2 = 0.54) and NH4Ac-extractable Hg (R2 = 0.43) while also had a good correlation with soil pH (R2 = -0.20). In conclusion, the soil total and available Hg (water-soluble + exchangeable fraction), pH, organic matter, and Amor-Mn are the most important soil variables that support Hg uptake in the wheat plants, which benefit managing Hg-enriched agricultural soils for safe wheat production.
Collapse
Affiliation(s)
- Sajjad Hussain
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100081, China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | - Abdul Sattar
- College of Agriculture, Baha Uddin Zakariya University, Bahadur Sub-Campus Layyah, Pakistan
| | - Subhan Ullah
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Imran Hussain
- Environmental Biotechnology Laboratory, Department of Biotechnology Comsats University Islamabad, Abbottabad Campus, Pakistan
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644000, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liandong Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Ion imprinted-carbon paste electrode as electrochemical sensor for ultra-trace recognizing speciation of mercury. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Cho K, Kang J, Kim S, Purev O, Myung E, Kim H, Choi N. Effect of inorganic carbonate and organic matter in thermal treatment of mercury-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48184-48193. [PMID: 33904130 PMCID: PMC8410726 DOI: 10.1007/s11356-021-14024-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 05/30/2023]
Abstract
Thermal treatment of mercury (Hg)-contaminated soil was studied to investigate the desorption behavior of Hg at different temperatures. The soil samples were collected from two locations with different land uses around the mine and industrial site. The effect of soil properties such as inorganic carbonate minerals and organic matter content on Hg desorption was investigated to understand the thermal desorption process. The effect of soil composition on Hg desorption showed that behavior at 100 °C was similar, but a different behavior could be found at 300 °C. The thermal desorption efficiency at 300 °C is affected by the thermal properties of soils and the Hg desorption capacity of the soils. The Hg from both soil types was removed above 300 °C, and Hg was effectively removed from mine soil due to the partial decomposition of carbonate in the soil composition, while industrial soil showed that desorption would be restrained by Hg organic matter complexes due to organic matter content. Despite a relatively higher concentration of Hg in the mine soil, Hg removal efficiency was greater than that in the industrial soil. Sequential extraction results showed that only the Hg fractions (residual fractions, step 6) in mine soil changed, while the industrial soil was affected by changes in Hg fractions (step 3 to step 6) at 300 °C. Changes in soil pH during thermal desorption are also influenced by heating time and temperature. Therefore, the mechanisms of Hg desorption during thermal treatment were observed by soil properties. The volatilization of Hg in the soil is induced by organic carbon, while soil Hg release is controlled by organic matter complexes.
Collapse
Affiliation(s)
- Kanghee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jinkyu Kang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Songbae Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Oyunbileg Purev
- Department of Energy and Resource Engineering, Chosun University, Gwangju, 61452, Korea
| | - Eunji Myung
- Department of Energy and Resource Engineering, Chosun University, Gwangju, 61452, Korea
| | - Hyunsoo Kim
- Department of Energy and Resource Engineering, Chosun University, Gwangju, 61452, Korea
| | - Nagchoul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Kokh SN, Sokol EV, Gustaytis MA, Sokol IA, Deviatiiarova AS. Onshore mud volcanoes as a geological source of mercury: Case study from the Kerch Peninsula, Caucasus continental collision zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141806. [PMID: 32882564 DOI: 10.1016/j.scitotenv.2020.141806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Three mud volcanoes (MVs) in the Kerch Peninsula were studied as a geological source of mercury. The study focused on total mercury (THg) concentrations in MV waters, mud masses and plants colonizing MV areas; gaseous elemental mercury (GEM) in the atmosphere above MVs; and sulfide mercury (HgS) and HgCl2 species in representative samples of mud masses. THg concentrations in the illite-smectite mud masses ranged from 38 to 920 ng/g. They contained up to 70% of total mercury in sulfide form (in pyrite and cinnabar), but lacked HgCl2. THg values in MV waters of HCO3-Cl/Na- and/or Cl-HCO3/Na-types with рН = 7.4-9.5 mostly fell in a range of 79-440 ng/L, but rarely exceeded 600 ng/L, being comparable with those for geothermal systems. Another issue of interest was the distribution of THg in below- and above-ground parts of halophyte plant Limonium caspium. THg was incorporated into the plant roots, leaves and flowers; the roots exhibited higher concentrations of THg relative to the other organs. The Hg bioaccumulation factor ranged from 0.06 to 0.76. GEM concentrations measured over large bubbling MV pools and newly formed cracks showed values (50 to 520 ng·m-3) higher than background values (≤3 ng·m-3) associated with pristine test sites and background values measured within three MV areas of the Kerch peninsula that is slightly higher than background concentration for the Northern Hemisphere. Maximum GEM contents were comparable with the values found in geothermal and magmatic volcanic provinces.
Collapse
Affiliation(s)
- Svetlana N Kokh
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Avenue, Novosibirsk 630090, Russia.
| | - Ella V Sokol
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Avenue, Novosibirsk 630090, Russia
| | - Maria A Gustaytis
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Avenue, Novosibirsk 630090, Russia; Novosibirsk State University, 2, Pirogov Str., Novosibirsk 630090, Russia
| | - Ivan A Sokol
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Avenue, Novosibirsk 630090, Russia
| | - Anna S Deviatiiarova
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Liu W, Li M, Zhang M, Long S, Guo Z, Wang H, Li W, Wang D, Hu Y, Wei Y, Yang S. Hyperspectral inversion of mercury in reed leaves under different levels of soil mercury contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22935-22945. [PMID: 32329007 DOI: 10.1007/s11356-020-08807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
High mercury (Hg) affects biochemical-physiological characteristics of plant leaves such as leaf chlorophyll, causing refractive discontinuity and modifications in leaf spectra. Furthermore, the hyperspectroscopy provides a potential tool for fast non-destructive estimation of leaf Hg. However, there are few studies that have investigated Hg for wetland plants via hyperspectral inversion. In this study, reeds (Phragmites australis) leaf Hg concentration and hyperspectra were measured under different soil Hg treatment. Hg-sensitive parameters were identified by basic spectral transformations and continuous wavelet transformation (CWT). Inversion models were developed using stepwise multiple linear regressions (SMLR), partial least square regression (PLSR), and random forest (RF) to estimate leaf Hg. The results indicated that CWT improved the correlation of hyperspectra and leaf Hg by 0.020-0.227, and R2 of the CWT-related model increased by 0.0557-0.2441. In addition, Hg-sensitive bands were predominant at 600-750 (visible region) and 1500-2300 nm (mid-infrared), and Hg might modify leaves spectra primarily by affecting chlorophyll and water contents. Of the studied models, SMLR using normalized transformation (NR) and CWT (NR-CWT-SMLR) model (R2 = 0.8594, RMSE = 0.0961) and RF using NR and CWT (NR-CWT-RF) model (R2 = 0.8560, RMSE = 0.1062) suited for leaf Hg inversion. For Hg content < 1.0 mg kg-1, the former model was more reliable and accurate. This study provided a method for the estimation of Hg contamination in wetland plant and indicated that model-based hyperspectral inversion was feasible for fast and non-destructive monitoring.
Collapse
Affiliation(s)
- Weiwei Liu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Mengjie Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Manyin Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China.
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China.
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China.
| | - Songyuan Long
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Ziliang Guo
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Henian Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hanshiqiao National Wetland Ecosystem Research Station, Beijing, 101399, China
| | - Daan Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Yukun Hu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Yuanyun Wei
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| | - Si Yang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
- Hengshuihu National Wetland Ecosystem Research Station, Hebei, 053000, China
| |
Collapse
|
13
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
14
|
Souza LRR, Pomarolli LC, da Veiga MAMS. From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10205-10227. [PMID: 32064582 DOI: 10.1007/s11356-020-08032-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Soil pollution with toxic elements is a recurrent issue due to environmental disasters, fossil fuel burning, urbanization, and industrialization, which have contributed to soil contamination over the years. Therefore, the remediation of toxic metals in soil is always an important topic since contaminated soil can affect the environment, agricultural safety, and human health. Many remediation methods have been developed; however, it is essential to ensure that they are safe, and also take into account the limitation of each methodology (including high energy input and generation of residues). This scenario has motivated this review, where we explore soil contamination with arsenic, lead, mercury, and chromium and summarize information about the methods employed to remediate each of these toxic elements such as phytoremediation, soil washing, electrokinetic remediation, and nanoparticles besides elucidating some mechanisms involved in the remediation. Considering all the discussed techniques, nowadays, different techniques can be combined together in order to improve the efficiency of remediation besides the new approach of the techniques and the use of one technique for remediating more than one contaminant.
Collapse
|
15
|
Brown AD, Yalala B, Cukrowska E, Godoi RHM, Potgieter-Vermaak S. A scoping study of component-specific toxicity of mercury in urban road dusts from three international locations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1127-1139. [PMID: 31214843 PMCID: PMC7225195 DOI: 10.1007/s10653-019-00351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/05/2019] [Indexed: 05/13/2023]
Abstract
This scoping study presents an investigation of the total and bioaccessible mercury concentrations in road dust (RD) from three international urban sites, where a one-off sampling campaign was conducted at each. This was done to address the hypothesis that the matrix in which mercury is found influences its ability to become accessible to the body once inhaled. For that purpose, the samples were analysed for total and pulmonary bioaccessible mercury and the data compared to the chemical structure of individual particles by SEM. The results obtained from this study suggest that a high mercury content does not necessarily equate to high bioaccessibility, a phenomenon which could be ascribed to the chemical character of the individual particles. It was found that the Manchester samples contained more pulmonary soluble mercury species (as determined by elemental associations of Hg and Cl) in comparison to the other two samples, Curitiba, Brazil, and Johannesburg, South Africa. This finding ultimately underlines the necessity to conduct a site-specific in-depth analysis of RD, to determine the concentration, chemical structure and molecular speciation of the materials within the complex matrix of RD. Therefore, rather than simply assuming that higher bulk concentrations equate to more significant potential human health concerns, the leaching potential of the metal/element in its specific form (for example as a mineral) should be ascertained. The importance of individual particle behaviour in the determination of human health risk is therefore highlighted.
Collapse
Affiliation(s)
- Andrew D Brown
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- AECOM, Regan Way, Nottingham, UK
| | - Bongani Yalala
- Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewa Cukrowska
- Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - Sanja Potgieter-Vermaak
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK.
- Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
16
|
Speciation analysis of mercury in wild edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2020; 412:2829-2840. [DOI: 10.1007/s00216-020-02515-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
|
17
|
Yang B, Gao Y, Zhang C, Zheng X, Li B. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:391-398. [PMID: 31792793 DOI: 10.1007/s11356-019-06798-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Leaf vegetables serve as an important food for the local residents in China. This paper focuses on the uptake, accumulation, transfer, and mercury (Hg) sensitivity of leafy vegetables. Two types of soil (an alkaline Cambosol and an acid Ferrosol) and eleven species of leafy vegetable, namely, Spinach, Tung choy, Leek, Fennel, Coriander, Chinese flowering cabbage, Wuta-tsai, Pakchoi, Chicory, Crown daisy, and Lettuce, were selected to investigate their sensitivity to Hg accumulation in a greenhouse pot experiment. Three Hg concentration treatments were carried out as control (background values), low concentration (1.5 times standard value), and high concentration (2 times standard value) as adjusted by the soil pH. Hg concentrations of more than half vegetable samples grown in Cambosol (collected from Shandong Province) reached or exceeded the maximum permissible food safety levels (10 μg kg-1) according to the General Standard of Contaminants in Food in China (GB 2762-2012), while only about 15% in Ferrosol (collected from Jiangxi Province). Meanwhile, Hg bio-concentration factors (BCF) in all treatments were < 1, while Hg translocation factors (TF) in most treatments were < 1. Correlation analysis among soil, root, and edible plant parts revealed that the principal source of Hg in leafy vegetables was most likely from Hg-contaminated soils. Species sensitivity distribution (SSD) models were constructed and their simulated curves indicated that sensitivity to Hg was highest in Pakchoi in low Hg-contaminated soils, and Chicory in highly Hg-contaminated soils. Therefore, Hg concentration is mostly accumulated in roots of leafy crops, which reduces the risk of Hg bioaccumulation in edible portion of vegetables, and (2) Brassicaceae vegetables are mostly less sensitive to soil Hg contamination. Our results provide effective guidance for the selection of leafy vegetables for cultivation and daily consumption that minimizes health risk.
Collapse
Affiliation(s)
- Bo Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yi Gao
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bo Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
O'Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, Wang S, Tack FMG, Rinklebe J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. ENVIRONMENT INTERNATIONAL 2019; 126:747-761. [PMID: 30878870 DOI: 10.1016/j.envint.2019.03.019] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) is a potentially harmful trace element in the environment and one of the World Health Organization's foremost chemicals of concern. The threat posed by Hg contaminated soils to humans is pervasive, with an estimated 86 Gg of anthropogenic Hg pollution accumulated in surface soils worldwide. This review critically examines both recent advances and remaining knowledge gaps with respect to cycling of mercury in the soil environment, to aid the assessment and management of risks caused by Hg contamination. Included in this review are factors affecting Hg release from soil to the atmosphere, including how rainfall events drive gaseous elemental mercury (GEM) flux from soils of low Hg content, and how ambient conditions such as atmospheric O3 concentration play a significant role. Mercury contaminated soils constitute complex systems where many interdependent factors, including the amount and composition of soil organic matter and clays, oxidized minerals (e.g. Fe oxides), reduced elements (e.g. S2-), as well as soil pH and redox conditions affect Hg forms and transformation. Speciation influences the extent and rate of Hg subsurface transportation, which has often been assumed insignificant. Nano-sized Hg particles as well as soluble Hg complexes play important roles in soil Hg mobility, availability, and methylation. Finally, implications for human health and suggested research directions are put forward, where there is significant potential to improve remedial actions by accounting for Hg speciation and transportation factors.
Collapse
Affiliation(s)
- David O'Connor
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, China
| | - Deyi Hou
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, OJeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Lei Duan
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| |
Collapse
|
19
|
Kulikova T, Hiller E, Jurkovič Ľ, Filová L, Šottník P, Lacina P. Total mercury, chromium, nickel and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia): anthropogenic versus natural sources of soil contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:263. [PMID: 30953219 DOI: 10.1007/s10661-019-7391-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The aims of this study were to investigate the occurrence and distribution of total mercury (Hg) and other trace elements of environmental concern, such as arsenic (As), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and vanadium (V), in soils from the abandoned Merník cinnabar mine in eastern Slovakia. For this purpose, thirty soil samples from two depth intervals within the mine area (n = 60 soil samples) and additional sixteen soil samples from adjacent areas (n = 25 soil samples) were collected. Total Hg was measured by atomic absorption spectrometry, while As and other metals were analyzed using inductively coupled plasma atomic emission spectrometry. High mercury concentrations (> 100 mg/kg with a maximum of 951 mg/kg) were observed only in surface soils close to mine waste heaps and adits. Otherwise, Hg concentrations in the majority of surface soils were lower (0.14-19.7 mg/kg), however, higher than Hg in soils collected from sites outside the mine area (0.19-6.92 mg/kg) and even considerably higher than Hg in soils at sites not influenced by the Merník mine. Elevated Cr and Ni concentrations in soils regardless of their sampling sites (mean of 276 mg/kg and median of 132 mg/kg for Cr and 168 mg/kg and 81 mg/kg for Ni, respectively) were attributed to the lithology of the area; the soils are underlain by the sediments of the Central Carpathian Palaeogene, containing a detritus of ultrabasic rocks. As our geochemical data are compositional in nature, they were further treated by compositional data analysis (CoDA). Robust principal component analysis (RPCA) applied on centred (clr) log-ratio-transformed data and correlation analysis of compositional parts based on symmetric balances distinguished very well different sources of origin for the chemical elements. The following three element associations were identified: Hg association with the main source in mining/roasting, Cr-Ni association derived from bedrock and As-Cu-Mn-Pb-Zn-V association (natural background and minor sulphides/sulfosalts in mineralized rocks). The values of geoaccumulation index and enrichment factor suggested that concentrations of Hg in the soils were influenced by human industrial activities.
Collapse
Affiliation(s)
- Tatsiana Kulikova
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48, Bratislava, Slovak Republic
| | - Peter Šottník
- Department of Geology of Mineral Deposits, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00, Brno, Czech Republic
| |
Collapse
|
20
|
Umlaufová M, Száková J, Najmanová J, Sysalová J, Tlustoš P. The soil-plant transfer of risk elements within the area of an abandoned gold mine in Libčice, Czech Republic. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1267-1276. [PMID: 30596320 DOI: 10.1080/10934529.2018.1528041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 06/09/2023]
Abstract
Abandoned gold mines are often suggested as potential sources of environmental pollution. Thus, the soils within the area of a gold mine in Libčice, Czech Republic, were monitored. Elevated element contents were found of As, Cd, Cu, Hg, Pb, and Zn. The risk assessment codes (RACs) indicated high environmental risk from soil Cd, and moderate risk from Zn, whereas the risk of As, Cu, and Pb was low. It was supported by the analysis of 134 samples of aboveground biomass of plants, where the levels of As and Pb were below the detection limit. For Cd, the plant uptake reflected the high mobility of this element, where the bioaccumulation factors (BAFs) varied in range 0.032 (Fragaria vesca) and 1.97 (Circia arvensis). For 11% of samples the BAF values for Cd exceeded 1. For Hg, although the maximum BAF did not exceed 0.37 (Lotus corniculatus), the Hg contents in plants occasionally exceeded the threshold limits for Hg contents in raw feedstuffs. The investigated gold mine does not represent a direct environmental risk, but the fate of Cd and Hg in the soils and plants suggests the necessity of a deeper understanding of the penetration of these elements into the surrounding environment.
Collapse
Affiliation(s)
- Martina Umlaufová
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Jiřina Száková
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Jana Najmanová
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Jiřina Sysalová
- b AAS laboratory , University of Chemistry and Technology , Prague , Czech Republic
| | - Pavel Tlustoš
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| |
Collapse
|
21
|
Activation analysis in Czechoslovakia and in the Czech Republic: more than 50 years of activities. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6257-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|