1
|
Singh AK, Abellanas-Perez P, de Andrades D, Cornet I, Fernandez-Lafuente R, Bilal M. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136803. [PMID: 39672062 DOI: 10.1016/j.jhazmat.2024.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques. Enzymatic approaches, including laccase, have been identified as a promising alternative to eliminate a broad array of PhACs from water matrices. However, their application in environmental bioremediation is hindered by several factors, including the enzyme's stability and its location in the aqueous environment. Such obstacles may be surmounted by employing laccase immobilization, which enables enhanced stability (including inactivation caused by the substrate), and thus improved catalysis. This review emphasizes the potential hazards of PhACs to aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well as the deployment of laccase-based multifunctional biocatalytic systems for the environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach could reduce the underlying toxicological consequences. In addition, current developments, potential applications, and viewpoints have focused on computer-assisted investigations of laccase-PhACs binding at enzyme cavities and degradability prediction.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pedro Abellanas-Perez
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain
| | - Diandra de Andrades
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão, Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Iris Cornet
- BioWAVE research group, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | | | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
2
|
Wanjeri VWO, Okuku E, Ngila JC, Ouma J, Ndungu PG. Distribution of pharmaceuticals in marine surface sediment and macroalgae (ulvophyceae) around Mombasa peri-urban creeks and Gazi Bay, Kenya. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4103-4123. [PMID: 39853594 PMCID: PMC11835918 DOI: 10.1007/s11356-024-35881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025]
Abstract
Pollution in marine creeks has been increasing due to anthropogenic activities and has been a global concern. Limited research has been conducted on pharmaceuticals in marine sediment and macroalgae in African countries. In the present study, the levels of pharmaceuticals were assessed in surface sediment and different species of macroalgae (ulvophyceae; Cladophora sudanensis, Chaetomorpha crassa, Chaetomorpha indica, Enteromorpha kylinii, Ulva reticulate, Ulva lactuca and Cladophora sibugae) in Mombasa peri-urban creeks (Tudor, Makupa and Mtwapa creek) and Gazi bay during dry and wet seasons. The concentration of pharmaceuticals in the surface sediment during dry and wet seasons ranged between 0.04-686.8 ng/g and 0.01-2580.6 ng/g, respectively. The highest concentration of pharmaceuticals was observed in Tudor creek in dry and wet seasons, with a sum concentration of ∑1013 ng/g and ∑3111 ng/g, respectively. Gazi Bay was used as a reference environment for this study, and pharmaceuticals were detected in dry and wet seasons with a concentration of 0.10-686.8 ng/g and 0.18-93.5 ng/g, respectively. There was no seasonal variation in the pharmaceutical concentration during the dry and wet seasons. For macroalgae of ulvophyceae species, pharmaceutical concentration ranged below the detection limit (DL)-11059 ng/g. Compared to surface sediment, macroalgae showed a high concentration of pharmaceuticals in Tudor, Makupa and Mtwapa creeks. Tetracycline was higher in sediment and macroalgae in all the creeks than other pharmaceutical compounds. A high concentration of pharmaceuticals confirms sewage effluent into the marine environment of Mombasa peri-urban creek. Pharmaceuticals (acetaminophen, sulfamethoxazole, trimethoprim, carbamazepine and nevirapine) in sediment posed a medium (- 1 < Log10 RQ < 0) to higher risk (Log10 RQ > 0) to algae, invertebrates and fish in the dry and wet seasons. There is a need to sensitise the residents of coastal cities on the impact of sewage effluent into the marine environment and enact strict measures to limit the discharge of sewage effluents containing these contaminants into the marine environment. Nevertheless, it is recommended to conduct further research on the distribution of pharmaceuticals in the marine environment and the long-term combined impacts of these substances of these compounds on marine biota.
Collapse
Affiliation(s)
- Veronica Wayayi Ogolla Wanjeri
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Eric Okuku
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Jane Catherine Ngila
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Josephine Ouma
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
| | | |
Collapse
|
3
|
Rodrigues JA, Silva M, Araújo R, Madureira L, Soares AMVM, Freitas R, Gil AM. The influence of temperature rise on the metabolic response of Ruditapes philippinarum clams to 17-α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162898. [PMID: 36934939 DOI: 10.1016/j.scitotenv.2023.162898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Untargeted Nuclear Magnetic Resonance metabolomics was employed to study the effects of warming conditions (17-21 °C) and exposure to 17-α-ethinylestradiol (EE2) on the polar metabolome of Ruditapes philippinarum clams, to identify metabolic markers for monitoring/prediction of deviant environmental conditions. Warming alone triggered changes in alanine/aspartate/glutamate, aromatic amino acids, taurine/hypotaurine and homarine/trigonelline pathways, as well as in energy metabolism, suggesting osmoregulatory adaptations and glycolytic/tricarboxylic acid (TCA) cycle activation, possibly accompanied to some extent by gluconeogenesis to preserve glycogen reserves. At 17 °C, the lowest EE2 concentration (5 ng/L) specifically engaged branched-chain and aromatic amino acids to activate the glycolysis/TCA cycle. Notably, a partial metabolic recovery was observed at 25 ng/L, whereas higher EE2 concentrations (125 and 625 ng/L) again induced significant metabolic disturbances. These included enhanced glycogen biosynthesis and increased lipid reserves, sustained by low-level glutathione-based antioxidative mechanisms that seemed active. At 21 °C, response to EE2 was notably weak at low/intermediate concentrations, becoming particularly significant at the highest EE2 concentration (625 ng/L), suggesting higher protection capacity of Ruditapes philippinarum clams under warming conditions. At 625 ng/L, disturbances in alanine/aspartate/glutamate and taurine/hypotaurine metabolisms were observed, with no evidence of enhanced carbohydrate/protein catabolism. This low energy function profile was accompanied by marked antioxidative mechanisms and choline compounds modulation for cell membrane protection/repair. These results help monitor clams´ response to temperature rise and EE2 exposure, paving the way for future effective guidance and prediction of environmental damaging effects.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Araújo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leonor Madureira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Bethke K, Kropidłowska K, Stepnowski P, Caban M. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162829. [PMID: 36924950 DOI: 10.1016/j.scitotenv.2023.162829] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kropidłowska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
5
|
Robinson RFA, Mills GA, Gravell A, Schumacher M, Fones GR. Occurrence of organic pollutants in the River Itchen and River Test-two chalk streams in Southern England, UK. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17965-17983. [PMID: 36205867 PMCID: PMC9928825 DOI: 10.1007/s11356-022-23476-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The River Itchen and River Test, two chalk streams in Southern England, are sites of special scientific interest. These ecosystems face a number of environmental pressures from anthropogenic inputs of organic pollutants. Hence, we investigated the occurrence of these chemicals within the two catchments. Spot water samples (1 L) were collected at nineteen sites along the catchment on two occasions (March and June 2019). Samples were extracted (HLB-L sorbent disks) and analysed using high-resolution liquid chromatography-quadrupole-time-of-flight mass spectrometry and gas chromatography-mass spectrometry. Compounds were identified against commercially available databases. Using this approach, we found 115 pharmaceutical and personal care products, 81 plant protection products and 35 industrial chemicals. This complex mixture of pollutants covered a range of physico-chemical properties and included priority substances in the EU Water Framework Directive or currently on the third Watch List. Both rivers had similar chemical profiles for both months. Herbicides and fungicides were dominant in the spring, whereas insecticides occurred more frequently in the summer. Point discharges from wastewater treatment plants were the main source of pharmaceutical and personal care products. Agricultural activities were the main contributor to the presence of plant protection products. The impact of these organic chemicals on the ecology, particularly on macroinvertebrate biodiversity, is unknown and warrants further investigation. Our suspect screening approach could guide future toxicological investigations to assess the environmental impacts of these diverse chemicals.
Collapse
Affiliation(s)
- Rosamund F A Robinson
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK
| | - Graham A Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Anthony Gravell
- Natural Resources Wales, Faraday Building, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Melanie Schumacher
- Natural Resources Wales, Faraday Building, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Gary R Fones
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK.
| |
Collapse
|
6
|
Pretti C, Aretini P, Lessi F, Freitas R, Barata C, De Marchi L, Cuccaro A, Oliva M, Meucci V, Baratti M. Gene expression and biochemical patterns in the digestive gland of the mussel Mytilus galloprovincialis (Lamarck, 1819) exposed to 17α-ethinylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106376. [PMID: 36566548 DOI: 10.1016/j.aquatox.2022.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Contaminants of emerging concern (CECs) are a class of chemicals that can spread throughout the environment and may cause adverse biological and ecological effects. While there are many different classes of CECs, one of the most well documented in the aquatic environment are pharmaceutical drugs, such as natural and synthetic estrogens. In particular, the widespread presence of the synthetic estrogen 17 α-Ethinylestradiol (EE2) in water may lead to bioaccumulation in sediment and biota. EE2 is the primary component in contraceptive pills, and is a derivative of the natural hormone estradiol (E2). In this study, the mussel Mytilus galloprovincialis was exposed to EE2 in a semi-static and time-dependent experiment, for a total exposure period of 28 days. Biochemical and transcriptomics analyses were performed on mussel digestive glands after exposure for 14 (T14) and 28 (T28) days. Metabolic and DNA impairments, as well as activation of antioxidant and biotransformation enzymes activation, were detected in T28 exposed mussels. RNA-Seq analysis showed significant differential expression of 160 (T14 compared to controls), 33 (T28 compared to controls) and 79 (T14 compared to T28) genes. Signs of stress after EE2 treatment included up-regulation of gene/proteins involved with immune function, lipid transport, and metabolic and antibacterial properties. This study elucidates the underlying mechanisms of EE2 in a filter feeding organisms to elucidate the effects of this human pharmaceutical on aquatic biota.
Collapse
Affiliation(s)
- Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122 San Piero a Grado, Pisa (Italy); Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128 Livorno (Italy).
| | - Paolo Aretini
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, Pisa (Italy)
| | - Francesca Lessi
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, Pisa (Italy)
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)
| | - Carlos Barata
- Department of Environmental Chemistry IDAEA-CSIC Jordi Girona 18 08034 Barcelona (Spain)
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128 Livorno (Italy)
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128 Livorno (Italy)
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122 San Piero a Grado, Pisa (Italy)
| | - Mariella Baratti
- Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy)
| |
Collapse
|
7
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153591. [PMID: 35122849 DOI: 10.1016/j.scitotenv.2022.153591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Silva MG, Esteves VI, Meucci V, Battaglia F, Soares AM, Pretti C, Freitas R. Metabolic and oxidative status alterations induced in Ruditapes philippinarum exposed chronically to estrogen 17α-ethinylestradiol under a warming scenario. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106078. [PMID: 35074615 DOI: 10.1016/j.aquatox.2022.106078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment is an ongoing concern. However, the information regarding their effects under different climate change scenarios is still scarce. 17α-ethinylestradiol (EE2) is widely present in different aquatic systems showing negative impacts on aquatic organisms even when present at trace concentrations (≈1 ng/L). Nevertheless, its impact on bivalves is poorly understood, especially considering the influence of climate change factors. This study aimed to assess the toxicological impacts of EE2 under current and predicted warming scenarios, in the edible clam Ruditapes philippinarum. For this, clams were exposed for 28 days to different EE2 concentrations (5, 25, 125, 625 ng/L), under two temperatures (17 °C (control) and 21 °C). Drug concentrations, bioconcentration factors and biochemical parameters, related to oxidative stress and energy metabolism, were evaluated. Results showed that under actual and predicted temperature scenarios EE2 concentrations led to a disturbance in redox homeostasis of the clams, characterized by an increase in oxidized glutathione in contaminated organisms compared to control ones. Nevertheless, clams were capable to cope with the stressful conditions, activating their defence mechanisms (especially at the highest exposure concentration and in particular at increased temperature), and no oxidative damage occured. Although limited effects were observed, the present findings indicate that under both temperatures contaminated clams altered their biochemical performance, which can impair their sensitivity and protection capacity to respond to other environmental changes and/or affect their capacity to grow and reproduce. The results presented here highlight the need for further research on this thematic, considering that climate change is an ongoing problem, and the levels of some pharmaceutical drugs will continue to increase in marine/estuarine environments.
Collapse
Affiliation(s)
- Mónica G Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy
| | - Amadeu Mvm Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", Livorno 57128, Italy
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
9
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150369. [PMID: 34571231 DOI: 10.1016/j.scitotenv.2021.150369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Figueira E, Soares AMVM, Freitas R. Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105673. [PMID: 33221665 DOI: 10.1016/j.aquatox.2020.105673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The negative effects induced in marine organisms by Climate Change related abiotic factors consequences, namely ocean warming, are well-known. However, few works studied the combined impacts of ocean warming and contaminants, as pharmaceutical drugs. Carbamazepine (CBZ) and cetirizine (CTZ) occur in the marine environment, showing negative effects in marine organisms. This study aimed to evaluate the impacts of ocean warming on the effects of CBZ and CTZ, when acting individually and combined (drug vs drug), in the edible clam Ruditapes philippinarum. For that, drugs concentration, bioconcentration factors and biochemical parameters, related with clam's metabolic capacity and oxidative stress, were evaluated after 28 days exposure to environmentally relevant scenarios of these stressors. The results showed limited impacts of the drugs (single and combined) at control and warming condition. Indeed, it appeared that warming improved the oxidative status of contaminated clams (higher reduced to oxidized glutathione ratio, lower lipid peroxidation and protein carbonylation levels), especially when both drugs were combined. This may result from clam's defence mechanisms activation and reduced metabolic capacity that, respectively, increased elimination and limited production of reactive oxygen species. At low stress levels, defence mechanisms were not activated which resulted into oxidative stress. The present findings highlighted that under higher stress levels clams may be able to activate defence strategies that were sufficient to avoid cellular damages and loss of redox homeostasis. Nevertheless, low concentrations were tested in the present study and the observed responses may greatly change under increased pollution levels or temperatures. Further research on this topic is needed since marine heat waves are increasing in frequency and intensity and pollution levels of some pharmaceuticals are also increasing in coastal systems.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489, Berlin, Germany
| | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Almeida Â, Esteves VI, Soares AMVM, Freitas R. Effects of Carbamazepine in Bivalves: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:163-181. [PMID: 32926215 DOI: 10.1007/398_2020_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbamazepine (CBZ) is among the ten most frequent pharmaceuticals that occur in the aquatic systems, with known effects on inhabiting organisms, including bivalves. Bivalves are important species in coastal ecosystems, often exhibiting a dominant biomass within invertebrate communities. These organisms play a major role in the functioning of the ecosystem and particularly in food webs (as suspension-feeders) and represent a significant fraction of the fisheries resource. They also have strong interactions with the environment, water and sediment and are considered good bioindicator species. The present paper reviews the known literature on the impacts of CBZ in biological endpoints of marine bivalves exposed to environmentally and non-environmentally relevant concentrations, highlighting differences in terms of biological responses, associated with exposure period, concentrations tested, and species used. Overall, the literature available showed that CBZ induces individual and sub-individual effects in marine bivalves (adults and life stages) and the most common effect reported was the induction of oxidative stress.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Rosa Freitas
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
12
|
He X, O'Shea KE. Rapid transformation of H 1-antihistamines cetirizine (CET) and diphenhydramine (DPH) by direct peroxymonosulfate (PMS) oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123219. [PMID: 32768849 DOI: 10.1016/j.jhazmat.2020.123219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
With growing interest in advanced oxidation processes (AOPs), the number of research studies on peroxymonosulfate (PMS) mediated pollutant degradation has increased significantly due to its high radical generation potential upon activation. However, rare studies have focused on the non-radical based PMS reactions. In this study, degradation of model H1-antihistamines cetirizine (CET) and diphenhydramine (DPH) by unactivated PMS was investigated. Addition of scavengers to the reaction mixture ruled out the involvement of hydroxyl radical (OH), sulfate radical (SO4-), singlet oxygen (1O2) and superoxide anion radical (O2-), indicating direct PMS oxidation as the predominant reaction path. Such a mechanism was further supported by the N-oxide products identified by mass spectrometry and nuclear magnetic resonance (NMR) analyses. Solution pH had a pronounced influence on the degradation kinetics regardless the presence or absence of transition metal Fe(II). The highest species dependent second order rate constants were kHSO5-/DPH0 of 175 ± 15.9 M-1 s-1 and kHSO5-/CET- of 36.6 ± 0.16 M-1 s-1. The addition of 100 μM Fe(II) promoted OH mediated degradation of H1-antihistamines and their N-oxide products. This study demonstrated selective transformation with the potential for extensive degradation employing both the direct and catalytic PMS oxidative processes.
Collapse
Affiliation(s)
- Xuexiang He
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
13
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Solé M, Freitas R. Biochemical and physiological responses of two clam species to Triclosan combined with climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138143. [PMID: 32408439 DOI: 10.1016/j.scitotenv.2020.138143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification and warming are among the man-induced factors that most likely impact aquatic wildlife worldwide. Besides effects caused by temperature rise and lowered pH conditions, chemicals of current use can also adversely affect aquatic organisms. Both climate change and emerging pollutants, including toxic impacts in marine invertebrates, have been investigated in recent years. However, less information is available on the combined effects of these physical and chemical stressors that, in nature, occur simultaneously. Thus, this study contrasts the effects caused by the antimicrobial agent and plastic additive, Triclosan (TCS) in the related clams Ruditapes philippinarum (invasive) and Ruditapes decussatus (native) and evaluates if the impacts are influenced by combined temperature and pH modifications. Organisms were acclimated for 30 days at two conditions (control: 17 °C; pH 8.1 and climate change scenario: 21 °C, pH 7.7) in the absence of the drug (experimental period I) followed by a 7 days exposure under the same water physical parameters but either in absence (unexposed) or presence of TCS at 1 μg/L (experimental period II). Biochemical responses covering metabolic, oxidative defences and damage-related biomarkers were contrasted in clams at the end of experimental period II. The overall picture showed a well-marked antioxidant activation and higher TCS bioaccumulation of the drug under the forecasted climate scenario despite a reduction on respiration rate and unaltered metabolism in the exposed clams. Since clams are highly consumed shellfish, the consequences for higher tissue bioaccumulation of anthropogenic chemicals to final consumers should be alerted not only at present conditions but more significantly under predicted climatic conditions for humans but also for other components of the marine trophic chain.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003 Barcelona, Spain
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Almeida Â, Silva MG, Soares AMVM, Freitas R. Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. ENVIRONMENTAL RESEARCH 2020; 185:109316. [PMID: 32222627 DOI: 10.1016/j.envres.2020.109316] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceutical drugs are contaminants of emerging concern and are amongst the most frequent in the aquatic environment. Even though a vast literature indicate that pharmaceuticals exert negative impacts towards aquatic organisms, mainly in vertebrates, there is still limited information regarding the effects of these drugs in freshwater and marine bivalves. Marine bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Furthermore, another lacking point on these studies is the absence of bioconcentration data, with no clear relationship between the concentration of drugs on tissue and the biological effects. 17alpha-ethinylestradiol (EE2) is a synthetic hormone with high estrogenic potency that was added to the Watch List adopted by the European Commission stating the priority substances to be monitored. Thus, this review summarizes the current knowledge on the concentration levels and effects of EE2 on freshwater and marine bivalves. The inclusion in the Watch List, the presence in freshwater and marine systems, and the impact exerted on aquatic biota, even at trace concentrations, justify the review devoted to this pharmaceutical drug. Globally the available studies found that EE2 induces individual and sub-individual (e.g. tissue, cellular, biochemical and molecular levels of biological organization) impacts in bivalves. Essentially, this estrogenic compound, even in trace concentrations, was found to have accumulated in wild and laboratory exposed bivalves. The most common effects reported were changes on the reproductive function and energy metabolism. The studies used in this review support keeping the EE2 on the Watch List and highlight the need to increase the number of monitorization studies since clear negative effects were exerted on bivalves by this drug.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica G Silva
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Jaria G, Calisto V, Otero M, Esteves VI. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)-a practical overview. Anal Bioanal Chem 2020; 412:3983-4008. [PMID: 32088755 DOI: 10.1007/s00216-020-02509-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations of these contaminants in the aquatic environment, namely high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, usually coupled to different types of detectors, which need to be complemented with time-consuming and costly sample cleaning and pre-concentration procedures. Generally, the enzyme-linked immunosorbent assay (ELISA), as other immunoassay methodologies, is mostly used in biological samples (most frequently urine and blood). However, during the last years, the number of studies referring the use of ELISA for the analysis of pharmaceuticals in complex environmental samples has been growing. Therefore, this work aims to present an overview of the application of ELISA for screening and quantification of pharmaceuticals in the aquatic environment, namely in water samples and biological tissues. The experimental procedures together with the main advantages and limitations of the assay are addressed, as well as new incomes related with the application of molecular imprinted polymers to mimic antibodies in similar, but alternative, approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Guilaine Jaria
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marta Otero
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Freitas R, Solé M. The influence of climate change related factors on the response of two clam species to diclofenac. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109899. [PMID: 31771782 DOI: 10.1016/j.ecoenv.2019.109899] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Diclofenac (DIC) is one of the non-steroidal anti-inflammatory drugs (NSAID) with higher consumption rates, used in both human and veterinary medicine. Previous studies already demonstrated the presence of this drug in aquatic environments and adverse effects towards inhabiting organisms. However, with the predictions of ocean acidification and warming, the impacts induced by DIC may differ from what is presently known and can be species-dependent. Thus, the present study aimed to comparatively assess the effects caused by DIC in the clams Ruditapes philippinarum and Ruditapes decussatus and evaluate if these impacts were influenced by pH and temperature. For this, organisms were acclimated for 30 days at two different temperature and pH (control conditions: pH 8.1, 17 °C; climate change forecasted scenario: pH 7.7, 20 °C) in the absence of drugs (experimental period I) followed by 7 days exposure under the same water physical parameters but in absence or presence of the pharmaceutical drug (at 1 μg/L, experimental period II). Biochemical responses covering metabolic capacity, oxidative stress and damage-related biomarkers were contrasted in clams at the end of the second experimental period. The results showed that under actual conditions, R. philippinarum individuals exposed to DIC presented enhanced antioxidant activities and reduced their respiration rate compared with non-contaminated clams. When exposed to the predicted climate change conditions, a similar response was observed in contaminated clams, but in this case clams increased their metabolic activities probably to fight the stress caused by the combination of both stressors. When R. decussatus was exposed to DIC, even at actual pH and temperature conditions, their antioxidant defences were also elevated but their baseline enzymatic activities were also naturally higher in respect to R. philippinarum. Although clams may use different strategies to prevent DIC damage, both clam species showed under low pH and high temperature limited oxidative stress impacts in line with a lower DIC bioaccumulation. The present findings reveal that predicted climate change related factors may not enhance the impacts of DIC in Ruditapes clams in a species-dependent manner although both displayed particular mechanisms to face stress.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per Il Centro Interuniversitario di Biologia Marina Ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Montserrat Solé
- Instituto de Ciencias Del Mar ICM-CSIC, E-08003, Barcelona, Spain
| |
Collapse
|
17
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
18
|
Pinto J, Costa M, Leite C, Borges C, Coppola F, Henriques B, Monteiro R, Russo T, Di Cosmo A, Soares AMVM, Polese G, Pereira E, Freitas R. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:181-192. [PMID: 31003043 DOI: 10.1016/j.aquatox.2019.03.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Inappropriate processing and disposal of electronic waste contributes to the contamination of aquatic systems by various types of pollutants such as the rare-earth elements (REE) in which lanthanum (La) is included. Knowledge on the toxicity of these elements in marine organisms is still scarce when compared to other metals such as mercury (Hg) and arsenic (As). Therefore, this study aims to assess the toxicity of La on the mussel Mytilus galloprovincialis, considered a good bioindicator of aquatic pollution, through the analysis of metabolic, oxidative stress, neurotoxicity and histopathological markers. Organisms were exposed to different concentrations of La for a period of 28 days (0, 0.1, 1, 10 mg/L) under controlled temperature (18 °C ± 1.0) and salinity (30 ± 1) conditions. La concentrations in mussels increased in higher exposure concentrations. La exposure demonstrated a biochemical response in mussels, evidenced by lowered metabolism and accumulation of energy reserves, activation of the antioxidant defences SOD and GPx as well as the biotransformation enzymes GSTs, especially at intermediate concentrations. Despite oxidative stress being shown by a decrease in GSH/GSSG, oxidative damage was avoided as evidenced by lower LPO and PC levels. Inhibition of the enzyme AChE demonstrated the neurotoxicity of La in this species. Histopathological indices were significantly different from the control group, indicating impacts in gonads, gills and digestive glands of mussels due to La. These results show that La can be considered a risk for marine organisms and thus its discharge into the environment should be monitored.
Collapse
Affiliation(s)
- João Pinto
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Marcelo Costa
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Borges
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Anna Di Cosmo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Eduarda Pereira
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Sehonova P, Svobodova Z, Dolezelova P, Vosmerova P, Faggio C. Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:789-794. [PMID: 29727988 DOI: 10.1016/j.scitotenv.2018.03.076] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
After application, antidepressants, like other pharmaceuticals, are excreted from human body in their native form or as metabolites and enter the aquatic environment via different pathways. As concentrations of antidepressant residues in water continue to increase, their effects on non-target animals are being discussed. The aim of this study is to summarize current knowledge about the effects of wateborne antidepressants on non-target animals living in surface waters - invertebrates, fish and amphibians. Selective serotonin reuptake inhibitors such as fluoxetine, sertraline, and citalopram have been found to effect behavior, reproduction, and development in both invertebrates and vertebrates. Venlafaxine, belonging to the group of selective serotonin-noradrenalin reuptake inhibitors, not only affected behavior but also showed the potential to reduce survival in fish. Tricylic antidepressants are known to have various side-effects when consumed by humans. Moreover, in fish, exposure resulted in a significant increase in mortality, developmental retardation, morphological anomalies, and pathological changes in brain, heart, and cranial and caudal kidney. In addition, changes in antioxidant enzyme activity as well as increased lipid peroxidation were observed, even at the lowest tested concentrations. According to current knowledge, antidepressants occuring in surface water are able to affect the behavior, reproduction, development, and survival of aquatic invertebrates and vertebrates.
Collapse
Affiliation(s)
- Pavla Sehonova
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Petra Dolezelova
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Petra Vosmerova
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
20
|
Suzuki J, Imamura M, Nakano D, Yamamoto R, Fujita M. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1078-1085. [PMID: 29554729 DOI: 10.1016/j.scitotenv.2018.02.286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/03/2018] [Accepted: 02/23/2018] [Indexed: 05/12/2023]
Abstract
Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L-1, 500 mg SS L-1, and 2000 mg SS L-1) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species.
Collapse
Affiliation(s)
- Jumpei Suzuki
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan; Department of Urban and Civil Engineering, College of Engineering, Ibaraki University, Nakanarusawa4-12-1, Hitachi, Ibaraki 316-8511, Japan.
| | - Masahiro Imamura
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan
| | - Daisuke Nakano
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan
| | - Ryosuke Yamamoto
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko1646, Abiko, Chiba 270-1194, Japan
| | - Masafumi Fujita
- Department of Urban and Civil Engineering, College of Engineering, Ibaraki University, Nakanarusawa4-12-1, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
21
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R. Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:10-19. [PMID: 29494826 DOI: 10.1016/j.aquatox.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
In the aquatic environment, organisms are exposed to complex mixtures of contaminants which may alter the toxicity profile of each compound, compared to its toxicity alone. Pharmaceutical drugs (e.g. carbamazepine (CBZ) and cetirizine (CTZ)) and metals (e.g. cadmium (Cd)) are among those contaminants that co-occur in the environment. However, most studies concerning their toxicity towards aquatic species are based on single exposure experiments. Thus, the present study aimed to evaluate single and combined effects of Cd and CBZ or CTZ (single conditions: Cd, CTZ, CBZ; combined conditions: CTZ + Cd, CBZ + Cd) on biomarkers related to oxidative stress and energy metabolism in the edible clam Ruditapes philippinarum, by exposing the organisms for 28 days to environmentally relevant concentrations of these contaminants. The biomarkers studied were: i) the electron transport system activity, protein and glycogen contents (indicators of organisms' metabolic status and energy reserves); ii) lipid peroxidation and the ratio between reduced and oxidized glutathione (indicators of oxidative stress); iii) superoxide dismutase and catalase activities (enzymes indicators of antioxidant defence) and iv) activity of glutathione S-transferases (family of enzymes indicators of biotransformation capacity). Results obtained showed that the uptake of Cd and CBZ was not affected by the combined presence of the contaminants. However, for CTZ, the uptake was higher in the presence than in the absence of Cd. Concerning toxicity data, in general, the combined exposures (CTZ + Cd, CBZ + Cd) had lower biological effects than the contaminants alone. Nevertheless, our data showed that despite the low concentrations tested, they were enough to exert biological effects that differed between single and combined treatments, evidencing the need to conduct more co-exposure studies to increase the environmental relevance of the gathered data.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Díaz-Garduño B, Perales JA, Garrido-Pérez C, Martín-Díaz ML. Health status alterations in Ruditapes philippinarum after continuous secondary effluent exposure before and after additional tertiary treatment application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:720-729. [PMID: 29339341 DOI: 10.1016/j.envpol.2018.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
A mobile pilot plant was set up in a wastewater treatment plant (WWTP) in southwest Spain to address potential adverse effects of effluents as a whole contaminant, which are discharging into marine environments. Ruditapes philippinarum specimens were exposed to different effluent concentrations (50%, 25%, 12.5%, 6.25%, and 3.15%) during seven days. After effluent exposure, lysosomal membrane stability alterations (LMS), changes in the energy status storage (total lipids content (TLP) and in the mitochondrial electron transport (MET), inhibition of inflammatory mechanisms (cyclooxygenase activity (COX)), and neurotoxic effects (acetylcholinesterase (AChE) were determined in exposed organisms. Furthermore, potential toxic reduction in the effluent was analysed by the application of an additional microalgae tertiary treatment called photobiotreatment (PhtBio). Results after PhtBio confirmed the toxic effect reduction in exposed organisms. Neuroendocrine effects, alterations in energy budget and in lipid storage revealed alterations in clam's health status causing stress conditions after effluent exposure.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain.
| | - J A Perales
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| |
Collapse
|
23
|
Almeida Â, Freitas R, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Campos B, Barata C. Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:857-868. [PMID: 29353802 DOI: 10.1016/j.envpol.2017.12.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Several works evaluated the toxicity of pharmaceutical drugs and climate related changes in invertebrates but few explored the combined effects of both stressors, namely considering their mode of action (MoA). Carbamazepine (CBZ) and cetirizine (CTZ) are pharmaceutical drugs detected in the environment and the toxicity derived from the combined effects of these drugs with ocean acidification (OA) is poorly explored. Thus, the present study investigated the biochemical parameters related to an oxidative stress response and the transcription of genes related to the MoA of CBZ (1.0 μg/L) and CTZ (0.6 μg/L) in the clam Ruditapes philippinarum chronically exposed (28 days) to control (7.8) and low (7.5) pH conditions. The results obtained showed that despite the clams accumulated both drugs, at low pH the clams exposed to CTZ decreased drug concentration and BCF values (CTZ uptake: 2.0 ± 0.5 ng/g fresh weight; BCF: 3.8 ± 0.9) in comparison with clams exposed to control pH (CTZ uptake: 2.9 ± 0.3 ng/g fresh weight; BCF: 5.5 ± 0.6). No oxidative stress was induced by the exposure to CBZ or CTZ at each pH level, but the transcription of several genes related with the MoA (neurotransmission, immunity and biomineralization) was altered by low pH, drug exposure and the combination of both stressors. At both pH conditions, CBZ increased the transcription of GABA receptor gene (neurotransmission) and CTZ led to a decrease of Perlucin gene (biomineralization) transcription. The transcription of MyD88 gene (immunity) decreased at low pH (7.5) combined with drug exposure (CBZ or CTZ). Thus, it was highlighted that the interaction of drug exposure and low pH conditions can change bivalves' sensitivity to drugs or alter drugs toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Campos
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|