1
|
Liu J, Gan T, Hu W, Li Y. Does ambient particulate matter 1 increase the risk of gastric cancer in the northwest of China? Int J Cancer 2025; 156:104-113. [PMID: 39177481 DOI: 10.1002/ijc.35144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Gastric cancer (GC) remains a significant health concern in Gansu province, China, with morbidity and mortality rates surpassing national averages. Despite the recognized health risks associated with ambient particulate matter with an aerodynamic diameter <1 μm (PM1), the relationship between PM1 exposure and GC incidence has not been extensively studied. Data on GC cases from 2013 to 2021 were gathered from 262 hospitals in Gansu, China. Concurrently, data on the normalized vegetation index (NDVI), gross domestic product (GDP), drinking and smoking behavioral index (DSBI), PM1, PM2.5, and PM2.5-1 were collected. Utilizing a Bayesian conditional autoregressive (CAR) combined generalized linear model (GLM) with quasi-Poisson regression, we evaluated the impact of PM1, PM2.5, PM2.5-1, NDVI, DSBI, and GDP on GC morbidity while adjusting for potential confounders. Our analysis indicated that exposure to PM1 (μg/m3) is significantly positively correlated with GC incidence in regions with an overall age-standardized incidence rate (ASIR) >40 (relative risks [RR]: 1.023, 95% confidence intervals [CI, 1.007, 1.039]), male ASIR >50 (RR: 1.014, 95% CI [1.009, 1.019]), and female ASIR >20 (RR: 1.010, 95% CI [1.002, 1.018]). PM2.5, PM2.5-1, DSBI, and GDP were positively correlated with GC incidence, while NDVI was negatively correlated in the study regions. Our findings provided evidence of a positive correlation between PM1 exposure and GC incidence in high-risk areas of GC within arid regions. Further research is warranted to elucidate the complex nonlinear relationships between environmental factors and GC. These insights could inform strategies for improving the control and prevention of GC in Gansu and similar regions.
Collapse
Affiliation(s)
- Jie Liu
- Department of Tumor Surgery, General Surgery, Gansu Provincial Key Laboratory of Gastrointestinal Cancer, Key Laboratory of Environmental Oncology in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Center for Digestive System Tumor Transformation and Innovation Engineering, Environmental Oncology Center, Lanzhou University, Lanzhou, China
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ting Gan
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Wenbiao Hu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yumin Li
- Department of Tumor Surgery, General Surgery, Gansu Provincial Key Laboratory of Gastrointestinal Cancer, Key Laboratory of Environmental Oncology in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Center for Digestive System Tumor Transformation and Innovation Engineering, Environmental Oncology Center, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
González-Olalla JM, Powell JA, Brahney J. Dust storms increase the tolerance of phytoplankton to thermal and pH changes. GLOBAL CHANGE BIOLOGY 2024; 30:e17055. [PMID: 38273543 DOI: 10.1111/gcb.17055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0-75 mg L-1 ), temperature (19-27°C), and pH (6.3-7.3) on the growth rate of the algal species Scenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high-risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust-induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change.
Collapse
Affiliation(s)
| | - James A Powell
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| |
Collapse
|
3
|
Starr M, Klein T, Gross A. Direct foliar acquisition of desert dust phosphorus fertilizes forest trees despite reducing photosynthesis. TREE PHYSIOLOGY 2023; 43:794-804. [PMID: 36795040 DOI: 10.1093/treephys/tpad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/31/2023] [Indexed: 05/13/2023]
Abstract
Phosphorus (P) availability to forest trees is often limited by local soil conditions that increase its fixation to soil minerals. In certain regions, atmospheric-P inputs can compensate for low soil-P availability. Among atmospheric-P sources, desert dust is the most dominant. However, the effects of desert dust on P nutrition and its uptake mechanisms by forest trees are currently unknown. We hypothesized that forest trees that naturally grow on P-poor soils or soils with high soil-P fixation capacity can acquire P from desert dust deposited on their leaves via direct foliar uptake, bypassing the soil, thus promoting tree growth and productivity. We performed a controlled greenhouse experiment with three forest tree species: Palestine Oak (Quercus calliprinos) and Carob (Ceratonia siliqua), native to the NE edge of the Saharan desert, and Brazilian peppertree (Schinus terebinthifolius), native to the Atlantic Forest in Brazil, which is located on the western part of the trans-Atlantic Saharan dust route. To simulate natural dust deposition events, the trees had desert dust applied directly upon their foliage and were monitored for growth and final biomass, P levels, leaf surface pH and the rate of photosynthesis. The dust treatment increased the P concentration significantly by 33-37% in Ceratonia and Schinus trees. On the other hand, trees that received the dust displayed a 17-58% reduction in biomass, probably related to particle coverage of the leaf surface that inhibited photosynthesis by 17-30%. Overall, our findings show that direct P uptake from desert dust can be an alternative P uptake pathway for multiple tree species under P-deficient conditions, with implications for forest trees' P economy.
Collapse
Affiliation(s)
- Maya Starr
- The Department of Geography and Environmental Development, Ben Gurion University of the Negev, David Ben Gurion Blvd 1, Be'er Sheva, P.O.B. 653, Israel
- The Department of Plant and Environmental Sciences, Weizmann Institute of Science, Herzl St 234, Rehovot, P.O.B 26, Israel
| | - Tamir Klein
- The Department of Plant and Environmental Sciences, Weizmann Institute of Science, Herzl St 234, Rehovot, P.O.B 26, Israel
| | - Avner Gross
- The Department of Geography and Environmental Development, Ben Gurion University of the Negev, David Ben Gurion Blvd 1, Be'er Sheva, P.O.B. 653, Israel
| |
Collapse
|
4
|
Shim E, Eom H, Kim Y. Fabrication of a carbon/polytetrafluoroethylene nanoparticle-coated antistatic bag filter using air-assisted electrospraying. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Evaluation and Improvement Measures of the Runoff Coefficient of Urban Parks for Sustainable Water Balance. LAND 2022. [DOI: 10.3390/land11071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the impermeable sidewalk area increases in urban areas, diverse problems related to water occur. The purposes of this research were to increase the rainwater infiltration rate through water balance analysis and estimate the runoff coefficient according to land cover types in urban parks. The regression equations and runoff coefficients relative to the rainwater infiltration rate were estimated according to the land cover types and applied to eight urban parks. In the results of the experiment, the runoff coefficient was 0.245 for vegetation areas, 0.583 for permeable sidewalks, 0.963 for sidewalk blocks, and 1.000 for impervious sidewalks, which had 100% outflow. The results show that the vegetation area in urban parks is significantly related to rainfall–runoff, infiltration, and evapotranspiration. The average of eight urban parks was 126.52 mm, indicating that 11.80% of the rainfall was recharged into groundwater. Additionally, the average runoff rate was 498.56 mm, indicating that 46.52% was leaked externally. Therefore, it is suggested to decrease the impermeable sidewalk areas in urban parks. Additionally, extending the waterway, swamp, and gravel sidewalk areas is suggested. Urban parks should be developed in order to contribute to hydrological control through the water balance in urban land use.
Collapse
|
6
|
The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China. FORESTS 2022. [DOI: 10.3390/f13020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Particulate matter (PM) in different size fractions (PM0.1–2.5, PM2.5–10 and PM>10) accumulation on four tree species (Populus tomentosa, Platanus acerifolia, Fraxinus chinensis, and Ginkgo biloba) at two sites with different pollution levels was examined in Beijing, China. Among the tested tree species, P. acerifolia was the most efficient species in capturing PM, followed by F. chinensis, G. biloba, and P. tomentosa. The heavily polluted site had higher PM accumulation on foliage and a higher percentage of PM0.1–2.5 and PM2.5–10. Encapsulation of PM within cuticles was observed on leaves of F. chinensis and G. biloba, which was further dominated by PM2.5. Leaf surface structure explains the considerable differences in PM accumulation among tree species. The amounts of accumulated PM (PM0.1–2.5, PM2.5–10, and PM>10) increased with the increase of stomatal aperture, stomatal width, leaf length, leaf width, and stomatal density, but decreases with contact angle. Considering PM accumulation ability, leaf area index, and tolerance to pollutants in urban areas, we suggest P. acerifolia should be used more frequently in urban areas, especially in “hotspots” in city centers (e.g., roads/streets with heavy traffic loads). However, G. biloba and P. tomentosa should be installed in less polluted areas.
Collapse
|
7
|
Han Y, Lee J, Haiping G, Kim KH, Wanxi P, Bhardwaj N, Oh JM, Brown RJC. Plant-based remediation of air pollution: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113860. [PMID: 34626947 DOI: 10.1016/j.jenvman.2021.113860] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/26/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Humans face threats from air pollutants present in both indoor and outdoor environments. The emerging role of plants in remediating the atmospheric environment is now being actively investigated as a possible solution for this problem. Foliar surfaces of plants (e.g., the leaves of cotton) can absorb a variety of airborne pollutants (e.g., formaldehyde, benzene, trimethylamine, and xylene), thereby reducing their concentrations in indoor environments. Recently, theoretical and experimental studies have been conducted to offer better insights into the interactions between plants and the surrounding air. In our research, an overview on the role of plants in reducing air pollution (often referred to as phytoremediation) is provided based on a comprehensive literature survey. The major issues for plant-based research for the reduction of air pollution in both outdoor and indoor environments are discussed in depth along with future challenges. Analysis of the existing data confirms the effectiveness of phytoremediation in terms of the absorption and purification of pollutants (e.g., by the leaves and roots of plants and trees), while being controlled by different variables (e.g., pore characteristics and planting patterns). Although most lab-scale studies have shown that plants can effectively absorb pollutants, it is important for such studies to reflect the real-world conditions, especially with the influence of human activities. Under such conditions, pollutants are to be replenished continually while the plant surface area to ambient atmosphere volume ratio vastly decreases (e.g., relative to lab-based experiments). The replication of such experimental conditions is the key challenge in this field of research. This review is expected to offer valuable insights into the innate ability of various plants in removing diverse pollutants (such as formaldehyde, benzene, and particulate matter) under different environmental settings.
Collapse
Affiliation(s)
- Yang Han
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Gu Haiping
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Peng Wanxi
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| | - Jong-Min Oh
- Department of Environmental Science & Environmental Engineering, Kyung Hee University, Suwon, 17104, South Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| |
Collapse
|
8
|
Gross A, Tiwari S, Shtein I, Erel R. Direct foliar uptake of phosphorus from desert dust. THE NEW PHYTOLOGIST 2021; 230:2213-2225. [PMID: 33721337 DOI: 10.1111/nph.17344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 05/02/2023]
Abstract
Phosphorus (P) scarcity constrains plant growth in many ecosystems worldwide. In P-poor ecosystems, the biogeochemical paradigm links plant productivity with the deposition of P-rich dust originating from desert storms. However, dust P usually has low bioavailability and is thought to be utilized solely via roots. We applied desert dust on the leaf surface of P-deficient and P-sufficient wheat, chickpea and maize to test the feasibility of direct foliar uptake of dust-P and investigate its related acquisition mechanisms. Foliar dust doubled the growth of P-deficient chickpea and wheat, crops originating near the Syrian Desert. P deficiency stimulated several leaf modifications that enabled acquisition of up to 30% of the sparingly soluble dust-P that is conventionally perceived as unavailable. These modifications increased foliar dust capture, acidified the leaf surface and, in chickpea, enhanced exudation of P-solubilizing organic acids. Maize (originating far from deserts) displayed only a marginal response to dust. The dramatic response of chickpea and wheat in comparison to maize suggests that plants that evolved in dust-rich ecosystems adopted specialized utilization strategies. Interestingly, the abovementioned foliar responses are comparable to known P uptake root responses. Given that P limitation is almost universal, a foliar P uptake pathway will have significant ecological and agricultural implications.
Collapse
Affiliation(s)
- Avner Gross
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sudeep Tiwari
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, 85820, Israel
| | - Ilana Shtein
- Eastern Region Research and Development Center, Ariel, 40700, Israel
| | - Ran Erel
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, 85820, Israel
| |
Collapse
|
9
|
Cai QL, Dai XR, Li JR, Tong L, Hui Y, Cao MY, Li M, Xiao H. The characteristics and mixing states of PM 2.5 during a winter dust storm in Ningbo of the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136146. [PMID: 31905585 DOI: 10.1016/j.scitotenv.2019.136146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Dust particulates play an essential role for the nucleation, hygroscopicity and also contribute to aerosol mass. We investigated the chemical composition, size distribution and mixing states of PM2.5 using a single-particle aerosol mass spectrometer (SPAMS), Monitor for AeRosols and Gases (MARGA), and off-line membrane sampling from 2018.1.24 to 2018.2.20 at a coastal supersite in Ningbo, a port city in Yangtze River Delta, China. During the study campaign, the eastern part of China had experienced a wide range of cooling, sandstorm, and snowfall processes. The entire sampling campaign was categorized into five sub-periods based on the levels of PM2.5 and the ratios of PM2.5/PM10, namely clean (T1), heavy pollution (T2), light pollution (T3), dust (sandstorm) (T4) and cleaning pollution (T5) period. After comparing the average mass spectrum for each period, it shows that the primary ions, such as Ca2+and SiO3-, rarely coexist with each other within a single particle, but secondary ions generally coexist with these primary ions. Furthermore, the coexistence of each two different ions within a particle does not show distinct variation for the whole study periods. All these suggest that the absorption and partitioning of gaseous contaminants into the surface of primary aerosol through heterogeneous reactions are the major pathways of aging and growth of aerosol; and the merging of particles through collisions usually is insignificant. Although the absolute concentrations of nitrate and sulfate all increased with the PM2.5 concentrations, the relative equivalent concentrations of NO3- and SO42- displayed opposite trends; the relative contribution of sulfate decreased and that of nitrate increased as the increase of pollution. During the dust period, the relative equivalent concentrations of calcium and/or potassium ions in PM2.5 are significantly higher. This study provided deep insights about the mixing states and characteristics of particulate after long-range transport and a visualization tool for aerosol study.
Collapse
Affiliation(s)
- Qiu-Liang Cai
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China
| | - Xiao-Rong Dai
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China
| | - Lei Tong
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China
| | - Yi Hui
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China
| | - Ming-Yang Cao
- Guangzhou Hexin Analytical Instrument Limited Company, Guangzhou 510530, China
| | - Mei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315830, China.
| |
Collapse
|
10
|
Xiao X, Yang BY, Hu LW, Markevych I, Bloom MS, Dharmage SC, Jalaludin B, Knibbs LD, Heinrich J, Morawska L, Lin S, Roponen M, Guo Y, Lam Yim SH, Leskinen A, Komppula M, Jalava P, Yu HY, Zeeshan M, Zeng XW, Dong GH. Greenness around schools associated with lower risk of hypertension among children: Findings from the Seven Northeastern Cities Study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113422. [PMID: 31672364 DOI: 10.1016/j.envpol.2019.113422] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 05/12/2023]
Abstract
Evidence suggests that residential greenness may be protective of high blood pressure, but there is scarcity of evidence on the associations between greenness around schools and blood pressure among children. We aimed to investigate this association in China. Our study included 9354 children from 62 schools in the Seven Northeastern Cities Study. Greenness around each child's school was measured by NDVI (Normalized Difference Vegetation Index) and SAVI (Soil-Adjusted Vegetation Index). Particulate matter ≤ 1 μm (PM1) concentrations were estimated by spatiotemporal models and nitrogen dioxide (NO2) concentrations were collected from air monitoring stations. Associations between greenness and blood pressure were determined by generalized linear and logistic mixed-effect models. Mediation by air pollution was assessed using mediation analysis. Higher greenness was consistently associated with lower blood pressure. An increase of 0.1 in NDVI corresponded to a reduction in SBP of 1.39 mmHg (95% CI: 1.86, -0.93) and lower odds of hypertension (OR = 0.76, 95% CI: 0.69, 0.82). Stronger associations were observed in children with higher BMI. Ambient PM1 and NO2 mediated 33.0% and 10.9% of the association between greenness and SBP, respectively. In summary, greater greenness near schools had a beneficial effect on blood pressure, particularly in overweight or obese children in China. The associations might be partially mediated by air pollution. These results might have implications for policy makers to incorporate more green space for both aesthetic and health benefits.
Collapse
Affiliation(s)
- Xiang Xiao
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraße 1, 80336, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3004, Australia; Murdoch Children Research Institute, Melbourne, VIC, 3010, Australia
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW, 2037, Australia; IIngham Institute for Applied Medial Research, University of New South Wales, Sydney, 2170, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraße 1, 80336, Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziemssenstraße 1, 80336, Munich, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland, 4001, Australia
| | - Shao Lin
- Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI, 70211, Finland
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio, 70211, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio, 70211, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI, 70211, Finland
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides. FORESTS 2019. [DOI: 10.3390/f10110960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although urban trees are proposed as comparatively economical and eco-efficient biofilters for treating atmospheric particulate matter (PM) by the temporary capture and retention of PM particles, the PM removal effect and its main mechanism still remain largely uncertain. Thus, an understanding of the removal efficiencies of individual leaves that adsorb and retain airborne PM, particularly in the sustainable planning of multifunctional green infrastructure, should be preceded by an assessment of the leaf microstructures of widespread species in urban forests. We determined the differences between trees in regard to their ability to adsorb PM based on the unique leaf microstructures and leaf area index (LAI) reflecting their overall ability by upscaling from leaf scale to canopy scale. The micro-morphological characteristics of adaxial and abaxial leaf surfaces directly affected the PM trapping efficiency. Specifically, leaf surfaces with grooves and trichomes showed a higher ability to retain PM as compared to leaves without epidermal hairs or with dynamic water repellency. Zelkova serrata (Thunb.) Makino was found to have significantly higher benefits with regard to adsorbing and retaining PM compared to other species. Evergreen needle-leaved species could be a more sustainable manner to retain PM in winter and spring. The interspecies variability of the PM adsorption efficiency was upscaled from leaf scale to canopy scale based on the LAI, showing that tree species with higher canopy density were more effective in removing PM. In conclusion, if urban trees are used as a means to improve air quality in limited open spaces for urban greening programs, it is important to predominantly select a tree species that can maximize the ability to capture PM by having higher canopy density and leaf grooves or trichomes.
Collapse
|
12
|
Chen H, Wang B, Xia DS, Fan YJ, Liu H, Tang ZR, Ma S. The influence of roadside trees on the diffusion of road traffic pollutants and their magnetic characteristics in a typical semi-arid urban area of Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1170-1179. [PMID: 31252115 DOI: 10.1016/j.envpol.2019.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Leaf samples of Juniperus formosana were collected from an open road environment, in order to establish how particulate matter (PM) generated by vehicles was dispersed in both horizontal and vertical directions. Sampling was conducted at sites with trees of varying height and configuration adjacent to a major road in Lanzhou, Gansu Province, Northwest China. The concentration of remanence-bearing ferrimagnets in the leaf samples was estimated from measurements of Saturation Isothermal Remanent Magnetization (SIRM), while the weight of particles deposited on the leaves and their elemental composition were determined at different heights and in different directions relative to the road. The PM on the surface of needles was predominantly influenced by traffic emissions and by dust resuspension. Rows of roadside trees, as opposed to solitary trees, were more effective at intercepting PM and thus in filtering road traffic pollution. The results indicate that Juniperus formosana needles may be an effective bio-sensor for monitoring variations in the spatial diffusion of road pollutants.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Dun-Sheng Xia
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Jiao Fan
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Liu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Rong Tang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shan Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
13
|
Chen H, Wang B, Xia DS, Fan YJ, Liu H, Tang ZR, Ma S. Magnetic characteristics of Juniperus formosana needles along an urban street in Lanzhou, Northwest China: the variation of different season and orientation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21964-21971. [PMID: 31144176 DOI: 10.1007/s11356-019-05399-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The magnetic properties of particulate matter (PM) deposited on the needles of Juniperus formosana along an urban street in Lanzhou city were measured to evaluate the variations of PM concentration in different seasons by varying distance from the road. The magnetism of PM deposited in this context was significantly higher in winter than in summer, which may reflect changes of atmospheric particle concentrations. Needle samples which were collected from the road-facing side exhibiting significantly stronger magnetism compared with those which were collected from the opposite side of the road, indicating the distance from pollution source to the needles as a factor controls the amount of PM. The results of this study show that the needles of Juniperus formosana are effective traps for PM and can therefore be used to monitor pollution fluxes in different seasons in an important urban context in NW China.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dun-Sheng Xia
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yi-Jiao Fan
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Liu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Rong Tang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shan Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
14
|
Abstract
The aim of this study was to investigate the function of tree belts in reducing the aeolian transport of dust particles carrying pesticides. The study examined the importance of the buffer zones created by commonly planted trees (Eucalyptus camaldulensis, Pinus halepensis (pine) and Ceratonia siliqua (carob)). The methods include analyzing the quantity and the chemical composition of pesticides carried by aeolian dust particles from the intensively cultivated fields and orchards, where pesticides were applied, towards the tree belts nearby. Eighteen different chemicals used as insecticides, fungicides and herbicides, were found both in the agricultural fields and in the adjacent tree belts, suggesting an important function of the trees. This ecological service has rarely been taken into consideration by management policies of tree plantings in farmland areas. To integrate this service into agriculture, especially in the case of agricultural fields and orchards, which are adjacent to populated areas, planting tree belts should be positively considered as a means for reducing aeolian dust and air pollution, mainly in order to reduce leakage of pesticides, which are a cause for significant health concerns.
Collapse
|