1
|
Xu Y, Hao S, Jia D, Qin Y, Wang J, Gao J, Xiao J, Hu Y. Carboxyl-free polyamide reverse osmosis membrane with sustainable anti-fouling performance in treating industrial coke wastewater. WATER RESEARCH 2025; 280:123495. [PMID: 40090146 DOI: 10.1016/j.watres.2025.123495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Carboxyl groups in polyamide (PA) reverse osmosis (RO) membrane contribute significantly to fouling and scaling, hindering the sustainable operation of RO in practical applications. Herein, we developed a novel interfacial polymerization (IP) strategy to finely engineer the molecular structure of PA with no carboxyl groups, and to significantly enhance RO membrane fouling/scaling-resistance. During IP, trimesoyl chloride (TMC) at the interface was consumed completely by the diffused m-phenylenediamine (MPD) and glycerol (GLY) under the assistance of benzalkonium chloride (BAC) surfactant. The fabricated RO membrane with no carboxyl groups exhibits sustainable anti-fouling performance with low flux decline ratios and high flux recovery ratios during the five cycles of fouling and cleaning when treating real coke wastewater, surpassing the reported anti-fouling membranes and the renowned commercial fouling-resistant RO membrane (DuPont FilmTec™ CR100). This work provides some insights to precisely tailor the molecular structure of PA RO membrane with sustainable anti-fouling performance.
Collapse
Affiliation(s)
- Yongkai Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Shuang Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Dingxian Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yiwen Qin
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jianxiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jie Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jun Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Wu F, Li Q, Zhang Z, Zhou X, Pang R. A review on antifouling polyamide reverse osmosis membrane for seawater desalination. ENVIRONMENTAL RESEARCH 2025; 274:121305. [PMID: 40054552 DOI: 10.1016/j.envres.2025.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
Reverse osmosis (RO) membrane technology is well-established in desalination. Aromatic polyamide (PA) thin-film composite (TFC) membrane dominates the commercial RO membrane market due to its high-salt rejection, water flux, and excellent chemical, thermal, and mechanical stabilization. However, membrane fouling is a common problem that has seriously hindered the wide application of RO membrane technology. This paper reviewed the PA RO membrane fouling types, and membrane fouling factors. Antifouling measures for RO membranes were summarized, including pretreatment, periodic cleaning, and modification of the support layer and PA layer. The future development of antifouling RO membranes was clarified.
Collapse
Affiliation(s)
- Feixiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China
| | - Qi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China
| | - Zhien Zhang
- Department of Geosciences and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Xingfu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Ruizhi Pang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China.
| |
Collapse
|
3
|
Kinooka K, Nakagawa K, Matsuyama H, Fujimura Y, Kawakatsu T, Yoshioka T. Molecular simulations and an experimental study of the oligopeptide-mediated fouling mechanisms of polyamide reverse-osmosis membranes. Phys Chem Chem Phys 2025. [PMID: 40396387 DOI: 10.1039/d5cp00221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Fouling is a major problem in reverse-osmosis plants. Fouling is believed to be caused by interactions between membranes and foulants. Experimental observation of fouling is very difficult, however, and in this study molecular dynamics (MD) simulations are used to analyze fouling on a molecular scale to elucidate the adsorption mechanisms of polyamide (PA) reverse-osmosis (RO) membranes affected by the fouling phenomenon. Because proteins are common foulants, a dimeric dipeptide of amino acids constituting a protein was used as a model. The dissociation of the membrane and that of the foulants that results from changes in pH were investigated on a molecular scale and by experimental water permeation testing. At pH 2.5, the foulants L-leucyl-L-aspartic acid (Lasp) and L-leucyl-L-arginine (Larg) showed a tendency toward constant adsorption to the membrane with no significant difference in interaction energy. At pH 7.0, on the other hand, the membrane surface charge turned negative and the total charge of the Lasp and Larg foulants became negative and positive, respectively. Lasp was not close to the membrane surface and demonstrated repulsive and weak adsorption tendencies. On the other hand, Larg penetrated deeply into the membrane surface and showed a strong adsorption tendency. The fouling mechanism in the adsorption simulation varied depending on the conditions, and simulations confirmed that the fouling was very strong when the charges of a foulant and the PA membrane were opposite. These observed trends are similar to those reported from experimental water permeation testing.
Collapse
Affiliation(s)
- Ken Kinooka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
- Kurita Innovation Hub, Kurita Water Industries Ltd., 1-4-1 Daikanyama, Akishima, Tokyo 196-0005, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yu Fujimura
- Kurita Innovation Hub, Kurita Water Industries Ltd., 1-4-1 Daikanyama, Akishima, Tokyo 196-0005, Japan
| | - Takahiro Kawakatsu
- Kurita Innovation Hub, Kurita Water Industries Ltd., 1-4-1 Daikanyama, Akishima, Tokyo 196-0005, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
5
|
Cabeza C, Ahmed AEG, Minauf M, Wieland K, Harasek M. Starch hydrolysates, their impurities and the role of membrane-based technologies as a promising sustainable purification method at industrial scale. Food Res Int 2025; 209:116300. [PMID: 40253201 DOI: 10.1016/j.foodres.2025.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
Starch hydrolysates are syrups obtained through the hydrolysis of starch with a defined carbohydrate composition and concentration. Annual harvest conditions and the availability of raw materials, such as corn, wheat, rice, potato, and certain plant roots, influence their quality. High-quality starch hydrolysate products serve numerous applications, including ingredients in food, textiles, paper, cosmetics, bioplastics, pharmaceuticals and construction. However, impurities such as colour molecules, characteristic flavours, salts, and proteins encountered in the solution along the starch processing steps can compromise product quality. With increasing emphasis on organic and sustainable production, starch hydrolysates must meet higher health and environmental standards. This review provides a comprehensive overview of starch hydrolysates production and purification. It explores the chemical processes leading to the formation of impurities and their impact on the final product composition and specific characteristics. Downstream processing methods for recovery, purification, and concentration are also investigated, comparing traditional techniques with emerging membrane-based technologies. Membrane technologies offer a potential solution for purifying plant-based starch hydrolysates efficiently and sustainably by enhancing purification while reducing energy consumption and waste generation. They operate at lower temperatures, avoiding phase transitions, extra heating, chemicals, and solvent exchanges. Although membrane technologies are widely used in various food industries, minimal research exist on their applications in starch hydrolysate processing, with limited experimental validation available. Addressing this gap, this review compiles established applications and discusses challenges hindering industrial adoption-including membrane fouling, the selection of appropriate membranes, the operational lifespan, and replacement costs,- while also identifying areas requiring further experimental research and development.
Collapse
Affiliation(s)
- Camila Cabeza
- Institute of Chemical Environmental & Bioscience Engineering E166, Technische Universität Wien, 1060 Vienna, Austria; Competence Center CHASE GmbH, Ghegastraße 3 Top 3.2, 1030 Vienna, Austria.
| | - Amal El Gohary Ahmed
- Institute of Chemical Environmental & Bioscience Engineering E166, Technische Universität Wien, 1060 Vienna, Austria
| | - Mario Minauf
- AGRANA Research & Innovation Center GmbH, Josef-Reither-Strasse 21-23, 3430 Tulln, Austria
| | - Karin Wieland
- Competence Center CHASE GmbH, Ghegastraße 3 Top 3.2, 1030 Vienna, Austria
| | - Michael Harasek
- Institute of Chemical Environmental & Bioscience Engineering E166, Technische Universität Wien, 1060 Vienna, Austria
| |
Collapse
|
6
|
Camargos CM, Yang L, Jackson JC, Tanganini IC, Francisco KR, Ceccato-Antonini SR, Rezende CA, Faria AF. Lignin and Nanolignin: Next-Generation Sustainable Materials for Water Treatment. ACS APPLIED BIO MATERIALS 2025; 8:2632-2673. [PMID: 39933070 PMCID: PMC12015965 DOI: 10.1021/acsabm.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Water scarcity, contamination, and lack of sanitation are global issues that require innovations in chemistry, engineering, and materials science. To tackle the challenge of providing high-quality drinking water for a growing population, we need to develop high-performance and multifunctional materials to treat water on both small and large scales. As modern society and science prioritize more sustainable engineering practices, water treatment processes will need to use materials produced from sustainable resources via green chemical routes, combining multiple advanced properties such as high surface area and great affinity for contaminants. Lignin, one of the major components of plants and an abundant byproduct of the cellulose and bioethanol industries, offers a cost-effective and scalable platform for developing such materials, with a wide range of physicochemical properties that can be tailored to improve their performance for target water treatment applications. This review aims to bridge the current gap in the literature by exploring the use of lignin, both as solid bulk or solubilized macromolecules and nanolignin as multifunctional (nano)materials for sustainable water treatment processes. We address the application of lignin-based macro-, micro-, and nanostructured materials in adsorption, catalysis, flocculation, membrane filtration processes, and antimicrobial coatings and composites. Throughout the exploration of recent progress and trends in this field, we emphasize the importance of integrating principles of green chemistry and materials sustainability to advance sustainable water treatment technologies.
Collapse
Affiliation(s)
- Camilla
H. M. Camargos
- Departamento
de Artes Plásticas, Escola de Belas Artes, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Liu Yang
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Jennifer C. Jackson
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Isabella C. Tanganini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Kelly R. Francisco
- Departamento
de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Sandra R. Ceccato-Antonini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Camila A. Rezende
- Departamento
de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Andreia F. Faria
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| |
Collapse
|
7
|
Liu Y, Wang Y, Sengupta B, Kazi OA, Martinson ABF, Elam JW, Darling SB. Pillared Laminar Vermiculite Membranes with Tunable Monovalent and Multivalent Ion Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417994. [PMID: 40026056 PMCID: PMC11983263 DOI: 10.1002/adma.202417994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Effective membrane separation of Li+ from Na+ and Mg2+ is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes. However, their water instability and low inherent ion transport selectivity hinder practical applications. Herein, a new class of laminar membranes with excellent stability and tunable ion sieving is reported by incorporating inorganic alumina pillars into vermiculite interlayers. Crosslinking vermiculite flakes with alumina pillars significantly strengthens interlamellar interactions, resulting in robust water stability. Doping of Na+ before the pillaring process reverses the membrane's surface charge, substantially boosting Li+ separation from multivalent cations via electrostatic interactions. Lithium extraction is often complicated by the presence of co-existing monovalent cations (e.g., Na+) at higher concentrations. Here, by introducing excess Na+ into the membrane after the pillaring process, the separation of Li+ from monovalent cations is enhanced through steric effects. This work realizes both monovalent/multivalent and monovalent/monovalent selective ion sieving with the same membrane platform. A separation mechanism is proposed based on Donnan exclusion and size exclusion, providing new insights for membrane design for resource recovery applications.
Collapse
Affiliation(s)
- Yining Liu
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Yuqin Wang
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Bratin Sengupta
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
- Northwestern Center for Water ResearchNorthwestern UniversityEvanstonIL60201USA
| | - Omar A. Kazi
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Alex B. F. Martinson
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Materials Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Jeffrey W. Elam
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
| | - Seth B. Darling
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
8
|
Pervov AG, Spitsov D, Kulagina A, Aung HZ. The Use of Low-Rejection Nanofiltration Membranes as a Tool to Simplify Pretreatment, Escape Scaling and Radically Increase Recoveries. MEMBRANES 2025; 15:96. [PMID: 40277966 PMCID: PMC12029103 DOI: 10.3390/membranes15040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
This article describes the results of research to develop a new technology to treat storm and drainage water generated on a territory of industrial enterprises and reuse it as a feed water for boiler feed and steam generation. To develop such a system, it is necessary to resolve issues related to pretreatment, scaling, and fouling, as well as to provide a minimal discharge in the company's sanitation network. Principles of the new approach to reach high calcium removal are based on the use of two or three stages of low-pressure nanofiltration membranes instead of the conventional facilities that contain one stage of reverse osmosis membranes. High permeability, low pressure, high recovery, and reduced reagent consumption provide an economic effect. The technology uses low-rejection membranes "nano NF" developed and produced by "Membranium Co." (Vladimir, Russia). In the article, the results of investigations on the evaluation of scaling rates in membrane modules and rates of homogeneous crystallization in concentrate flow are presented. Processing these results enables us to detect recovery values when scaling begins on the membrane surface as well as to determine the maximum recovery value for the beginning of homogenous nucleation in the concentrate flow.
Collapse
Affiliation(s)
- Alexei G. Pervov
- Department of Water Supply, Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia; (D.S.); (A.K.); (H.Z.A.)
| | | | | | | |
Collapse
|
9
|
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 2: Countermeasures and Applications. MEMBRANES 2025; 15:94. [PMID: 40137046 PMCID: PMC11943549 DOI: 10.3390/membranes15030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Fouling, particularly from organic fouling and biofouling, poses a significant challenge in the RO/NF treatment of marginal waters, especially wastewater. Part 1 of this review detailed LMWOC fouling mechanisms. Part 2 focuses on countermeasures and applications. Effective fouling prevention relies on pretreatment, early detection, cleaning, optimized operation, and in situ membrane modification. Accurate fouling prediction is crucial. Preliminary tests using flat-sheet membranes or small-diameter modules are recommended. Currently, no specific fouling index exists for LMWOC fouling. Hydrophobic membranes, such as polyamide, are proposed as alternatives to the standard silt density index (SDI) filter. Once LMWOC fouling potential is assessed, suitable pretreatment methods can be implemented. These include adsorbents, specialized water filters, oxidative decomposition, and antifoulants. In situations where pretreatment is impractical, alternative strategies like high pH operation might be considered. Membrane cleaning becomes necessary upon fouling; however, standard cleaning often fails to fully restore the original flow. Specialized CIP chemicals, including organic solvent-based and oxidative agents, are required. Conversely, LMWOC fouling typically leads to a stabilized flow rate reduction rather than a continuous decline. Aggressive cleaning may be avoided if the resulting operating pressure increase is acceptable. When a significant flow rate drop occurs and LMWOC fouling is suspected, analysis of the fouled membrane is necessary for identification. Standard FT-IR often fails to detect LMWOCs. Solvent extraction followed by GC-MS is required. Pyrolysis GC-MS, which eliminates the extraction step, shows promise. The review concludes by examining how LMWOCs can be strategically utilized to enhance membrane rejection and restore deteriorated membranes.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
10
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
11
|
Chen X, Meng X, Si C, Fu Y. Recovery of wastewater from the pulp and paper industry by cellulose acetate reverse osmosis membrane. Int J Biol Macromol 2025; 297:139862. [PMID: 39814312 DOI: 10.1016/j.ijbiomac.2025.139862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The high salt content and color are regarded as a major challenge to the reuse of industrial wastewater. In the present study, the application of cellulose acetate reverse osmosis (RO) membrane in combination with microfiltration (MF), ultrafiltration (UF), or nanofiltration (NF) process was investigated in the purification of biological and Fenton treated pulp and paper wastewater. In the first step, the effect of pH and inlet pressures on the membrane fouling was investigated. The minimum flux decline caused by fouling were obtained at pH of 10 and inlet pressure of 40 bar. Under the optimized conditions, 82 % chemical oxygen demand (COD) and 96 % color removal were achieved. However, total hardness and conductivity were still high. In the second step, NF-RO system was used to provide better permeate quality. Negligible concentrations of conductivity and hardness were obtained, and iron, calcium, magnesium, potassium and sodium ions with the removal efficiencies of 99.93 %, 99.97 %, 99.96 %, 99.93 % and 99.70 % were achieved, respectively. Moreover, the adsorption of pollutants on the membrane surface and the blockage of the membrane hole were reduced effectively, thus extending the service life of the membrane. Zero discharge of wastewater can be achieved by reuse of wastewater.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Pulp and Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.
| | - Xiangxi Meng
- Key Laboratory of Pulp and Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
| |
Collapse
|
12
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
13
|
Ismael SMH, Hashim NS, Al-Saymari FA, Sultan HA, Hassan QMA, Hussein KA, Emshary CA, Jarallah HM. Synthesize of an Azo Compound: Investigation its Optical Nonlinear Properties and DFT Study. J Fluoresc 2024:10.1007/s10895-024-04082-0. [PMID: 39710821 DOI: 10.1007/s10895-024-04082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and 1H, 13C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p). An investigation is conducted on the optical nonlinear (ONL) properties of the azo compounds formed under the excitation with a low power 532 nm laser beam using diffraction patterns (DPs) and a typical Z-scan combined with optical limiting. The Fresnel-Kirchhoff integral provides numerically obtained boundary conditions in the sense of experimentally obtained values. As high as 2 × 10-7 cm2/W of nonlinear refractive index (NLRI), n2, 1.24 × 10-3 cm/W of the nonlinear absorption coefficient (NLAC), β, and 15.5 mW of the optical limiting (OL) threshold, TH, are obtained.
Collapse
Affiliation(s)
- Sadiq M H Ismael
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Numan S Hashim
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - F A Al-Saymari
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - H A Sultan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Qusay M A Hassan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq.
| | - Kawkab Ali Hussein
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - C A Emshary
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Hanadi M Jarallah
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| |
Collapse
|
14
|
Şener L, Özdemir S, Yalçın MS, Gülcan M, Dizge N. Antibacterial activity of copper-decorated CeO 2 nanoparticles and preparation of antifouling polyethersulfone surface. Heliyon 2024; 10:e40818. [PMID: 39717578 PMCID: PMC11665354 DOI: 10.1016/j.heliyon.2024.e40818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Cerium oxide NPs (nano-CeO2), with notable performance in various biological tests like redox activity, free radical scavenging, and biofilm inhibition, emerge as significant candidates to address issues in related areas. In this research, copper-decorated nano-CeO2 (Cu@nano-CeO2) were first synthesized and then characterized using advanced techniques such as SEM-EDX, XRD, XPS, BET, and ICP-OES. The biochemical properties of the obtained Cu@nano-CeO2 nanostructure and its performance in polyethersulfone (PES) membranes were thoroughly investigated in this research study. The free radical scavenging effect of Cu@nano-CeO2 at 100 mg/L concentration was determined as 100 % with the same activity as the reference compounds Trolox and ascorbic acid. It enhanced 2.9-fold α-amylase enzyme activity at 50 mg/L. Plasmid DNA was completely degraded at 100 mg/L concentration. Cu@nano-CeO2 provided significant inhibition against tested bacterial and fungal strains, especially Gram-positives than Gram-negatives and fungus. Anti-biofilm activity was determined against S. aureus and P. aeruginosa as 98.3 and 82.1 %, respectively. Furthermore, E. coli inhibition activity of PES/Cu@nano-CeO2 1.0 wt% membrane was determined as 100 %. Owing to the promising results obtained, we can suggest that Cu@nano-CeO2 can be used in wastewater treatment.
Collapse
Affiliation(s)
- Lokman Şener
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkey
| | - Sadin Özdemir
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey
| | - M. Serkan Yalçın
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, 65080, Turkey
| | - Mehmet Gülcan
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Faculty of Engineering, Mersin University, 33343, Yenisehir, Mersin, Turkey
| |
Collapse
|
15
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
16
|
Chang H, Zhu Y, Liu N, Ji P, Yan Z, Cheng X, Qu D, Liang H, Qu F. Enhancing microfiltration membrane performance by sodium percarbonate-based oxidation for hydraulic fracturing wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 262:119888. [PMID: 39216736 DOI: 10.1016/j.envres.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficient>0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Yingyuan Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Naiming Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Pengwei Ji
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350108, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Park S, Liu X, Li T, Livingston JL, Zhang J, Tong T. Protein-Decorated Reverse Osmosis Membranes with High Gypsum Scaling Resistance. ACS ENVIRONMENTAL AU 2024; 4:333-343. [PMID: 39582761 PMCID: PMC11583097 DOI: 10.1021/acsenvironau.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/26/2024]
Abstract
The global challenge of water scarcity has fueled significant interest in membrane desalination, particularly reverse osmosis (RO), for producing fresh water from various unconventional sources. However, mineral scaling remains a critical issue that compromises the membrane efficiency and lifespan. This study explores the use of naturally occurring proteins to develop scaling-resistant RO membranes through an eco-friendly modification method. We systematically evaluate three protein modification techniques, namely, polydopamine (PDA)-assisted coating, protein conditioning, and protein drying, for fabricating membranes resistant to gypsum scaling. Protein conditioning is found to be the most effective approach, resulting in protein-decorated membranes with an exceptional resistance to gypsum scaling. We also demonstrate that a hydrated protein layer is essential for optimal scaling resistance. To further understand the mechanism underlying the scaling resistance of protein-decorated membranes, five proteins (i.e., bovine serum albumin, casein, lactalbumin, lysozyme, and protamine) with distinct physicochemical properties are used to explore the key factors governing membrane scaling resistance. The results of dynamic RO experiments indicate that the molecular weight of proteins plays a crucial role, with higher molecular weights leading to higher membrane scaling resistance through steric effects. However, static experiments of bulk crystallization highlight the importance of electrostatic interactions, where proteins with more negative charge delay gypsum crystallization more effectively. These findings suggest the difference between gypsum scaling in the RO and gypsum crystallization in bulk solutions. Overall, this research offers a novel approach to developing resilient and sustainable RO membranes for the desalination of feedwater with high scaling potential while elucidating mechanistic insights on the mitigating effects of protein on gypsum scaling.
Collapse
Affiliation(s)
- Shinyun Park
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Xitong Liu
- Department
of Civil and Environmental Engineering, George Washington University, Washington, D. C. 20052, United States
| | - Tianshu Li
- Department
of Civil and Environmental Engineering, George Washington University, Washington, D. C. 20052, United States
| | - Joshua L. Livingston
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jin Zhang
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Tiezheng Tong
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
18
|
Zhao H, Zhou Y, Zou L, Lin C, Liu J, Li YY. Pure water and resource recovery from municipal wastewater using high-rate activated sludge, reverse osmosis, and mainstream anammox: A pilot scale study. WATER RESEARCH 2024; 266:122443. [PMID: 39278118 DOI: 10.1016/j.watres.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
In response to the escalating global water scarcity and the high energy consumption associated with traditional wastewater treatment plants, there is a growing demand for transformative wastewater treatment processes that promise greater efficiency and sustainability. This study presents an innovative approach for municipal wastewater treatment that integrates high-rate activated sludge with membrane bio-reactor (HRAS-MBR), reverse osmosis (RO) and partial nitrification-anammox (PN/A). With an influent of 8.4 m³/d, the HRAS-MBR demonstrated a removal efficiency of approximately 85 % for chemical oxygen demand (COD), with over 70 % of it being recovered for energy production. The RO system achieved a recovery rate of 75 % for the influent, producing pure water with an electrical conductivity of 50 μS/cm. Concurrently, it concentrated ammonia, thereby enhancing the effectiveness of the PN/A process for nitrogen removal in the mainstream, resulting in a removal efficiency exceeding 85 %. Notably, the HRAS-MBR achieved significant phosphorus removal without chemical additives, attributed to the presence of influent calcium and magnesium ions. Overall, this integrated system reduced the net energy consumption for reclaimed water production by about 26 % compared to conventional methods. Additionally, the new process produced a revenue of 0.75 CNY/m³, demonstrating considerable economic and environmental benefits. This pilot-scale study offers a viable alternative for wastewater treatment and water reuse in water-scarce regions, contributing to sustainable water resource management.
Collapse
Affiliation(s)
- Haoran Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu Zhou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Chihao Lin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
19
|
Davidkova D, Graham MC, MacLeod D, Romero-Vargas Castrillón S, Correia Semiao AJ. Analysis of Tubular NF Plants in Scotland Indicates That Summer Temperatures and Redox-Sensitive Elements Are Correlated with Membrane Biofouling and Shortened Useful Life. ACS ES&T WATER 2024; 4:5002-5012. [PMID: 39539761 PMCID: PMC11555670 DOI: 10.1021/acsestwater.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
We investigate the effects of seasonal variations in water composition and temperature on the performance of two full-scale drinking water treatment plants in Scotland, equipped with tubular cellulose acetate nanofiltration membranes. Multiple environmental and water quality parameters, recorded over a 4.5-year period, were correlated against membrane permeance, cleaning frequency, and useful life. Membrane autopsies enabled the characterization of the foulant composition. Temporal variations in temperature at plant X led to significant biofouling (manifested by permeance losses of 30-50%, and bacteria detected on the membrane surface) during the summer months, when water temperatures exceeded 20 °C and microbiological activity was highest. Plant Y, in contrast, displayed smaller seasonal variations and was operationally stable without significant fouling. A pronounced increase in manganese and iron (up to 200 and 600 μg/L, respectively) in the lake water at plant X in summer was accompanied by elevated content (∼60 mg/m2) of those metals on the membrane surface, which was consistent with lake thermal stratification and metal input from the sediment into the water column. Our work shows that membrane plants in regions supplied by standing surface water bodies, such as plant X, are more vulnerable to biofouling, especially during warmer months.
Collapse
Affiliation(s)
- Desislava
Filipova Davidkova
- Institute
for Infrastructure and Environment, School of Engineering, The University of Edinburgh, William Rankine Building, Thomas Bayes Road, Edinburgh EH9 3FG, United Kingdom
| | - Margaret Catherine Graham
- School
of Geosciences, The University of Edinburgh, Crew Building, Alexander Crum Brown
Road, Edinburgh EH9 3FF, United Kingdom
| | - David MacLeod
- Scottish
Water, 31 Henderson Drive, Inverness IV1 1 TR, United Kingdom
| | - Santiago Romero-Vargas Castrillón
- Institute
for Infrastructure and Environment, School of Engineering, The University of Edinburgh, William Rankine Building, Thomas Bayes Road, Edinburgh EH9 3FG, United Kingdom
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Andrea Joana Correia Semiao
- Institute
for Infrastructure and Environment, School of Engineering, The University of Edinburgh, William Rankine Building, Thomas Bayes Road, Edinburgh EH9 3FG, United Kingdom
| |
Collapse
|
20
|
Singletary T, Iranmanesh N, Colosqui CE. The surface diffusivity of nanoparticles physically adsorbed at a solid-liquid interface. SOFT MATTER 2024; 20:8446-8454. [PMID: 39400204 DOI: 10.1039/d4sm00992d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This work proposes an analytical model considering the effects of hydrodynamic drag and kinetic barriers induced by liquid solvation forces to predict the translational diffusivity of a nanoparticle on an adsorbing surface. Small nanoparticles physically adsorbed to a well-wetted surface can retain significant in-plane mobility through thermally activated stick-slip motion, which can result in surface diffusivities comparable to the bulk diffusivity due to free-space Brownian motion. Theoretical analysis and molecular dynamics simulations in this work show that the surface diffusivity is enhanced when (i) the Hamaker constant is smaller than a critical value prescribed by the interfacial surface energy and particle dimensions, and (ii) the nanoparticle is adsorbed at specific metastable separations of molecular dimensions away from the wall. Understanding and controlling this phenomenon can have significant implications for technical applications involving mass, charge, or energy transport by nanomaterials dispersed in liquids under micro/nanoscale confinement, such as membrane-based separation and ultrafiltration, surface electrochemistry and catalysis, and interfacial self-assembly.
Collapse
Affiliation(s)
- Troy Singletary
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Nima Iranmanesh
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Carlos E Colosqui
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
- Applied Mathematics & Statistics Department, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| |
Collapse
|
21
|
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. MEMBRANES 2024; 14:221. [PMID: 39452833 PMCID: PMC11509221 DOI: 10.3390/membranes14100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as "marginal water". Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
22
|
Zihao L, Wang J, Cheng L, Yang Q, Li P, Dong X, Xu B, Zhi M, Hao A, Ng HY, Bi X. Alleviation of RO membrane fouling in wastewater reclamation plants using an enhanced acid-base chemical cleaning method. WATER RESEARCH 2024; 261:122039. [PMID: 39024800 DOI: 10.1016/j.watres.2024.122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Membrane fouling has always been a critical constraint in the operation of the reverse osmosis (RO) process, and chemical cleaning is essential for mitigating membrane fouling and ensuring smooth operation of the membrane system. This paper presents an optimized chemical cleaning method for the efficient cleaning of RO membranes in full-scale applications. Compared to the regular cleaning method (cleaning with 0.1 % NaOH + 1 % ethylenediaminetetraacetic acid + 0.025 % sodium dodecyl benzene sulfonate followed by 0.2 % HCl), the optimized cleaning method improves the cleaning efficiency by adding sodium chloride to the alkaline cleaning solution and citric acid to the acid cleaning solution. Notably, the membrane flux recovery rate with the optimized cleaning method is 45.74 %, and it improves the cleaning efficiency by 1.65 times compared to the regular cleaning method. Additionally, the optimized cleaning method removes 30.46 % of total foulants (organic and inorganic), which is 2.11 times higher than the regular cleaning method. The removal of inorganic ions such as Fe, Ca, and Mg is significantly improved with the optimized cleaning method. For organic matter removal, the optimized cleaning method effectively removes more polysaccharides, proteins, and microbial metabolites by disrupting the complex structures of organic matter. Furthermore, it also changes the microbial community structure on the RO membrane surface by eliminating microorganisms that cannot withstand strong acids, bases, and high salt environments. However, Mycobacterium can adapt to these harsh conditions, showing a relative abundance of up to 84.13 % after cleaning. Overall, our results provide a new chemical cleaning method for RO membranes in full-scale applications. This method effectively removes membrane foulants and enhances the understanding of the removal characteristics of foulants on RO membrane surfaces by chemical cleaning.
Collapse
Affiliation(s)
- Li Zihao
- School of Environmental & Municipal Engineering, Qingdao University of Technology, 777, Jialingjiangdong Road, Qingdao, 266520, PR China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jinlong Wang
- Qingdao Jinlonghongye Environmental Protection Co. Ltd, 2 Tianbaoshan Road, Qingdao, 266510, PR China
| | - Lihua Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, 777, Jialingjiangdong Road, Qingdao, 266520, PR China.
| | - Qiang Yang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, 777, Jialingjiangdong Road, Qingdao, 266520, PR China
| | - Peizhuo Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, 777, Jialingjiangdong Road, Qingdao, 266520, PR China
| | - Xiaowan Dong
- School of Environmental & Municipal Engineering, Qingdao University of Technology, 777, Jialingjiangdong Road, Qingdao, 266520, PR China
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Anni Hao
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xuejun Bi
- School of Environmental & Municipal Engineering, Qingdao University of Technology, 777, Jialingjiangdong Road, Qingdao, 266520, PR China
| |
Collapse
|
23
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
24
|
Majnis MF, Mohd Adnan MA, Yeap SP, Muhd Julkapli N. How can heteroatoms boost the performance of photoactive nanomaterials for wastewater purification? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121808. [PMID: 39025012 DOI: 10.1016/j.jenvman.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Photocatalysis, as an alternative for treating persistent water pollutants, holds immense promise. However, limitations hinder sustained treatment and recycling under varying light conditions. This comprehensive review delves into the novel paradigm of metal and non-metal doping to overcome these challenges. It begins by discussing the fundamental principles of photocatalysis and its inherent limitations. Understanding these constraints is crucial for developing effective strategies. Band gap narrowing by metal and non-metal doping modifies the band gap, enabling visible-light absorption. Impurity energy levels and oxygen vacancies influenced the doping energy levels and surface defects. Interfacial electron transfer and charge carrier recombination are the most important factors that impact overall efficiency. The comparative analysis of nanomaterials are reviewed on various, including nanometal oxides, nanocarbon materials, and advanced two-dimensional structures. The synthesis process are narratively presented, emphasizing production yields, selectivity, and efficiency. The review has potential applications in the environment for efficient pollutant removal and water purification, economic cost-effective and scalable production and technological advancement catalyst design, in spite of its challenges in material stability, synthesis methods and optimizing band gaps. The novelty of the review paper is on the proposal of a new paradigm of heterojunctions of doped metal and non-metal photocatalysts to promise highly efficient water treatment. This review bridges the gap between fundamental research and practical applications, offering insights into tailored nano photocatalysts.
Collapse
Affiliation(s)
- Mohd Fadhil Majnis
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Azam Mohd Adnan
- Advanced Materials Research Group (AMRG) Department of Engineering, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya Campus, Jalan Timur Tambahan, 45600, Bestari Jaya, Selangor, Malaysia
| | - Swee Pin Yeap
- Department of Chemical Engineering UCSI University. UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT) Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Taghipour A, Karami P, Manikantan Sandhya M, Sadrzadeh M. An Innovative Surface Modification Technique for Antifouling Polyamide Nanofiltration Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37197-37211. [PMID: 38959422 DOI: 10.1021/acsami.4c06082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pooria Karami
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mahesh Manikantan Sandhya
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, Bhopal 462 066, Madhya Pradesh, India
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
26
|
Li H, Zhang B, Wu Y. Highly efficient removal of emulsified oil from oily wastewater by microfiltration carbon membranes made from phenolic resin/coal. ENVIRONMENTAL TECHNOLOGY 2024; 45:3692-3705. [PMID: 37326284 DOI: 10.1080/09593330.2023.2226881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Oily wastewater treatment is a major problem for a large variety of industrial sectors. Membrane filtration is quite promising for oil-in-water emulsion treatment by virtue of numerous eminent advantages. Here, microfiltration carbon membranes (MCMs) were prepared by the blends of phenolic resin (PR)/coal as precursor materials for efficient removal of emulsified oil from oily wastewater. The functional groups, porous structure, microstructure, morphology and hydrophilicity of the MCMs were analysed by Fourier transform infrared spectroscopy, bubble-pressure method, X-ray diffraction, scanning electron microscope and water contact angle, respectively. The effect of coal amount in precursor materials on the structure and properties of MCMs was mainly investigated. Under operation at 0.02 MPa for trans-membrane pressure and 6 mL min-1 for feed flowrate, the optimal oil rejection and water permeation flux are correspondingly attained to 99.1% and 21,388.5 kg m-2 h-1 MPa-1 for MCMs made by the precursor containing 25% coal. Besides, the anti-fouling ability of the as-prepared MCMs is greatly improved in comparison with the one merely made by PR. In summary, the result indicates that the as-prepared MCMs are very promising for oily wastewater treatment.
Collapse
Affiliation(s)
- Hongchao Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| | - Bing Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| | - Yonghong Wu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| |
Collapse
|
27
|
Tabassum J, Baig N, Sohail M, Nafady A, Shah SSA, Ul-Hamid A, Tsiakaras P. Novel and efficient Bi-doped CoTe nano-solar evaporators embedded on leno weave cotton gauze for efficient solar-driven desalination. J Colloid Interface Sci 2024; 658:758-771. [PMID: 38150932 DOI: 10.1016/j.jcis.2023.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Solar-driven desalination is considered an alternative to the conventional desalination due to its nearly zero carbon footprint and ease of operating in remote areas. Water can be purified wherever sunlight is available, providing a viable solution to water shortage. Metal chalcogenide-based materials are revolutionary for solar evaporators due to their excellent photothermal conversion efficiency, facile synthesis methods, stability, and low cost. Herein we present a prototype Bi-doped CoTe nano-solar evaporator embedded on leno weave cotton gauze (Bi/CoTe@CG) using the sonication process. The nano-solar evaporator was synthesized using a simple hydrothermal approach to provide an opportunity to scale up. The as designed solar evaporator consisting of 5 % Bi/CoTe@CG showed an excellent water flux of 2.38 kg m-2 h-1 upon one sun radiation (1 kW m-2), considered among the highest literature-reported values. The introduced solar evaporator showed excellent solar efficiency of 96.7 %, good stability, and reusability for five cycles of one hour. The best doping ratio of Bi in CoTe was obtained as Bi0.5Co9.5Te with a contact angle of 11.9° in powder form. The hydrophilic nature of the designed solar-evaporator increased the water interaction with the embedded nano-solar evaporator, which helps the transfer of the heat to nearby water molecules, break their hydrogen bonding and increase the evaporation rate. The ion concentration, of the desalinated pure water collected using Bi/CoTe@CG, decreased by many orders of magnitude and it is far below the limit of WHO standards for Na+ and K+. Thus, a self-floating Bi-doped CoTe nano-solar evaporator deposited on cotton gauze (CG) is an excellent solar evaporator for seawater desalination. The proposed solar evaporator is another step towards introducing environmentally friendly desalination methods.
Collapse
Affiliation(s)
- Javeria Tabassum
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan.
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece.
| |
Collapse
|
28
|
Zhang H, Wang F, Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Adv Colloid Interface Sci 2024; 325:103097. [PMID: 38330881 DOI: 10.1016/j.cis.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of industries, the issue of pollution on Earth has become increasingly severe. This has led to the deterioration of various surfaces, rendering them ineffective for their intended purposes. Examples of such surfaces include oil rigs, seawater intakes, and more. A variety of functional surface techniques have been created to address these issues, including superwetting surfaces, antifouling coatings, nano-polymer composite materials, etc. They primarily exploit the membrane's surface properties and hydration layer to improve the antifouling property. In recent years, biomimetic superwetting surfaces with non-toxic and environmental characteristics have garnered massive attention, greatly aiding in solving the problem of pollution. In this work, a detailed presentation of antifouling superwetting materials was made, including superhydrophobic surface, superhydrophilic surface, and superhydrophilic/underwater superoleophobic surface, along with the antifouling mechanisms. Then, the applications of the superwetting antifouling materials in antifouling domain were addressed in depth.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
29
|
Al-Qodah Z, Al-Zghoul TM, Jamrah A. The performance of pharmaceutical wastewater treatment system of electrocoagulation assisted adsorption using perforated electrodes to reduce passivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20434-20448. [PMID: 38376783 DOI: 10.1007/s11356-024-32458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
The integrated electrocoagulation-assisted adsorption (ECA) system with a solar photovoltaic power supply has gained more attention as an effective approach for reduction chemical oxygen demand (COD) from pharmaceutical wastewater (PhWW). In this research, the ECA system was used for the treatment of PhWW. Several operating parameters were investigated, including electrode number, configuration, distance, operating time, current density, adsorption time, and temperature. A current density of 6.656 mA/cm2, six electrodes, a 20-min time, a 4 cm distance, an MP-P configuration, and a 45 °C temperature produced the maximum COD reductions, where the operating cost of conventional energy was 0.273 $/m3. The EC, adsorption, and combination of EC and adsorption processes achieved efficient COD reductions of 85.4, 69.1, and 95.5%, respectively. The pseudo-second-order kinetic model and the Freundlich isotherm fit the data of the endothermic adsorption process. Therefore, it was found that the combination processes were superior to the use of these processes in isolation to remove COD.
Collapse
Affiliation(s)
- Zakaria Al-Qodah
- Department of Chemical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, 11134, Jordan.
| | - Tharaa M Al-Zghoul
- Department of Civil Engineering, School of Engineering, University of Jordan, Amman, 11942, Jordan
| | - Ahmad Jamrah
- Department of Civil Engineering, School of Engineering, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
30
|
Shoemaker BA, Haji-Akbari A. Ideal conductor/dielectric model (ICDM): A generalized technique to correct for finite-size effects in molecular simulations of hindered ion transport. J Chem Phys 2024; 160:024116. [PMID: 38197447 DOI: 10.1063/5.0180029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Molecular simulations serve as indispensable tools for investigating the kinetics and elucidating the mechanism of hindered ion transport across nanoporous membranes. In particular, recent advancements in advanced sampling techniques have made it possible to access translocation timescales spanning several orders of magnitude. In our prior study [Shoemaker et al., J. Chem. Theory Comput. 18, 7142 (2022)], we identified significant finite size artifacts in simulations of pressure-driven hindered ion transport through nanoporous graphitic membranes. We introduced the ideal conductor model, which effectively corrects for such artifacts by assuming the feed to be an ideal conductor. In the present work, we introduce the ideal conductor dielectric model (Icdm), a generalization of our earlier model, which accounts for the dielectric properties of both the membrane and the filtrate. Using the Icdm model substantially enhances the agreement among corrected free energy profiles obtained from systems of varying sizes, with notable improvements observed in regions proximate to the pore exit. Moreover, the model has the capability to consider secondary ion passage events, including the transport of a co-ion subsequent to the traversal of a counter-ion, a feature that is absent in our original model. We also investigate the sensitivity of the new model to various implementation details. The Icdm model offers a universally applicable framework for addressing finite size artifacts in molecular simulations of ion transport. It stands as a significant advancement in our quest to use molecular simulations to comprehensively understand and manipulate ion transport processes through nanoporous membranes.
Collapse
Affiliation(s)
- Brian A Shoemaker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
31
|
Shen Y, Zhang Y, Jiang Y, Cheng H, Wang B, Wang H. Membrane processes enhanced by various forms of physical energy: A systematic review on mechanisms, implementation, application and energy efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167268. [PMID: 37748609 DOI: 10.1016/j.scitotenv.2023.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Membrane technologies in water and wastewater treatment have been eagerly pursued over the past decades, yet membrane fouling remains the major bottleneck to overcome. Membrane fouling control methods which couple membrane processes with online in situ application of external physical energy input (EPEI) are getting closer and closer to reality, thanks to recent advances in novel materials and energy deliverance methods. In this review, we summarized recent studies on membrane fouling control techniques that depend on (i) electric field, (ii) acoustic field, (iii) magnetic field, and (iv) photo-irradiation (mostly ultraviolet or visible light). Mechanisms of each energy input were first reported, which defines the applicability of these methods to certain wastewater matrices. Then, means of implementation were discussed to evaluate the compatibility of these fouling control methods with established membrane techniques. After that, preferred applications of each energy input to different foulant types and membrane processes in the experiment reports were summarized, along with a discussion on the trends and knowledge gaps of such fouling control research. Next, specific energy consumption in membrane fouling control and flux enhancement was estimated and compared, based on the experimental results reported in the literature. Lastly, strength and weakness of these methods and future perspectives were presented as open questions.
Collapse
Affiliation(s)
- Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulian Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
Sun X, Duan L, Liu Z, Gao Q, Liu J, Zhang D. The mechanism of silica and transparent exopolymer particles (TEP) on reverse osmosis membranes fouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119634. [PMID: 37995634 DOI: 10.1016/j.jenvman.2023.119634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Dissolved silica and transparent exopolymer particles (TEP) are the primary foulants in reverse osmosis (RO) desalinated brackish water and wastewater. In this study, we investigated the fouling properties of varying silica concentrations with TEP on the membrane surface and discovered a synergistic fouling effect between the silanol group (Si-OH) and the TEP carboxyl group (-COOH). The membrane fouling experiments showed that silica fouling approached saturation at 6 mM, with little variation in membrane flux as the silica concentration increased. Furthermore, the -OH functional group of the monosilicate molecule can chemically react with the -COO- functional group on the membrane surface to create hydrogen bonds, allowing monosilicate deposition directly on the membrane. Silica-silica interactions reacted with aggregates at high silica concentrations and joined with TEP to create a more substantial, more complex cross-linked network, resulting in severe membrane fouling. At pH 9, silica fouling was most severe due to the dramatic increase in the solubility of monosilicic acid dissolution in solution and the decreased polymerization rate. This work reveals the essential process of membrane fouling induced by silica and TEP, significantly increasing knowledge on silica-TEP fouling.
Collapse
Affiliation(s)
- Xiaochen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Resources & Environment, Nanchang University, Nanchang, 330031, China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhenzhong Liu
- School of Resources & Environment, Nanchang University, Nanchang, 330031, China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China.
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Jianing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
33
|
Jiang T, Hu XF, Guan YF, Chen JJ, Yu HQ. Molecular insights into complexation between protein and silica: Spectroscopic and simulation investigations. WATER RESEARCH 2023; 246:120681. [PMID: 37801982 DOI: 10.1016/j.watres.2023.120681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The synergistic effect of protein-silica complexation leads to exacerbated membrane fouling in the membrane desalination process, exceeding the individual impacts of silica scaling or protein fouling. However, the molecular-level dynamics of silica binding to proteins and the resulting structural changes in both proteins and silica remain poorly understood. This study investigates the complexation process between silica and proteins-negatively charged bovine serum albumin (BSA) and positively charged lysozyme (LYZ) at neutral pH-using infrared spectroscopy (IR), in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and multiple computational simulations. The findings reveal that both protein and silica structures undergo changes during the complexation process, with calcium ions in the solution significantly exacerbating these alterations. In particular, in situ ATR-FTIR combined with two-dimensional correlation spectroscopy analysis shows that BSA experiences more pronounced unfolding, providing additional binding sites for silica adsorption compared to LYZ. The adsorbed proteins promote silica polymerization from lower-polymerized to higher-polymerized species. Furthermore, molecular dynamics simulations demonstrate greater conformational variation in BSA through root-mean-square-deviation analysis and the bridging role of calcium ions via mean square displacement analysis. Molecular docking and density functional theory calculations identify the binding sites and energy of silica on proteins. In summary, this research offers a comprehensive understanding of the protein-silica complexation process, contributing to the knowledge of synergistic behaviors of inorganic scaling and organic fouling on membrane surfaces. The integrated approach used here may also be applicable for exploring other complex complexation processes in various environments.
Collapse
Affiliation(s)
- Ting Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Fan Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
34
|
Gao Q, Duan L, Jia Y, Zhang H, Liu J, Yang W. A Comprehensive Analysis of the Impact of Inorganic Matter on Membrane Organic Fouling: A Mini Review. MEMBRANES 2023; 13:837. [PMID: 37888009 PMCID: PMC10609035 DOI: 10.3390/membranes13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysaccharides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling, especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD) and density functional theory (DFT) provide valuable mechanistic insights complementing fouling experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP) formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the effects of critical inorganic constituents on fouling by major organic foulants, providing an important reference for membrane fouling modeling and fouling control strategies.
Collapse
Affiliation(s)
- Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jianing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Q.G.); (Y.J.); (H.Z.); (J.L.)
- Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
35
|
Lu M, Zhang H, Tian Y, Yao W, Wang J, Wang Y. Photocatalytic hydrogel film assisted forward osmosis (PFO) for water treatment: Sustainable performance and contaminant control. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132364. [PMID: 37634380 DOI: 10.1016/j.jhazmat.2023.132364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The integration of catalytic oxidation with forward osmosis (FO) holds promising potential to address two crucial challenges encountered by FO: fouling and unsustainable performance, but suitable approaches are still rare. Herein, we have successfully developed a photocatalysis-assisted forward osmosis (PFO) system. In the PFO, a self-made porous carbon nitride doped functional carbon nanotube photocatalytic hydrogel film (PCN@CNTM) was engaged in the FO process in an inventive way by simply sticking to the commercial FO membrane surface, preventing damage to the membrane from the catalyst's direct insertion and delaying the assault from the oxidation groups. PFO allowed organic pollutants to decompose in the feed solution (90%) and on the membrane surface, regulating the water chemical potential and giving the FO membrane antifouling properties. This resulted in sustainable water flux (11.8 LMH) with no significant membrane fouling in PFO, whereas in FO alone there was a significant fouling and flux drop (from 12.73 to 7.23 LMH in 4 h). Moreover, the expensive FO membrane was protected while the hydrogel film can be replaced on demand. The PFO exemplifies the concept of synergistic technology integration, presenting a new perspective on harnessing the strengths of distinct technologies in a mutually beneficial manner.
Collapse
Affiliation(s)
- Mengyang Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
36
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Zhang R, Hao L, Cheng K, Xin B, Sun J, Guo J. Research progress of electrically-enhanced membrane bioreactor (EMBR) in pollutants removal and membrane fouling alleviation. CHEMOSPHERE 2023; 331:138791. [PMID: 37105306 DOI: 10.1016/j.chemosphere.2023.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Membrane bioreactor (MBR), as a biological unit for wastewater treatment, has been proven to have the advantages of simple structure and high pollutant removal rate. However, membrane fouling limits its wide application, and it is crucial to adopt effective membrane fouling control methods. As a new type of membrane fouling control technology, electrically-enhanced MBR (EMBR) has attracted more interest recently. It uses the driving force of electric field to make pollutants flocculate or move away from the membrane surface to achieve the purpose of inhibiting membrane fouling. This paper expounds the configuration of EMBR in recent years, including the location of membrane components, the way of electric field application and the selection of electrode and membrane materials, and provides the latest development information in various aspects. The enhanced effect of electric field on the removal of comprehensive and refractory pollutants is outlined in detail. And from the perspective of sludge properties (EPS, SMP, sludge particle size, zeta potential and microbial activity), the influence of electric field on sludge characteristics and the relationship between the changes of sludge properties in EMBR and membrane fouling are discussed. Moreover, the electrochemical mechanisms of electric field alleviating membrane fouling are elucidated from electrophoresis, electrostatic repulsion, electroflocculation, electroosmosis, and electrochemical oxidation, and the regeneration and stability of EMBR are assessed. The existing challenges and future research directions are also proposed. This review could provide theoretical guidance and further studies for subsequent topic, and promoting the wide engineering applications of EMBR.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Liying Hao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Kai Cheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Beiyu Xin
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Junqi Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| |
Collapse
|
38
|
Weirich M, Antonyuk S. Monitoring of Particulate Fouling Potential of Feed Water with Spectroscopic Measurements. MEMBRANES 2023; 13:664. [PMID: 37505030 PMCID: PMC10385396 DOI: 10.3390/membranes13070664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
The modified fouling index (MFI) is a crucial characteristic for assessing the fouling potential of reverse osmosis (RO) feed water. Although the MFI is widely used, the estimation time required for filtration and data evaluation is still relatively long. In this study, the relationship between the MFI and instantaneous spectroscopic extinction measurements was investigated. Since both measurements show a linear correlation with particle concentration, it was assumed that a change in the MFI can be detected by monitoring the optical density of the feed water. To prove this assumption, a test bench for a simultaneous measurement of the MFI and optical extinction was designed. Silica monospheres with sizes of 120 nm and 400 nm and mixtures of both fractions were added to purified tap water as model foulants. MFI filtration tests were performed with a standard 0.45 µm PES membrane, and a 0.1 µm PP membrane. Extinction measurements were carried out with a newly designed flow cell inside a UV-VIS spectrometer to get online information on the particle properties of the feed water, such as the particle concentration and mean particle size. The measurement results show that the extinction ratio of different light wavelengths, which should remain constant for a particulate system, independent of the number of particles, only persisted at higher particle concentrations. Nevertheless, a good correlation between extinction and MFI for different particle concentrations with restrictions towards the ratio of particle and pore size of the test membrane was found. These findings can be used for new sensory process monitoring systems, if the deficiencies can be overcome.
Collapse
Affiliation(s)
- Marc Weirich
- Institute of Particle Process Engineering, RPTU Kaiserslautern-Landau, Gottlieb-Daimler-Straße, 67653 Kaiserslautern, Germany
| | - Sergiy Antonyuk
- Institute of Particle Process Engineering, RPTU Kaiserslautern-Landau, Gottlieb-Daimler-Straße, 67653 Kaiserslautern, Germany
| |
Collapse
|
39
|
Ying Z, Wu J, Ma M, Wang X, Huo M. Aquifer clogging caused by chlorine disinfection during the reclaimed water recharge. CHEMOSPHERE 2023:139387. [PMID: 37394185 DOI: 10.1016/j.chemosphere.2023.139387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Aquifer clogging plays a critical role in the efficiency of reclaimed water recharge. While chlorine disinfection is commonly used for reclaimed water, its impact on clogging has seldom been discussed. Thus, this study aimed to investigate the mechanism of chlorine disinfection on clogging by establishing a lab-scale reclaimed water recharge system that utilized chlorine-treated secondary effluent as feed water. The findings indicated that increasing the chlorine concentration led to a surge in the total amount of suspended particles, and the median particle size increased from 2.65 μm to 10.58 μm. Furthermore, the fluorescence intensity of dissolved organic matter decreased by 20%, with 80% of these compounds, including humic acid, becoming entrapped within the porous media. Additionally, the formation of biofilms was also found to be promoted. Microbial community structure analysis unveiled a consistent dominance of Proteobacteria consistently exceeded 50% in relative abundance. Moreover, the relative abundance of Firmicutes increased from 0.19% to 26.28%, thereby verifying their strong tolerance to chlorine disinfection. These results showed that higher chlorine concentrations could stimulate microorganisms to secrete an increased quantity of extracellular polymeric substance (EPS) and form a coexistence system with the trapped particles and natural organic matter (NOM) within the porous media. Consequently, this supported the formation of biofilms, thereby potentially elevating the risk of aquifer clogging.
Collapse
Affiliation(s)
- Zhian Ying
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China
| | - Jinghui Wu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Min Ma
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China
| | - Xianze Wang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
40
|
Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, Chae KJ, Abdelkareem MA. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162569. [PMID: 36871724 DOI: 10.1016/j.scitotenv.2023.162569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
41
|
Liu C, Yin Z, Hou Y, Yin C, Yin Z. Overview of Solar Steam Devices from Materials and Structures. Polymers (Basel) 2023; 15:2742. [PMID: 37376388 DOI: 10.3390/polym15122742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The global shortage of freshwater supply has become an imminent problem. The high energy consumption of traditional desalination technology cannot meet the demand for sustainable energy development. Therefore, exploring new energy sources to obtain pure water has become one of the effective ways to solve the freshwater resource crisis. In recent years, solar steam technology which utilizes solar energy as the sole input source for photothermal conversion has shown to be sustainable, low-cost, and environmentally friendly, providing a viable low-carbon solution for freshwater supply. This review summarizes the latest developments in solar steam generators. The working principle of steam technology and the types of heating systems are described. The photothermal conversion mechanisms of different materials are illustrated. Emphasis is placed on describing strategies to optimize light absorption and improve steam efficiency from material properties to structural design. Finally, challenges in the development of solar steam devices are pointed out, aiming to provide new ideas for the development of solar steam devices and alleviate the shortage of freshwater resources.
Collapse
Affiliation(s)
- Chang Liu
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Zhenhao Yin
- Department of Environmental Science, Yanbian University, Yanji 133002, China
| | - Yue Hou
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Zhenxing Yin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| |
Collapse
|
42
|
Hu Z, Guan D, Sun Z, Zhang Z, Shan Y, Wu Y, Gong C, Ren X. Osmotic cleaning of typical inorganic and organic foulants on reverse osmosis membrane for textile printing and dyeing wastewater treatment. CHEMOSPHERE 2023:139162. [PMID: 37290520 DOI: 10.1016/j.chemosphere.2023.139162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Reverse osmosis (RO) is one of the most fundamental membrane technology because it has higher salt rejections, which suffers from the issue of membrane fouling, as the membrane is inevitably exposed to foulants during the filtration process. For different fouling mechanisms of RO membrane, physical and chemical cleaning are widely used in the control of RO membrane fouling. The present study investigated the performance and water flux recovery using osmotic cleaning to clean the typical inorganic and organic foulants on RO membrane for textile printing and dyeing wastewater treatment. The effects of operation conditions (i.e., the concentration of cleaning solution, the filtrating time and cleaning time, and the flow rate of cleaning solution) on relative water flux recovery were examined. The results show that a highly water flux recovery (98.3% for cleaning of inorganic fouling and 99.6% for cleaning of organic fouling) was achieved under optimal operation of the concentration and flow rate of cleaning solution and the filtrating and cleaning time. Moreover, the experiment of repeated "filtrating-cleaning" cycles indicated that the osmotic cleaning has highly performance of recoverability of water flux (over 95.0%) can be extended in a relatively long time. The experimental results and changes on SEM and AFM images of RO membrane confirmed the successful development and application of osmotic cleaning for inorganic and organic fouling of RO membrane.
Collapse
Affiliation(s)
- Zhifeng Hu
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Detian Guan
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Beijing Management Division of North Grand Canal, Beijing, 101100, China
| | - Zhimeng Sun
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Zhongguo Zhang
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China.
| | - Yue Shan
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Yue Wu
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Chenhao Gong
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| | - Xiaojing Ren
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Beijing, 100095, China
| |
Collapse
|
43
|
Tomás-Pejó E, González-Fernández C, Greses S, Kennes C, Otero-Logilde N, Veiga MC, Bolzonella D, Müller B, Passoth V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:96. [PMID: 37270640 DOI: 10.1186/s13068-023-02349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.
Collapse
Affiliation(s)
- Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - Nuria Otero-Logilde
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden.
| |
Collapse
|
44
|
Zhou Z, Yan Y, Li X, Zeng F, Shao S. Effect of urea-based chemical cleaning on TrOCs rejection by nanofiltration membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
45
|
Davoodbeygi Y, Askari M, Salehi E, Kheirieh S. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117577. [PMID: 36848812 DOI: 10.1016/j.jenvman.2023.117577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In the era of rapid and conspicuous progress of water treatment technologies, combined adsorption and membrane filtration systems have gained great attention as a novel and efficient method for contaminant removal from aqueous phase. Further development of these techniques for water/wastewater treatment applications will be promising for the recovery of water resources as well as reducing the water tension throughout the world. This review introduces the state-of-the-art on the capabilities of the combined adsorption-membrane filtration systems for water and wastewater treatment applications. Technical information including employed materials, superiorities, operational limitations, process sustainability and upgradeing strategies for two general configurations i.e. hybrid (pre-adsorption and post-adsorption) and integrated (film adsorbents, low pressure membrane-adsorption coupling and membrane-adsorption bioreactors) systems has been surveyed and presented. Having a systematic look at the fundamentals of hybridization/integration of the two well-established and efficient separation methods as well as spotlighting the current status and prospectives of the combination strategies, this work will be valuable to all the interested researchers working on design and development of cutting-edge wastewater/water treatment techniques. This review also draws a clear roadmap for either decision making and choosing the best alternative for a specific target in water treatment or making a plan for further enhancement and scale-up of an available strategy.
Collapse
Affiliation(s)
- Yegane Davoodbeygi
- Department of Chemical Engineering, University of Hormozgan, Bandar Abbas, Iran; Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Mahdi Askari
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| | - Sareh Kheirieh
- Department of Chemical Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
46
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
47
|
Mallya DS, Abdikheibari S, Dumée LF, Muthukumaran S, Lei W, Baskaran K. Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation - A review. CHEMOSPHERE 2023; 321:138070. [PMID: 36775036 DOI: 10.1016/j.chemosphere.2023.138070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations.
Collapse
Affiliation(s)
| | | | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 8001, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, Victoria. 3220, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, Victoria, 3216, Australia
| |
Collapse
|
48
|
Ahmed MA, Amin S, Mohamed AA. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 2023; 9:e14908. [PMID: 37064488 PMCID: PMC10102236 DOI: 10.1016/j.heliyon.2023.e14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity has been a global challenge for many countries over the past decades, and as a result, reverse osmosis (RO) has emerged as a promising and cost-effective tool for water desalination and wastewater remediation. Currently, RO accounts for >65% of the worldwide desalination capacity; however, membrane fouling is a major issue in RO processes. Fouling reduces the membrane's lifespan and permeability, while also increases the operating pressure and chemical cleaning frequency. Overall, fouling reduces the quality and quantity of desalinated water, and thus hinders the sustainable application of RO membranes by disturbing its efficacy and economic aspects. Fouling arises from various physicochemical interactions between water pollutants and membrane materials leading to foulants' accumulation onto the membrane surfaces and/or inside the membrane pores. The current review illustrates the main types of particulates, organic, inorganic and biological foulants, along with the major factors affecting its formation and development. Moreover, the currently used monitoring methods, characterization techniques and the potential mitigation strategies of membrane fouling are reviewed. Further, the still-faced challenges and the future research on RO membrane fouling are addressed.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif Amin
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
49
|
Murugan P, Sarojini G, Saravanane R, Bhuvaneshwari S. Removal of lead ions using OA-Fe 3O 4 magnetic nanoparticles-based pickering emulsion liquid membrane: process optimization using box-behnken response surface methodology. ENVIRONMENTAL TECHNOLOGY 2023; 44:1579-1591. [PMID: 34852734 DOI: 10.1080/09593330.2021.2008016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study is to explore the pickering emulsion liquid membrane (PELM) performance for removing divalent lead ions (Pb II) from aqueous solution. In the present work, the membrane phase was prepared by dissolving methyltrioctylammonium chloride (Aliquat 336) with Mahua oil and adding oleic acid coated-ferrosoferric oxide (OA-Fe3O4) as magnetic nanoparticles. Experimental investigation on percentage removal of lead ions was carried out by studying the influencing process parameters such as pH, agitation speed, stripping concentration, initial feed concentration, surfactant concentration, treat ratio, M/S ratio and carrier concentration. The optimum condition to remove 98.52% of lead ions from the feed solutions has achieved at a stripping phase concentration of 0.3 M, treat ratio of 3, agitation speed of 300 rpm, initial feed concentration of 10 ppm and stabilizer concentration of 2 wt%. The experimental results were validated using box-behnken response surface methodology. The extraction ability of OA-Fe3O4 magnetic nanoparticles-based PELM has been evaluated using statistical optimization of all the affecting process factors using the design of the experiments.
Collapse
Affiliation(s)
- Perumal Murugan
- Department of Chemical Engineering, Agni College of Technology, Chennai, India
| | | | - Raman Saravanane
- Department of Civil Engineering, Pondicherry Engineering College, Puducherry, India
| | | |
Collapse
|
50
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|