1
|
Das N, Pal S, Ray H, Acharya S, Mandal S. Unveiling the impact of anthropogenic wastes on greenhouse gas emissions from the enigmatic mangroves of Indian Sundarban. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178647. [PMID: 39899972 DOI: 10.1016/j.scitotenv.2025.178647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
The greenhouse gas (GHG) emissions from the mangrove ecosystem due to climate change have been an emerging environmental issue in the present scenario. However, the GHGs, emitted through anthropogenic causes in these vulnerable regions are often neglected. The level of soil pollution has increased due to the uncontrolled disposal of wastes from ports, ferry services, plastics, and metals, emitting huge amounts of GHGs. Here, a novel dynamic model on GHG emission was proposed for the simulation of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions using R programming language, where, anthropogenic and environmental drivers were considered. The CO2 emission was sensitive to HMeff2 (impact rate of heavy metals on microbial respiration process) and MPeff3 (impact rate of microplastics on microbial respiration process). The CH4 dynamics was sensitive to HMeff1 (impact rate of heavy metal on methanogenesis process) and MPeff1 (impact rate of microplastics on methanogenesis process) and the N2O pool was sensitive to N2O dif rt. (N2O diffusion rate). Fish waste, heavy metals, and microplastics are the prime emitters of GHG in the Sundarbans. Control and monitoring of plastics, fish wastes, and heavy metals, and strategic implementation of no-plastic or no-waste zones in line with the Sustainable Development Goals (SDGs) would ensure solutions to the present problem.
Collapse
Affiliation(s)
- Nilanjan Das
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Soumyadip Pal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Harisankar Ray
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Suman Acharya
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Sudipto Mandal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India.
| |
Collapse
|
2
|
Halim M, Stankovic M, Prathep A. A preliminary study of carbon dioxide and methane emissions from patchy tropical seagrass meadows in Thailand. PeerJ 2024; 12:e18087. [PMID: 39399424 PMCID: PMC11468903 DOI: 10.7717/peerj.18087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background Seagrass meadows are a significant blue carbon sink due to their ability to store large amounts of carbon within sediment. However, the knowledge of global greenhouse gas (GHG) emissions from seagrass meadows is limited, especially from meadows in the tropical region. Therefore, in this study, CO2 and CH4 emissions and carbon metabolism were studied at a tropical seagrass meadow under various conditions. Methods CO2 and CH4 emissions and carbon metabolism were measured using benthic chambers deployed for 18 h at Koh Mook, off the southwest coast of Thailand. The samples were collected from areas of patchy Enhalus acoroides, Thalassia hemprichii, and bare sand three times within 18 h periods of incubation: at low tide at 6 pm (t0), at low tide at 6 am (t1), and at high tide at noon (t2). Results Seagrass meadows at Koh Mook exhibited varying CO2 and CH4 emissions across different sampling areas. CO2 emissions were higher in patchy E. acoroides compared to patchy T. hemprichii and bare sand areas. CH4 emissions were only detected in vegetated areas (patchy E. acoroides and T. hemprichii) and were absent in bare sand. Furthermore, there were no significant differences in net community production across sampling areas, although seagrass meadows were generally considered autotrophic. Koh Mook seagrass meadows contribute only slightly to GHG emissions. The results suggested that the low GHG emissions from Koh Mook seagrass meadows do not outweigh their role as significant carbon sinks, with a value 320 t CO2 -eq. This study provided baseline information for estimating GHG emissions in seagrass meadows in Thailand.
Collapse
Affiliation(s)
- Muhammad Halim
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Milica Stankovic
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Dugong and Seagrass Research Station, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Anchana Prathep
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Gong JC, Li BH, Hu JW, Ding XJ, Liu CY, Yang GP. Tidal effects on carbon dioxide emission dynamics in intertidal wetland sediments. ENVIRONMENTAL RESEARCH 2023; 238:117110. [PMID: 37696322 DOI: 10.1016/j.envres.2023.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Understanding the control mechanisms of carbon dioxide (CO2) emissions in intertidal wetland sediments is beneficial for the concern of global carbon biogeochemistry and climate change. Nevertheless, multiple controls on CO2 emissions from intertidal wetland sediments to the atmosphere still need to be clarified. This study investigated the effect of tidal action on CO2 emissions from salt marsh sediments covered by Spartina alterniflora in the Jiaozhou Bay wetland using the static chamber method combined with an infrared CO2 detector. The results showed that the CO2 emission fluxes from the sediment during ebb tides were higher than those during flood tides. The whole wetland sediment acted as a weak source of atmospheric CO2 (average flux: 24.44 ± 16.80 mg C m-2 h-1) compared to terrestrial soils and was affected by the cycle of seawater inundation and exposure. The tidal influence on vertical dissolved inorganic carbon (DIC) transport in the sediment was also quantitated using a two-end member mixing model. The surface sediment layer (5-15 cm) with maximum DIC concentration during ebb tides became the one with minimum DIC concentration during flood tides, indicating the DIC transport from the surface sediment to seawater. Furthermore, aerobic respiration by microorganisms was the primary process of CO2 production in the sediment according to 16 S rDNA sequencing analysis. This study revealed the strong impact of tidal action on CO2 emissions from the wetland sediment and provided insights into the source-sink pattern of CO2 and DIC at the land-ocean interface.
Collapse
Affiliation(s)
- Jiang-Chen Gong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Bing-Han Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing-Wen Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xi-Ju Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Das N, Chakrabortty R, Pal SC, Mondal A, Mandal S. A novel coupled framework for detecting hotspots of methane emission from the vulnerable Indian Sundarban mangrove ecosystem using data-driven models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161319. [PMID: 36608827 DOI: 10.1016/j.scitotenv.2022.161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Coastal mangroves have been lost to deforestation for anthropogenic activities such as agriculture over the past two decades. The genesis of methane (CH4), a significant greenhouse gas (GHG) with a high potential for global warming, occurs through these mangrove beds. The mangrove forests in the Indian Sundarban deltaic region were studied for pre-monsoonal and post-monsoonal variations of CH4 emission. Considering the importance of CH4 emission, a process-based spatiotemporal (PBS) and an analytical neural network (ANN) model were proposed and used to estimate the amount of CH4 emission from different land use land cover classes (LULC) of mangroves. The field work was performed in 2020, and gas samples of various LULC were directly collected from the mangrove bed using the enclosed box chamber method. Historical climatic data (1960-1989) were used to predict future climate scenarios and associated CH4 emissions. The analysis and estimation activities were carried out utilizing satellite images from the pre-monsoonal and post-monsoonal seasons of the same year. The study revealed that pre-monsoonal CH4 emission was higher in the south-west and northern parts of the deforested mangrove of the Indian Sundarban. A sensitivity study of the anticipated models was conducted using a variety of environmental input parameters and related main field observations. The measured precision area under curve of receiver operating characteristics was 0.753 for PBS and 0.718 for ANN models, respectively. The temperature factor (Tf) was the most crucial variable for CH4 emissions. Based on the PBS model with coupled model intercomparison project-6 temperature data, a global circulation model was run to predict increasing CH4 emissions up to 2100. The model revealed that the agricultural lands were the prime emitters of CH4 in the Sundarban mangrove ecosystem.
Collapse
Affiliation(s)
- Nilanjan Das
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Rabin Chakrabortty
- Department of Geography, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Ayan Mondal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Sudipto Mandal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India.
| |
Collapse
|
5
|
Deng H, Zhang Y, Li D, Fu Q, He J, Zhao Y, Feng D, Yu H, Ge C. Mangrove degradation retarded microplastics weathering and affected metabolic activities of microplastics-associated microbes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130535. [PMID: 36476943 DOI: 10.1016/j.jhazmat.2022.130535] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Currently, information on microplastics (MPs) weathering characteristics and ecological functions driven by MPs-associated microbes in mangrove ecosystems remains unclear, especially in the degraded areas. Herein, we compared the weathering characteristics of MPs in both undegraded and degraded mangrove sediments, and then explored the potential interactions between their weathering characteristics and microbially-driven functions. After 70 days of incubation, different MPs (including polyethylene PE, polystyrene PS, and polylactic acid PLA) were strongly weathered in mangrove sediments, with significant erosion features. Interestingly, more obvious weathering characteristics were found for MPs in the undegraded mangrove sediments. O/C ratio value of MPs in the undegraded sediments was 2.3-3.0 times greater than that in the degraded ones. Besides, mangrove degradation reduced network complexity among MPs-associated microorganisms and affected their metabolic activities. Bacteria involved in carbon cycle process enriched on nondegradable MPs, whereas abundant bacteria responsible for sulphur cycle were observed on PLA-MPs. Moreover, these relevant bacteria were more abundant on MPs in the undegraded mangrove sediments. Mangrove degradation could directly and indirectly affect MPs weathering process and microbially-driven functions through regulating sediment properties and MPs-associated microbes. During weathering, contact angle and roughness of MPs were key factors influencing the colonisation of hydrocarbon degradation bacteria on MPs.
Collapse
Affiliation(s)
- Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Yuqing Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Dazhen Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Qianqian Fu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Jianxiong He
- Hainan Holdings Special Glass Technology Co. Ltd., State Key Laboratory of Special Glass, Chengmai 571924, China.
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Dan Feng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Haikou 570228, China.
| |
Collapse
|
6
|
Carnell PE, Palacios MM, Waryszak P, Trevathan-Tackett SM, Masqué P, Macreadie PI. Blue carbon drawdown by restored mangrove forests improves with age. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114301. [PMID: 35032938 DOI: 10.1016/j.jenvman.2021.114301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The restoration of blue carbon ecosystems, such as mangrove forests, is increasingly used as a management tool to mitigate climate change by removing and sequestering atmospheric carbon in the ground. However, estimates of carbon-offset potential are currently based on data from natural mangrove forests, potentially leading to overestimating the carbon-offset potential from restored mangroves. Here, in the first study of its kind, we utilise 210Pb sediment age-dating techniques and greenhouse gas flux measures to estimate blue carbon additionality in restored mangrove forests, ranging from 13 to 35 years old. As expected, mangrove age had a significant effect on carbon additionality and carbon accretion rate, with the older mangrove stands (17 and 35 years old) holding double the total carbon stocks (aboveground + soil stocks; ∼115 tonnes C ha-1) and double the soil sequestration rates (∼3 tonnes C ha-1 yr-1) than the youngest mangrove stand (13 years old). Although soil carbon stocks increased with mangrove age, the aboveground plant stocks were highest in the 17-year-old stand. Mangrove age also had a significant effect on soil carbon fluxes, with the older mangroves (≥17 years) releasing one-fourth of the CH4 emissions, but double the CO2 flux compared to young stands. Our study suggests that the carbon sink capacity of restored mangrove forests increases with age, but stabilises once they mature (e.g., >17 years). This means that by using carbon sequestration and emissions from natural forests, mangrove restoration projects may be overestimating their carbon sequestration potential.
Collapse
Affiliation(s)
- Paul E Carnell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3125, Australia.
| | - Maria M Palacios
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3125, Australia
| | - Paweł Waryszak
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3125, Australia
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3125, Australia
| | - Pere Masqué
- International Atomic Energy Agency, 98000, Principality of Monaco, Monaco; School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, 6027, Australia; Institut de Ciència i Tecnologia Ambientals & Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Peter I Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3125, Australia
| |
Collapse
|
7
|
Jones AR, Alleway HK, McAfee D, Reis-Santos P, Theuerkauf SJ, Jones RC. Climate-Friendly Seafood: The Potential for Emissions Reduction and Carbon Capture in Marine Aquaculture. Bioscience 2022; 72:123-143. [PMID: 35145350 PMCID: PMC8824708 DOI: 10.1093/biosci/biab126] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aquaculture is a critical food source for the world's growing population, producing 52% of the aquatic animal products consumed. Marine aquaculture (mariculture) generates 37.5% of this production and 97% of the world's seaweed harvest. Mariculture products may offer a climate-friendly, high-protein food source, because they often have lower greenhouse gas (GHG) emission footprints than do the equivalent products farmed on land. However, sustainable intensification of low-emissions mariculture is key to maintaining a low GHG footprint as production scales up to meet future demand. We examine the major GHG sources and carbon sinks associated with fed finfish, macroalgae and bivalve mariculture, and the factors influencing variability across sectors. We highlight knowledge gaps and provide recommendations for GHG emissions reductions and carbon storage, including accounting for interactions between mariculture operations and surrounding marine ecosystems. By linking the provision of maricultured products to GHG abatement opportunities, we can advance climate-friendly practices that generate sustainable environmental, social, and economic outcomes.
Collapse
Affiliation(s)
- Alice R Jones
- University of Adelaide, Adelaide, South Australia, Australia
| | - Heidi K Alleway
- Nature Conservancy's Aquaculture Program, Arlington, Virginia, United States
| | - Dominic McAfee
- University of Adelaide, Adelaide, South Australia, Australia
| | | | - Seth J Theuerkauf
- NOAA National Marine Fisheries Office of Aquaculture, Silver Spring, Maryland, United States
| | - Robert C Jones
- Nature Conservancy's Aquaculture Program, Arlington, Virginia, United States
| |
Collapse
|
8
|
Comer-Warner SA, Nguyen ATQ, Nguyen MN, Wang M, Turner A, Le H, Sgouridis F, Krause S, Kettridge N, Nguyen N, Hamilton RL, Ullah S. Restoration impacts on rates of denitrification and greenhouse gas fluxes from tropical coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149577. [PMID: 34487896 DOI: 10.1016/j.scitotenv.2021.149577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Forested coastal wetlands are globally important systems sequestering carbon and intercepting nitrogen pollution from nutrient-rich river systems. Coastal wetlands that have suffered extensive disturbance are the target of comprehensive restoration efforts. Accurate assessment of restoration success requires detailed mechanistic understanding of wetland soil biogeochemical functioning across restoration chrono-sequences, which remains poorly understood for these sparsely investigated systems. This study investigated denitrification and greenhouse gas fluxes in mangrove and Melaleuca forest soils of Vietnam, using the 15N-Gas flux method. Denitrification-derived N2O was significantly higher from Melaleuca than mangrove forest soils, despite higher potential rates of total denitrification in the mangrove forest soils (8.1 ng N g-1 h-1) than the Melaleuca soils (6.8 ng N g-1 h-1). Potential N2O and CO2 emissions were significantly higher from the Melaleuca soils than from the mangrove soils. Disturbance and subsequent recovery had no significant effect on N biogeochemistry except with respect to the denitrification product ratio in the mangrove sites, which was highest from the youngest mangrove site. Potential CO2 and CH4 fluxes were significantly affected by restoration in the mangrove soils. The lowest potential CO2 emissions were observed in the mid-age plantation and potential CH4 fluxes decreased in the older forests. The mangrove system, therefore, may remove excess N and improve water quality with low greenhouse gas emissions, whereas in Melaleucas, increased N2O and CO2 emissions also occur. These emissions are likely balanced by higher carbon stocks observed in the Melaleuca soils. These mechanistic insights highlight the importance of ecosystem restoration for pollution attenuation and reduction of greenhouse gas emissions from coastal wetlands. Restoration efforts should continue to focus on increasing wetland area and function, which will benefit local communities with improved water quality and potential for income generation under future carbon trading.
Collapse
Affiliation(s)
- Sophie A Comer-Warner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Anh T Q Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Ha Noi (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Minh N Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Ha Noi (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Manlin Wang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Antony Turner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hue Le
- VNU-Central Institute for Natural Resources and Environmental Studies, Ha Noi, Viet Nam
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622 Villeurbanne, France; Institute of Global Innovation, Birmingham B15 2TT, UK
| | - Nicholas Kettridge
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nghia Nguyen
- Department of Soil Sciences, College of Agriculture and Applied Biology, Can Tho University, Can Tho City, Viet Nam
| | - R Liz Hamilton
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Cameron C, Hutley LB, Munksgaard NC, Phan S, Aung T, Thinn T, Aye WM, Lovelock CE. Impact of an extreme monsoon on CO 2 and CH 4 fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143422. [PMID: 33189377 DOI: 10.1016/j.scitotenv.2020.143422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Mangrove ecosystems can be both significant sources and sinks of greenhouse gases (GHGs). Understanding variability in flux and the key factors controlling emissions in these ecosystems are therefore important in the context of accounting for GHG emissions. The current study is the first to quantify GHG emissions using static chamber measurements from soils in disused aquaculture ponds, planted mangroves, and mature mangroves from the Ayeyarwady Delta, Myanmar. Soil properties, biomass and estimated net primary productivity were also assessed. Field assessments were conducted at the same sites during the middle of the dry season in February and end of the wet season in October 2019. Rates of soil CO2 efflux were among the highest yet recorded from mangrove ecosystems, with CO2 efflux from the 8 year old site reaching 86.8 ± 17 Mg CO2 ha-1 yr-1 during February, an average of 862% more than all other sites assessed during this period. In October, all sites had significant rates of soil CO2 efflux, with rates ranging from 31.9 ± 4.4 Mg CO2 ha-1 yr-1 in a disused pond to 118.9 ± 24.3 Mg CO2 ha-1 yr-1 in the 8 year old site. High soil CO2 efflux from the 8 year old site in February is most likely attributable to high rates of primary production and belowground carbon allocation. Elevated CO2 efflux from all sites during October was likely associated with the extreme 2019 South Asian monsoon season which lowered soil pore salinity and deposited new alluvium, stimulating both autotrophic and heterotrophic activity. Methane efflux increased significantly (50-400%) during the wet season from all sites with mangrove cover, although was a small overall component of soil GHG effluxes during both measurement periods. Our results highlight the critical importance of assessing GHG flux in-situ in order to quantify variability in carbon dynamics over time.
Collapse
Affiliation(s)
- Clint Cameron
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Niels C Munksgaard
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sang Phan
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Toe Aung
- Watershed Management Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Nay Pyi Taw, Myanmar
| | - Thinn Thinn
- Watershed Management Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Nay Pyi Taw, Myanmar
| | - Win Maung Aye
- Watershed Management Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Nay Pyi Taw, Myanmar
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
10
|
Carbon Cycling in the World’s Mangrove Ecosystems Revisited: Significance of Non-Steady State Diagenesis and Subsurface Linkages between the Forest Floor and the Coastal Ocean. FORESTS 2020. [DOI: 10.3390/f11090977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carbon cycling within the deep mangrove forest floor is unique compared to other marine ecosystems with organic carbon input, mineralization, burial, and advective and groundwater export pathways being in non-steady-state, often oscillating in synchrony with tides, plant uptake, and release/uptake via roots and other edaphic factors in a highly dynamic and harsh environment. Rates of soil organic carbon (CORG) mineralization and belowground CORG stocks are high, with rapid diagenesis throughout the deep (>1 m) soil horizon. Pocketed with cracks, fissures, extensive roots, burrows, tubes, and drainage channels through which tidal waters percolate and drain, the forest floor sustains non-steady-state diagenesis of the soil CORG, in which decomposition processes at the soil surface are distinct from those in deeper soils. Aerobic respiration occurs within the upper 2 mm of the soil surface and within biogenic structures. On average, carbon respiration across the surface soil-air/water interface (104 mmol C m−2 d−1) equates to only 25% of the total carbon mineralized within the entire soil horizon, as nearly all respired carbon (569 mmol C m−2 d−1) is released in a dissolved form via advective porewater exchange and/or lateral transport and subsurface tidal pumping to adjacent tidal waters. A carbon budget for the world’s mangrove ecosystems indicates that subsurface respiration is the second-largest respiratory flux after canopy respiration. Dissolved carbon release is sufficient to oversaturate water-column pCO2, causing tropical coastal waters to be a source of CO2 to the atmosphere. Mangrove dissolved inorganic carbon (DIC) discharge contributes nearly 60% of DIC and 27% of dissolved organic carbon (DOC) discharge from the world’s low latitude rivers to the tropical coastal ocean. Mangroves inhabit only 0.3% of the global coastal ocean area but contribute 55% of air-sea exchange, 14% of CORG burial, 28% of DIC export, and 13% of DOC + particulate organic matter (POC) export from the world’s coastal wetlands and estuaries to the atmosphere and global coastal ocean.
Collapse
|
11
|
Hillman JR, Stephenson F, Thrush SF, Lundquist CJ. Investigating changes in estuarine ecosystem functioning under future scenarios. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02090. [PMID: 32022961 DOI: 10.1002/eap.2090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Estuaries are subject to disturbance by land-based sediment and nutrient inputs, resulting in changes to the ecosystems and the functions and services that they support. Spatial mapping tools that identify how functional hotspots in the estuary may shift in location and intensity under different disturbance scenarios highlight to managers the trajectory of change and the value of active management and restoration, but to date these tools are only available in the most intensively researched ecosystems. Using empirical data derived from long-term monitoring and multi-habitat field experiments we developed future scenarios representing different impacts of environmental degradation on estuarine ecosystem functions that are important for supporting ecosystem services. We used the spatial prioritization software Zonation in a novel fashion to assess effects of different disturbance scenarios on critical soft-sediment ecosystem processes (nutrient fluxes and sediment erodibility measures) that are influenced by macrofaunal communities and local environment conditions. We compared estimates of current conditions with three scenarios linked to changes in land-use and resulting downstream impacts on estuarine ecosystems to determine how disturbance influences the distribution of high value areas for ecosystem function. Scenarios investigated the implications of habitat degradation associated with sediment deposition and declines in large sediment-dwelling animal abundance whose behavior has important influences on ecosystem function. Our analyses demonstrate decreases in the majority of ecosystem processes under scenarios associated with disturbances. These results suggest that it is important to restore biodiversity and ecosystem function and that the application of Zonation in this context offers a simple, rapid and cost-effective way of identifying priority actions and locations for restoration, and how these shift due to multiple impacts.
Collapse
Affiliation(s)
- Jenny R Hillman
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Fabrice Stephenson
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, 3251, New Zealand
| | - Simon F Thrush
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Carolyn J Lundquist
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, 3251, New Zealand
| |
Collapse
|
12
|
Hillman JR, Lundquist CJ, O’Meara TA, Thrush SF. Loss of Large Animals Differentially Influences Nutrient Fluxes Across a Heterogeneous Marine Intertidal Soft-Sediment Ecosystem. Ecosystems 2020. [DOI: 10.1007/s10021-020-00517-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Hamilton DJ, Bulmer RH, Schwendenmann L, Lundquist CJ. Nitrogen enrichment increases greenhouse gas emissions from emerged intertidal sandflats. Sci Rep 2020; 10:6686. [PMID: 32317656 PMCID: PMC7174373 DOI: 10.1038/s41598-020-62215-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/15/2020] [Indexed: 11/08/2022] Open
Abstract
Unvegetated, intertidal sandflats play a critical role in estuarine carbon and nutrient dynamics. However, these ecosystems are under increasing threat from anthropogenic stressors, especially nitrogen enrichment. While research in this area typically focuses on sediment-water exchanges of carbon and nutrients during tidal inundation, there remain significant gaps in our understanding of GHG (Greenhouse Gas) fluxes during tidal emergence. Here we use in situ benthic chambers to quantify GHG fluxes during tidal emergence and investigate the impact of nitrogen enrichment on these fluxes. Our results demonstrate significant differences in magnitude and direction of GHG fluxes between emerged and submerged flats, demonstrating the importance of considering tidal state when estimating GHG emissions from intertidal flats. These responses were related to differences in microphytobenthic and macrofaunal activity, illustrating the important role of ecology in mediating fluxes from intertidal flats. Our results further demonstrate that nitrogen enrichment of 600 gN m-2 was associated with, on average, a 1.65x increase in CO2 uptake under light (photosynthetically active) conditions and a 1.35x increase in CO2 emission under dark conditions, a 3.8x increase in CH4 emission and a 15x increase in N2O emission overall. This is particularly significant given the large area intertidal flats cover globally, and their increasing exposure to anthropogenic stressors.
Collapse
Affiliation(s)
- Dallas J Hamilton
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- National Institute of Water and Atmospheric Research Ltd (NIWA), Hamilton, New Zealand
| | - Richard H Bulmer
- National Institute of Water and Atmospheric Research Ltd (NIWA), Hamilton, New Zealand
| | | | - Carolyn J Lundquist
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.
- National Institute of Water and Atmospheric Research Ltd (NIWA), Hamilton, New Zealand.
| |
Collapse
|
14
|
Sasmito SD, Taillardat P, Clendenning JN, Cameron C, Friess DA, Murdiyarso D, Hutley LB. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. GLOBAL CHANGE BIOLOGY 2019; 25:4291-4302. [PMID: 31456276 DOI: 10.1111/gcb.14774] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/02/2019] [Indexed: 05/06/2023]
Abstract
Mangroves shift from carbon sinks to sources when affected by anthropogenic land-use and land-cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer-reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re-establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre-disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.
Collapse
Affiliation(s)
- Sigit D Sasmito
- Research Institute for the Environment and Livelihoods (RIEL), Charles Darwin University, Darwin, NT, Australia
- Center for International Forestry Research (CIFOR), Bogor, Indonesia
| | - Pierre Taillardat
- Department of Geography, National University of Singapore, Singapore, Singapore
- Université du Québec à Montréal - Geotop, Montreal, QC, Canada
| | - Jessica N Clendenning
- Center for International Forestry Research (CIFOR), Bogor, Indonesia
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Clint Cameron
- Research Institute for the Environment and Livelihoods (RIEL), Charles Darwin University, Darwin, NT, Australia
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Daniel Murdiyarso
- Center for International Forestry Research (CIFOR), Bogor, Indonesia
- Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor, Indonesia
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods (RIEL), Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
15
|
Cameron C, Hutley LB, Friess DA. Estimating the full greenhouse gas emissions offset potential and profile between rehabilitating and established mangroves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:419-431. [PMID: 30772573 DOI: 10.1016/j.scitotenv.2019.02.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Mangrove forests are extremely productive, with rates of growth rivaling some terrestrial tropical rainforests. However, our understanding of the full suite of processes underpinning carbon exchange with the atmosphere and near shore-waters, the allocation of carbon in mangroves, and fluxes of non-CO2 greenhouse gases (GHGs) are limited to a handful of studies. This constrains the scientific basis from which to advocate for greater support for and investment in mangrove restoration and conservation. Improving understanding is urgently needed given the on-going landuse pressures mangrove forests face, particularly throughout much of Southeast Asia. The current study reduces uncertainties by providing a holistic synthesis of the net potential GHG mitigation benefits resulting from rehabilitating mangroves and established forests. Rehabilitating sites from two contrasting locations representative of high (Tiwoho) and low (Tanakeke) productivity systems on the island of Sulawesi (Indonesia) were used as case studies to compare against established mangroves. A carbon budget, allocation and pathways model was developed to account for inputs (carbon sequestration) and outputs (GHG emissions of CO2, N2O and CH4) to estimate Net Ecosystem Production (NEP) and Net Ecosystem Carbon Balance (NECB). Our results indicate that while Tiwoho's rehabilitating sites and established mangroves represent a significant carbon sink (-10.6 ± 0.9 Mg CO2e ha-1 y-1 and 16.1 Mg CO2e ha-1 y-1 respectively), the low productivity of Tanakeke has resulted in minimal reductions to date (0.7 ± 0.3 Mg CO2e ha-1 y-1). Including NEP from mangrove-allied primary producer communities (e.g. benthic algae) and the portion of dissolved inorganic carbon exported from mangroves (EXDIC) that remains within the water column may drive overall removals considerably upwards in established forests to -37.2 Mg CO2e ha-1 y-1. These values are higher than terrestrial forests and strengthen the evidence base needed to underpin the use of forest carbon financing mechanisms for mangrove restoration.
Collapse
Affiliation(s)
- Clint Cameron
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Australia.
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Australia
| | - Daniel A Friess
- Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570, Singapore
| |
Collapse
|
16
|
Cameron C, Hutley LB, Friess DA, Munksgaard NC. Hydroperiod, soil moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a function of landuse change in mangroves of Sulawesi, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:365-377. [PMID: 30447576 DOI: 10.1016/j.scitotenv.2018.11.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The loss and degradation of mangroves can result in potentially significant sources of atmospheric greenhouse gas (GHG) emissions. For mangrove rehabilitation carbon projects, quantifying GHG emissions as forests regenerate is a key accounting requirement. The current study is one of the first attempts to systematically quantify emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) from: 1) aquaculture ponds, 2) rehabilitating mangroves, and 3) intact mangrove sites and frame GHG flux within the context of landuse change. In-situ static chamber measurements were made at three contrasting locations in Sulawesi, Indonesia. The influence of key biophysical variables known to affect GHG flux was also assessed. Peak GHG flux was observed at rehabilitating (32.8 ± 2.1 Mg CO2e ha-1 y-1) and intact, mature reference sites (43.8 ± 4.5 Mg CO2e ha-1 y-1) and a dry, exposed disused aquaculture pond (30.6 ± 1.9 Mg CO2e ha-1 y-1). Emissions were negligible at low productivity rehabilitating sites with high hydroperiod (mean 1.0 ± 0.1 Mg CO2e ha-1 y-1) and an impounded, operational aquaculture pond (1.1 ± 0.2 Mg CO2e ha-1 y-1). Heterogeneity in biophysical conditions and geomorphic position exerted a strong influence on GHG flux, with the longer hydroperiod and higher soil moisture content of seaward fringing mangroves correlated with decreased fluxes. A greater abundance of Mud lobster mounds and root structures in landward mangroves correlated to higher flux. When viewed across a landuse change continuum, our results suggest that the initial conversion of mangroves to aquaculture ponds releases extremely high rates of GHGs. Furthermore, the re-institution of hydrological regimes in dry, disused aquaculture ponds to facilitate tidal flushing is instrumental in rapidly mediating GHG flux, leading to a significant reduction in baseline emissions. This is an important consideration for forest carbon project proponents seeking to maximise creditable GHG emissions reductions and removals.
Collapse
Affiliation(s)
- Clint Cameron
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Daniel A Friess
- Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570
| | - Niels C Munksgaard
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|