1
|
Oyarzún PA, Diaz S, Rodríguez SM, Ruiz-Tagle G, Nuñez JJ, Toro JE. Occurrence of Intersex in the Marine Mussel Perumytilus purpuratus (Mollusca: Bivalvia): Does Gonadal Parasitism Play a Role? BIOLOGY 2025; 14:70. [PMID: 39857300 PMCID: PMC11762098 DOI: 10.3390/biology14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Intersexuality is a reproductive phenomenon that occurs in some gonochoric species and refers to the simultaneous presence of both male and female gametes within the same individual. Although this phenomenon has been reported in various invertebrate species, many aspects remain poorly understood, especially in marine mussels. However, it has been suggested that the prevalence of parasites within populations could induce the occurrence of intersex animals. We studied intersexuality in the marine mollusk Perumytilus purpuratus, a key species of the rocky intertidal zone on the southeastern coast of the Pacific Ocean. A total of 6472 mussels from eight locations in northern and southern Chile were analyzed. We estimated the size of the specimens, the sex ratio of the population, and the prevalence of parasites. Additionally, we examined the germ cells of intersex mussels. The results showed that the male-to-female sex ratio (1:1) was maintained in the populations. Intersex mussels were found in six of the eight locations, representing 0.19% of the mussels analyzed. However, no parasites were found in the intersex animals. Additionally, the abundance of intersex individuals was not correlated with parasitism levels in the population. In intersex mussels, the gonadal tissue was compartmentalized, with male and female germ cells remaining separate. It is concluded that intersexuality in Perumytilus purpuratus is a low-frequency reproductive phenomenon, likely resulting from an alteration in the sex determination mechanism. Intersexuality offers a valuable opportunity to explore the biological aspects of sex determination in mussels. Therefore, further research in this area should be pursued.
Collapse
Affiliation(s)
- Pablo A. Oyarzún
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile; (S.D.); (G.R.-T.)
| | - Sebastián Diaz
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile; (S.D.); (G.R.-T.)
| | - Sara M. Rodríguez
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile;
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago de Chile 8370993, Chile
| | - Gonzalo Ruiz-Tagle
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile; (S.D.); (G.R.-T.)
| | - José J. Nuñez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile; (J.J.N.); (J.E.T.)
| | - Jorge E. Toro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile; (J.J.N.); (J.E.T.)
| |
Collapse
|
2
|
Evensen KG, Rusin E, Robinson WE, Price CL, Kelly SL, Lamb DC, Goldstone JV, Poynton HC. Vertebrate endocrine disruptors induce sex-reversal in blue mussels. Sci Rep 2024; 14:23890. [PMID: 39396059 PMCID: PMC11470919 DOI: 10.1038/s41598-024-74212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Mollusks are the second most diverse animal phylum, yet little is known about their endocrinology or how they respond to endocrine disrupting compound (EDC) pollution. Characteristic effects of endocrine disruption are reproductive impairment, skewed sex ratios, development of opposite sex characteristics, and population decline. However, whether classical vertebrate EDCs, such as steroid hormone-like chemicals and inhibitors of steroidogenesis, exert effects on mollusks is controversial. In the blue mussel, Mytilus edulis, EDC exposure is correlated with feminized sex ratios in wild and laboratory mussels, but sex reversal has not been confirmed. Here, we describe a non-destructive qPCR assay to identify the sex of M. edulis allowing identification of males and females prior to experimentation. We exposed male mussels to 17α-ethinylestradiol and female mussels to ketoconazole, EDCs that mimic vertebrate steroid hormones or inhibit their biosynthesis. Both chemicals changed the sex of individual mussels, interfered with gonadal development, and disrupted gene expression of the sex differentiation pathway. Impacts from ketoconazole treatment, including changes in steroid levels, confirmed a role for steroidogenesis and steroid-like hormones in mollusk endocrinology. The present study expands the possibilities for laboratory and field monitoring of mollusk species and provides key insights into endocrine disruption and sexual differentiation in bivalves.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Emily Rusin
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Claire L Price
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | | | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
3
|
Castel J, Pradillon F, Cueff V, Leger G, Daguin-Thiébaut C, Ruault S, Mary J, Hourdez S, Jollivet D, Broquet T. Genetic sex determination in three closely related hydrothermal vent gastropods, including one species with intersex individuals. J Evol Biol 2024; 37:779-794. [PMID: 38699972 DOI: 10.1093/jeb/voae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.
Collapse
Affiliation(s)
- Jade Castel
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Florence Pradillon
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | - Valérie Cueff
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | - Guillaume Leger
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | | | - Stéphanie Ruault
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Jean Mary
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Hourdez
- UMR 8222 LECOB CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Didier Jollivet
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Thomas Broquet
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
4
|
Glaviano F, Esposito R, Somma E, Sagi A, Aflalo ED, Costantini M, Zupo V. Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach. Curr Issues Mol Biol 2024; 46:6169-6185. [PMID: 38921039 PMCID: PMC11202572 DOI: 10.3390/cimb46060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp's sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual.
Collapse
Affiliation(s)
- Francesca Glaviano
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
| | - Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton n. 55, 80133 Naples, Italy;
| | - Emanuele Somma
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
- Department of Life Science, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (A.S.); (E.D.A.)
| | - Eliahu D. Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (A.S.); (E.D.A.)
- Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton n. 55, 80133 Naples, Italy;
| | - Valerio Zupo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
| |
Collapse
|
5
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zupo V, Costantini M, Aflalo ED, Levy T, Chalifa-Caspi V, Obayomi O, Mutalipassi M, Ruocco N, Glaviano F, Somma E, Nieri P, Sagi A. Ferroptosis precedes apoptosis to facilitate specific death signalling by fatty acids. Proc Biol Sci 2023; 290:20231327. [PMID: 37876198 PMCID: PMC10598420 DOI: 10.1098/rspb.2023.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Cell death is physiologically induced by specific mediators. However, our power to trigger the process in selected cells is quite limited. The protandric shrimp Hippolyte inermis offers a possible answer. Here, we analyse a de novo transcriptome of shrimp post-larvae fed on diatoms. The sex ratio of diatom-fed shrimps versus shrimps fed on control diets was dramatically altered, demonstrating the disruption of the androgenic gland, and their transcriptome revealed key modifications in gene expression. A wide transcriptomic analysis, validated by real-time qPCR, revealed that ferroptosis represents the primary factor to re-shape the body of this invertebrate, followed by further apoptotic events, and our findings open biotechnological perspectives for controlling the destiny of selected tissues. Ferroptosis was detected here for the first time in a crustacean. In addition, this is the first demonstration of a noticeable effect prompted by an ingested food, deeply impacting the gene networks of a young metazoan, definitely determining its future physiology and sexual differentiation.
Collapse
Affiliation(s)
- Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Dohrn, Ischia, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 55, 80133 Napoli, Italy
| | - Eliahu D. Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
- Department of Life Sciences, Achva Academic College, Mobile Post, Shikmim 79800, Israel
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Olabiyi Obayomi
- Interdepartmental Center of Marine Pharmacology, Pisa University, 56126 Pisa, Italy
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C. da Torre Spaccata, Amendolara, Italy
| | - Francesca Glaviano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Dohrn, Ischia, Italy
| | - Emanuele Somma
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Dohrn, Ischia, Italy
- Department of Life Science, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy
| | - Paola Nieri
- Department of Pharmacy, Pisa University, 56126 Pisa, Italy
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
7
|
Liu F, Liu A, Zhu Z, Wang Y, Ye H. Crustacean female sex hormone: More than a female phenotypes-related hormone in a protandric simultaneous hermaphroditism shrimp. Int J Biol Macromol 2023; 238:124181. [PMID: 36965556 DOI: 10.1016/j.ijbiomac.2023.124181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Crustacean female sex hormone (CFSH) is believed to regulate the development of female-related phenotypes in crustaceans. However, its role in gonadal development has been understudied. This study identified a CFSH gene, Lvit-CFSH1b, in the peppermint shrimp Lysmata vittata, a protandric simultaneous hermaphroditism (PSH) species. Lvit-CFSH1b is only expressed in the eyestalk ganglion. qRT-PCR showed that the expression level of Lvit-CFSH1b significantly increased with the gonad development from stage I to III (male phase) and decreased at stage IV (euhermaphrodite phase). Gene knockdown of Lvit-CFSH1b resulted in retardation of female phenotypes and stimulated the development of male phenotypes. At the same time, ovarian development was inhibited, and spermatogenesis was promoted. In addition, injection of rCFSH1b increased ovarian expression of vitellogenin (Lvit-Vg) and hepatopancreas expression of vitellogenin receptor (Lvit-VgR), while suppressing the expressions of insulin-like androgenic gland hormones (Lvit-IAG1 and Lvit-IAG2) in androgenic glands. The addition of rCFSH1b induced the in vitro expression of Lvit-Vg in ovarian and Lvit-VgR in hepatopancreas explants. In conclusion, this study provides convincing evidence that CFSH expedites the feminization process and impedes masculinization by inhibiting IAG in hermaphroditic crustaceans.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361013, People's Republic of China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China.
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
8
|
Fusco G, Minelli A. Descriptive versus causal morphology: gynandromorphism and intersexuality. Theory Biosci 2023; 142:1-11. [PMID: 36633802 PMCID: PMC9925516 DOI: 10.1007/s12064-023-00385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
In animal species with separate sexes, abnormal individuals with a mix of phenotypically male and phenotypically female body parts are generally indicated as gynandromorphs, whereas individuals with intermediate sexual phenotypic traits are generally indicated as intersexes. However, this distinction, clear as it may seem, is neither universally agreed upon, nor free of critical issues. In consideration of the role of sex anomalies in understanding normal development, we reassess these phenomena of abnormal sexual development, taking into consideration the more recent advances in the study of sex determination and sexual differentiation. We argue that a distinction between gynandromorphism and intersexuality, although useful for descriptive purposes, is not always possible or sensible. We discuss the conceptual and terminological intricacies of the literature on this subject and provide reasons for largely, although not strictly, preferring a terminology based on descriptive rather than causal morphology, that is, on the observed phenotypic patterns rather on the causal process behind them.
Collapse
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padua, Italy.
| | - Alessandro Minelli
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. The ecotoxicology of marine tributyltin (TBT) hotspots: A review. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105689. [PMID: 35777303 DOI: 10.1016/j.marenvres.2022.105689] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tributyltin (TBT) was widely used as a highly efficient biocide in antifouling paints for ship and boat hulls. Eventually, TBT containing paints became globally banned when TBT was found to cause widespread contamination and non-target adverse effects in sensitive species, with induced pseudohermaphroditism in female neogastropods (imposex) being the best-known example. In this review, we address the history and the status of knowledge regarding TBT pollution and marine TBT hotspots, with a special emphasis on the Norwegian coastline. The review also presents a brief update on knowledge of TBT toxicity in various marine species and humans, highlighting the current understanding of toxicity mechanisms relevant for causing endocrine disruption in marine species. Despite observations of reduced TBT sediment concentrations in many marine sediments over the recent decades, contaminant hotspots are still prevalent worldwide. Consequently, efforts to monitor TBT levels and assessment of potential effects in sentinel species being potentially susceptible to TBT in these locations are still highly warranted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - John Arthur Berge
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Lise Tveiten
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | - Sigurd Øxnevad
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
10
|
Islam R, Melvin SD, Kit Yu RM, O'Connor WA, Anh Tran TK, Andrew-Priestley M, Leusch FDL, MacFarlane GR. Estrogenic mixtures induce alterations in lipidomic profiles in the gonads of female oysters. CHEMOSPHERE 2022; 291:132997. [PMID: 34822861 DOI: 10.1016/j.chemosphere.2021.132997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to reveal possible alterations to lipidomic profiles in Sydney rock oysters, Saccostrea glomerata, exposed to estrogenic mixtures (i.e., estrone, E1; 17β-estradiol, E2; estriol, E3; 17α-ethinylestradiol, EE2; bisphenol A, BPA; 4-t-octylphenol, 4-t-OP; and 4-nonylphenol, 4-NP) at "low" and "high" concentrations, typical of those detected in Australian and global receiving waters. A seven-day acute exposure window exhibited significantly lower abundances of many non-polar metabolites in digestive gland, gills, and gonads. Overall, there was a strong effect of the carrier solvent ethanol (despite a low exposure of 0.0002%), with all solvent containing treatments exhibiting lower abundances of lipidic metabolites, especially in the gill and digestive gland. No significant changes of the lipidome were exhibited in the male gonad by estrogenic exposure. However, in the female gonad, significant reductions of phospholipids and phosphatidylcholine were associated with exposure to high estrogenic mixtures. We hypothesise that the decreases in these phospholipids in the female gonad may be attributable to 1) lower algal consumption and thus lower uptake of lipidic building blocks; 2) a reduction of available substrates for phospholipid and phosphatidylcholine synthesis; and/or 3) induction of reactive oxygen species via estrogen metabolism, which may cause lipid peroxidation and lower abundance of phospholipids.
Collapse
Affiliation(s)
- Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD, 4222, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Resources, Vinh University, Viet Nam
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD, 4222, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
11
|
Jimenez-Gutierrez LR. Female reproduction-specific proteins, origins in marine species, and their evolution in the animal kingdom. J Bioinform Comput Biol 2022; 20:2240001. [PMID: 35023815 DOI: 10.1142/s0219720022400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The survival of a species largely depends on the ability of individuals to reproduce, thus perpetuating their life history. The advent of metazoans (i.e. pluricellular animals) brought about the evolution of specialized tissues and organs, which in turn led to the development of complex protein regulatory pathways. This study sought to elucidate the evolutionary relationships between female reproduction-associated proteins by analyzing the transcriptomes of representative species from a selection of marine invertebrate phyla. Our study identified more than 50 reproduction-related genes across a wide evolutionary spectrum, from Porifera to Vertebrata. Among these, a total of 19 sequences had not been previously reported in at least one phylum, particularly in Porifera. Moreover, most of the structural differences between these proteins did not appear to be determined by environmental pressures or reproductive strategies, but largely obeyed a distinguishable evolutionary pattern from sponges to mammals.
Collapse
Affiliation(s)
- Laura Rebeca Jimenez-Gutierrez
- Facultad de Ciencias del Mar, Universidad Autonoma de Sinaloa, Mazatlan, Sinaloa, Mexico 82000, Mexico.,CONACYT, Direccion de Catedras- CONACYT, CDMX, Mexico 03940, Mexico
| |
Collapse
|
12
|
Affiliation(s)
- Ash T Zemenick
- University of California Berkeley's Sagehen Creek Field Station, Truckee, California, United States
| | - Shaun Turney
- university-educated parents, currently on paternity leave from his work as a non-tenure-track course lecturer, biology
| | - Alex J Webster
- University of New Mexico's Department of Biology, Albuquerque, New Mexico, United States
| | | | - Marjorie G Weber
- Michigan State University's Plant Biology Department and Program in Ecology, Evolution, and Behavior, East Lansing, Michigan, United States
| |
Collapse
|
13
|
Inui N, Oguchi K, Shinji J, Okanishi M, Shimomura M, Miura T. Parasitism-Induced Intersexuality in a Sexually Dimorphic Varunid Crab, Ptychognathus ishii (Decapoda: Varunidae). Zoolog Sci 2021; 38:416-426. [PMID: 34664916 DOI: 10.2108/zs210049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
Although many animals that perform sexual reproduction exhibit sexual dimorphism, individuals with intersex traits between the traits of males and females appear in some species, depending on environmental factors. Ptychognathus ishii, a varunid crab, exhibits distinctive sexual dimorphism in the morphology of its abdomen, chelipeds and setal tufts on the chelipeds. In this study, however, we report for the first time that intersex individuals with intermediate characters between those of males and females were occasionally found in wild populations. Morphological features of intersex individuals are described. Their taxonomic positions are identified based on DNA sequences of part of the mitochondrial cytochrome c oxidase I (COI) gene. It was shown that the intersexuality was induced by entoniscid parasites, because all intersex individuals were parasitized by entoniscid isopods, identified as Entionella sp. The apparent correlation between parasitism and morphological anomalies suggests that the parasitic isopods affect physiological conditions, leading to the feminization of male hosts.
Collapse
Affiliation(s)
- Naoto Inui
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Junpei Shinji
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan.,Center for Ocean Literacy and Education, Graduate School of Education, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masanori Okanishi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Michitaka Shimomura
- Seto Marine Biological Laboratory, Kyoto University, Nishimuro-gun, Wakayama 649-2211, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan,
| |
Collapse
|
14
|
Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. WATER 2021. [DOI: 10.3390/w13101347] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting compounds (EDCs) as emerging contaminants have accumulated in the aquatic environment at concentration levels that have been determined to be significant to humans and animals. Several compounds belong to this family, from natural substances (hormones such as estrone, 17-estradiol, and estriol) to synthetic chemicals, especially pesticides, pharmaceuticals, and plastic-derived compounds (phthalates, bisphenol A). In this review, we discuss recent works regarding EDC occurrence in the aquatic compartment, strengths and limitations of current analytical methods used for their detection, treatment technologies for their removal from water, and the health issues that they can trigger in humans. Nowadays, many EDCs have been identified in significant amounts in different water matrices including drinking water, thus increasing the possibility of entering the food chain. Several studies correlate human exposure to high concentrations of EDCs with serious effects such as infertility, thyroid dysfunction, early puberty, endometriosis, diabetes, and obesity. Although our intention is not to explain all disorders related to EDCs exposure, this review aims to guide future research towards a deeper knowledge of EDCs’ contamination and accumulation in water, highlighting their toxicity and exposure risks to humans.
Collapse
|
15
|
Bandara KRV, Chinthaka SDM, Yasawardene SG, Manage PM. Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka. MARINE POLLUTION BULLETIN 2021; 166:112202. [PMID: 33677333 DOI: 10.1016/j.marpolbul.2021.112202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a toxic organotin compound that belongs to the group of Persistent Organic Pollutants (POPs) and it is documented to cause severe sexual disorders development in aquatic fauna. According to the present study, The TBT concentration in coastal water ranged from 303 ± 7.4 ngL-1 to 25 ± 4.2 ngL-1 wherein sediment was from 107 ± 4.1 ngKg-1 to 17 ± 1.4 ngKg-1. TBT in Perna viridis was found to range from 4 ± 1.2 ngKg-1 to 42 ± 2.2 ngKg-1 wet weight and in ascending order of the body weight. The highest TBT level in water and sediment was found in the Colombo port where the highest level of TBT in P. viridis (42 ± 2.2 ngKg-1) was recorded from the Dikkowita fishery harbor. A positive correlation between the number of male P. viridis and TBT level (p < 0.05) suggests possible reproductive impairment in aquatic animals exposed continuously to a high concentration of TBT.
Collapse
Affiliation(s)
- K R V Bandara
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - S D M Chinthaka
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - S G Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Pathmalal M Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka.
| |
Collapse
|
16
|
Oetken M, Adler M, Alt K, Bachmann J, Dombrowski A, Duhme F, Gabriel AL, Grünewald J, Jourdan J, Lück M, Mensch C, Rösch D, Ruthemann A, Terres S, Völker ML, Wilhelm F, Oehlmann J. The Occurrence of Intersex in Different Populations of the Marine Amphipod Echinogammarus marinus in North-West Brittany - A Longterm-Study. Front Endocrinol (Lausanne) 2021; 12:816418. [PMID: 35002985 PMCID: PMC8740121 DOI: 10.3389/fendo.2021.816418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
In the past two decades, an increasing body of studies has been published on the intersex phenomenon in separate-sexed crustaceans from marine and freshwater ecosystems. Various causes are being considered that could have an influence on the occurrence of intersex. Besides genetic factors, environmental conditions such as photoperiodicity, temperature, salinity and parasitism, but also environmental pollution with endocrine disrupting chemicals (EDCs) are discussed. As part of a long-term monitoring (2012 - 2020) in north-west Brittany, we recorded the occurrence of intersex in the marine amphipod Echinogammarus marinus. We quantified the intersex incidence at marine and estuarine sites and analyzed the incidence in relation to the endocrine potential of the sediments. Intersex occurred with mean frequencies between 0.87% and 12%. It was striking that the incidence of intersex increased with increasing distance from the sea. Since the highest incidence was observed at the range boundary of this stenohaline species, we assume that intersex is triggered by endocrine potential and increasing stress due to increasing freshwater content - and thus an interplay of different environmental factors.
Collapse
Affiliation(s)
- Matthias Oetken
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Matthias Oetken,
| | - Marissa Adler
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Katharina Alt
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Jean Bachmann
- Pharmaceuticals, German Environment Agency (UBA), Dessau, Germany
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Franziska Duhme
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Anna-Louise Gabriel
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Judith Grünewald
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Maren Lück
- Department System Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Carola Mensch
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dominik Rösch
- German Federal Institute of Hydrology (BfG), Koblenz, Germany
| | - Anna Ruthemann
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Susanne Terres
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Maja Lorina Völker
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Ferdinand Wilhelm
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Yang Y, Pan L, Zhou Y, Xu R, Li D. Benzo[a]pyrene exposure disrupts steroidogenesis and impairs spermatogenesis in diverse reproductive stages of male scallop (Chlamys farreri). ENVIRONMENTAL RESEARCH 2020; 191:110125. [PMID: 32861722 DOI: 10.1016/j.envres.2020.110125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a model compound of polycyclic aromatic hydrocarbon known to impair reproductive functions of vertebrates, while the data is scarce in marine invertebrates. To investigate the toxic effects of BaP on invertebrates reproduction, we exposed male scallop (Chlamys farreri) to BaP (0, 0.38 and 3.8 μg/L) throughout three stages of reproductive cycle (early gametogenesis stage, late gametogenesis stage and ripe stage). The results demonstrated that BaP decreased the gonadosomatic index and mature sperms counts in a dose-dependent manner. Significant changes in sex hormones contents and increased 17β-estradiol/testosterone ratio suggested that BaP produced the estrogenic endocrine effects in male scallops. In support of this view, we confirmed that BaP significantly altered transcripts of genes along the upstream PKA and PKC mediated signaling pathway like fshr, lhcgr, adcy, PKA, PKC, PLC and NR5A2. Subsequently, the expressions of genes encoding downstream steroidogenic enzymes (e.g., 3β-HSD, CYP17 and 17β-HSD) were impacted, which corresponded well with hormonal alterations. In addition, BaP suppressed transcriptions of spermatogenesis-related genes, including ccnd2, SCP3, NRF1 and AQP9. Due to different functional demands, these transcript profiles involved in spermatogenesis exhibited a stage-specific expression pattern. Furthermore, histopathological analysis determined that BaP significantly inhibited testicular development and maturation in male scallops. Overall, the present findings indicated that, playing as an estrogenic-like chemical, BaP could disrupt the steroidogenesis pathway, impair spermatogenesis and caused histological damages, thereby inducing reproductive toxicities with dose- and stage-specific effects in male scallops. And the adverse outcomes might threaten the stability of bivalve populations and destroy the function of marine ecosystems in the long term.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
18
|
Levy T, Ventura T, De Leo G, Grinshpan N, Abu Abayed FA, Manor R, Savaya A, Sklarz MY, Chalifa-Caspi V, Mishmar D, Sagi A. Two Homogametic Genotypes - One Crayfish: On the Consequences of Intersexuality. iScience 2020; 23:101652. [PMID: 33103088 PMCID: PMC7578757 DOI: 10.1016/j.isci.2020.101652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022] Open
Abstract
In the Australian redclaw crayfish, Cherax quadricarinatus (WZ/ZZ system), intersexuals, although exhibiting both male and female gonopores, are functional males bearing a female genotype (WZ males). Therefore, the occurrence of the unusual homogametic WW females in nature is plausible. We developed W/Z genomic sex markers and used them to investigate the genotypic structure of experimental and native C. quadricarinatus populations in Australia. We discovered, for the first time, the natural occurrence of WW females in crustacean populations. By modeling population dynamics, we found that intersexuals contribute to the growth rate of crayfish populations in the short term. Given the vastly fragmented C. quadricarinatus habitat, which is characterized by drought-flood cycles, we speculate that intersexuals contribute to the fitness of this species since they lead to occasional increment in the population growth rate which potentially supports crayfish population restoration and establishment under extinction threats or colonization events.
Collapse
Affiliation(s)
- Tom Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Tomer Ventura
- GenEcology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Giulio De Leo
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
- Woods Institute for the Environment, Stanford University, Pacific Grove, CA 93950, USA
| | - Nufar Grinshpan
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Faiza Amterat Abu Abayed
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Amit Savaya
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Menachem Y. Sklarz
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
19
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
20
|
Jerome FC, Hassan A, Chukwuka AV. Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): A first report of crustacea intersex in the Lagos lagoon (Nigeria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135235. [PMID: 31831227 DOI: 10.1016/j.scitotenv.2019.135235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Fisayo Christie Jerome
- Fisheries Resources Department, Marine Biology Section, Nigerian Institute for Oceanography and Marine Research, Lagos, Nigeria
| | | | - Azubuike Victor Chukwuka
- Conservation Unit, Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State Field-Office, Osun State Field-Office, Osogbo-Nigeria, Nigeria.
| |
Collapse
|
21
|
Grabner D, Sures B. Amphipod parasites may bias results of ecotoxicological research. DISEASES OF AQUATIC ORGANISMS 2019; 136:123-134. [PMID: 31575839 DOI: 10.3354/dao03355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipods are commonly used test organisms in ecotoxicological studies. Nevertheless, their naturally occurring parasites have mostly been neglected in these investigations, even though several groups of parasites can have a multitude of effects, e.g. on host survival, physiology, or behavior. In the present review, we summarize the knowledge on the effects of Microsporidia and Acanthocephala, 2 common and abundant groups of parasites in amphipods, on the outcome of ecotoxicological studies. Parasites can have significant effects on toxicological endpoints (e.g. mortality, biochemical markers) that are unexpected in some cases (e.g. down-regulation of heat shock protein 70 response in infected individuals). Therefore, parasites can bias the interpretation of results, for example if populations with different parasite profiles are compared, or if toxicological effects are masked by parasite effects. With the present review, we would like to encourage ecotoxicologists to consider parasites as an additional factor if field-collected test organisms are analyzed for biomarkers. Additionally, we suggest intensification of research activities on the effects of parasites in amphipods in connection with other stressors to disentangle parasite and pollution effects and to improve our understanding of parasite effects in this host taxon.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | | |
Collapse
|
22
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
23
|
Olivares A, Avila-Poveda OH. An ovotestis event in the gonochoric sea urchin Loxechinus albus (Echinodermata: Echinoidea). BRAZ J BIOL 2018; 79:548-551. [PMID: 30304296 DOI: 10.1590/1519-6984.188534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/23/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alberto Olivares
- Departamento de Biotecnologia, Facultad de Ciencias del Mar y Recursos Biologicos, Universidad de Antofagasta, CP 02800, Antofagasta, Chile
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar - FACIMAR, Universidad Autonoma de Sinaloa - UAS, CP 80000, Mazatlan, Sinaloa, Mexico.,Direccion de Catedras-CONACYT, Consejo Nacional de Ciencia y Tecnologia - CONACYT, CP 03940, Ciudad de Mexico, Mexico
| |
Collapse
|
24
|
Abadia-Chanona QY, Avila-Poveda OH, Arellano-Martinez M, Ceballos-Vazquez BP, Benitez-Villalobos F, Parker GA, Rodriguez-Dominguez G, Garcia-Ibañez S. Reproductive traits and relative gonad expenditure of the sexes of the free spawning Chiton articulatus(Mollusca: Polyplacophora). INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1514670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Quetzalli Yasu Abadia-Chanona
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politecnico Nacional (IPN), La Paz, Baja California Sur, Mexico
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autonoma de Sinaloa (UAS), Mazatlan, Sinaloa, Mexico
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autonoma de Sinaloa (UAS), Mazatlan, Sinaloa, Mexico
- Direccion de Catedras-CONACYT, Consejo Nacional de Ciencia y Tecnologia (CONACYT), Ciudad de Mexico, Mexico
| | - Marcial Arellano-Martinez
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politecnico Nacional (IPN), La Paz, Baja California Sur, Mexico
| | - Bertha Patricia Ceballos-Vazquez
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politecnico Nacional (IPN), La Paz, Baja California Sur, Mexico
| | | | - Geoff A. Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Sergio Garcia-Ibañez
- Unidad Academica de Ecologia Marina, Universidad Autonoma de Guerrero (UAGro), Acapulco, Guerrero, Mexico
| |
Collapse
|