1
|
Zhu B, Si M, Xie X, Yan X, Huang J, Tian S, Ning P. Effects of biomass co-pyrolysis and herbaceous plant colonization on the transformation of tailings into soil like substrate. J Environ Sci (China) 2025; 147:230-243. [PMID: 39003043 DOI: 10.1016/j.jes.2023.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 07/15/2024]
Abstract
Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.
Collapse
Affiliation(s)
- Bin Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Meiyan Si
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Guizhou Research Institute of Coal Mine Design Co., Ltd., Guiyang 550025, China
| | - Xin Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ximin Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Ju W, Liu J, Yang WC, Fan Q, Huang M, Fang L. Enhancing soil ecological security through phytomanagement of tailings in erosion-prone areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132730. [PMID: 37820525 DOI: 10.1016/j.jhazmat.2023.132730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Revegetation is effective in improving soil quality in ecologically fragile areas. However, little is known about the impact of diverse phytomanagement strategies of tailings on soil quality and ecological security in erosion-prone areas. We investigated the water stability, soil aggregate nutrients, and the risk of heavy metal contamination of abandoned tailings under phytomanagement and in adjacent bare land on the Loess Plateau. The results showed that phytomanagement significantly enhanced soil aggregate stability, as demonstrated by higher contents of soil organic carbon (SOC), glomalin-related soil protein (GRSP), aromatic-C, and alkene-C in macro-aggregates. The pollution load index (PLI) and ecological risk index (RI) of soil heavy metals were lower in shrub/herbaceous mixed forests than in natural grasslands and planted forests. The risk of heavy metal contamination was higher in macro-aggregates (>0.25 mm) than in micro-aggregates (<0.25 mm) and was significantly and positively correlated with the SOC and GRSP contents of the aggregates. Our study demonstrates that soil aggregate quality is closely related to the fate of heavy metals. Diversified tailing revegetation measures can improve soil quality and ensure ecological security.
Collapse
Affiliation(s)
- Wenliang Ju
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Min Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China.
| |
Collapse
|
3
|
Yang H, Zhou J, Fei J, Ci K, Li D, Fan J, Wei C, Liang J, Xia R, Zhou J. Soil ammonium (NH 4+) toxicity thresholds for restoration grass species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120869. [PMID: 36528204 DOI: 10.1016/j.envpol.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ionic rare earth mining has resulted in large amounts of bare soils, and revegetation success plays an important role in mine site rehabilitation and environmental management. However, the mining soils still maintain high NH4+ concentrations that inhibit plant growth and NH4+ toxicity thresholds for restoration plants have not been established. Here we investigated the NH4+ toxicological effects and provided toxicity thresholds for grasses (Lolium perenne L. and Medicago sativa L.) commonly used in restoration. The results show that high NH4+ concentration not only reduces the plant biomass and soluble sugars in leaves but also increases the H2O2 and MDA content, and SOD, POD, and GPX activities in roots. The SOD activities and root biomass can be adopted as the most NH4+ sensitive biomarkers. Six ecotoxicological endpoints (root biomass, soluble sugars, proline, H2O2, MDA, and GSH) of ryegrass, eight ecotoxicological endpoints (root biomass, soluble sugars, proline, MDA, SOD, POD, GPX, and GSH) of alfalfa were selected to determine the threshold concentrations. The toxicity thresholds of NH4+ concentrations were proposed as 171.9 (EC5), 207.8 (EC10), 286.6 (EC25), 382.3 (EC50) mg kg-1 for ryegrass and 171.9 (EC5), 193.2 (EC10), 234.7 (EC25), 289.6 (EC50) mg kg-1 for alfalfa. The toxicity thresholds and the relation between plant physiological indicators and NH4+ concentrations can be used to assess the suitability of the investigated plants for ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Jiasai Fei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaidong Ci
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Demin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jianbo Fan
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| |
Collapse
|
4
|
Xu H, Fu B, Lei J, Kang H, Wang J, Huang X, Zhu F. Soil microbial communities and their co-occurrence networks in response to long-term Pb-Zn contaminated soil in southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26687-26702. [PMID: 36369447 DOI: 10.1007/s11356-022-23962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Mining causes extreme heavy metal (HM) contamination to surrounding environments and poses threats to soil microbial community. The effects of HMs on soil microbial communities are not only related to their total amounts but also associated with the distribution of chemical fractions. However, the effects of chemical fractions on soil microbes and their interactions remain largely unclear. Here we investigated soil physicochemical properties and bacterial and fungal communities of soil samples from the control area and lightly (L), moderately (M), and heavily (H) contaminated areas, respectively, which were collected from long-term Pb-Zn slag contamination area in the southern China. The results showed that bacterial and fungal community composition and structure were significantly affected by HMs, while community diversity was not significantly affected by HMs. The critical environmental factor affecting bacterial and fungal communities was pH, and the impacts of chemical fractions on their changes were more significant than the total amounts of HMs. Variance partitioning analysis (VPA) revealed fungal community changes were mostly driven by HM total amounts, but bacterial community changes were mostly driven by soil chemical properties. Co-occurrence network indicated that interactions among species of fungal network were sparser than that of bacterial network, but fungal network was more stable, due to a more significant number of keystone taxa and a lower percentage of positive associations. These illustrated that the fungal community might serve as indicator taxa for HM-contaminated status, and specific HM-responsive fungal species such as Triangularia mangenotii, Saitozyma podzolica, and Cladosporium endophytica, and genus Rhizophagus can be considered relevant bioindicators due to their less relative abundance in contaminated areas. Additionally, HM-responsive bacterial OTUs representing five genera within Sulfurifustis, Thiobacillus, Sphingomonas, Qipengyuania, and Sulfurirhabdus were found to be tolerant to HM stress due to their high relative abundance in contaminated levels.
Collapse
Affiliation(s)
- Hongyang Xu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bingqing Fu
- College of Life Science and Technology, Central-South, University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Jiaqi Lei
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Hui Kang
- Changsha Environmental Protection College, Changsha, 410004, People's Republic of China
| | - Jun Wang
- College of Life Science and Technology, Central-South, University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Xinhao Huang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Fan Zhu
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| |
Collapse
|
5
|
Wu M, Ye Y, Hu N, Wang Q, Tan W. Scientometric analysis on the review research evolution of tailings dam failure disasters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13945-13959. [PMID: 36564690 PMCID: PMC9788663 DOI: 10.1007/s11356-022-24937-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
As the most severe damage form of tailings ponds, dam failure causes a serious threat and damage to the surrounding lives and environment. Therefore, based on the systematic collection and consultation of relevant data at home and abroad, the literature source analysis on tailings dam failure disasters is conducted using the CiteSpace scientometric tool. The research on tailings dam failure disasters can be classified into two stages: the preliminary germination stage and rapid development stage. Based on the scientometric knowledge map, the research hotspots of tailings dam failure disasters are analyzed and summarized as three main research directions: environmental impact, risk assessment, and mechanical behavior. With the maturity of the research on ecological problems caused by tailings leakage, ecological restoration has also gradually become a hot research topic. Through the analysis of keyword bursts and co-cited bursts, the research frontier of tailings dam break disaster is explored. "Risk management," "real-time monitoring," and "tailings characteristic" represent the current research frontier. Among them, risk management is burst for the longest time and is expected to be a very important research direction in the future. Finally, a tailings pond risk management and control suggestion is proposed with risk management as the core, emphasizing risk monitor, and combined with dynamic risk control, which provides a foundation for the construction of tailings dam safety management and dynamic monitoring systems.
Collapse
Affiliation(s)
- Menglong Wu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, People's Republic of China
| | - Yicheng Ye
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, People's Republic of China
- Industrial Safety Engineering Technology Research Center of Hubei Province, Wuhan, 430081, Hubei, People's Republic of China
| | - Nanyan Hu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, People's Republic of China.
| | - Qihu Wang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, People's Republic of China
| | - Wenkan Tan
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, People's Republic of China
| |
Collapse
|
6
|
Young RE, Gann GD, Walder B, Liu J, Cui W, Newton V, Nelson CR, Tashe N, Jasper D, Silveira FA, Carrick PJ, Hägglund T, Carlsén S, Dixon K. International principles and standards for the ecological restoration and recovery of mine sites. Restor Ecol 2022. [DOI: 10.1111/rec.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Renee E. Young
- School of Molecular and Life Sciences ARC Centre for Mine Site Restoration, Curtin University Bentley WA 6102 Australia
- Society for Ecological Restoration Australasia Perth WA 6000 Australia
| | - George D. Gann
- George D. Gann Consulting, Inc. Delray Beach FL U.S.A
- Society for Ecological Restoration Washington D.C. 20005 U.S.A
| | - Bethanie Walder
- Society for Ecological Restoration Washington D.C. 20005 U.S.A
| | - Junguo Liu
- School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen 518055 China
- Society for Ecological Rehabilitation of Beijing Beijing China
- North China University of Water Resources and Electric Power Zhengzhou 450046 China
| | - Wenhui Cui
- School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Urban Public Safety and Technology Institute Shenzhen 518055 China
| | - Vern Newton
- Society for Ecological Restoration Australasia Perth WA 6000 Australia
- Hanson Construction Materials Rivervale WA 6103 Australia
| | - Cara R. Nelson
- Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation University of Montana Missoula MT 59812 U.S.A
- IUCN Commission on Ecosystem Management Gland Switzerland
| | | | | | - Fernando A.O. Silveira
- Department of Genetics, Ecology and Evolution Universidade Federal de Minas Gerais Belo Horizonte MG 31270‐901 Brazil
| | - Peter J. Carrick
- Plant Conservation Unit, Department of Biological Science University of Cape Town Rondebosch 7701 South Africa
| | | | | | - Kingsley Dixon
- School of Molecular and Life Sciences ARC Centre for Mine Site Restoration, Curtin University Bentley WA 6102 Australia
- Society for Ecological Restoration Washington D.C. 20005 U.S.A
| |
Collapse
|
7
|
Chen X, Chen H, Zhao J, Xin Y, Li Y. Bacterial community structure and diversity in the rhizospheric soil of Robinia pseudoacacia and Juniperus sabina planted in iron tailings matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83404-83416. [PMID: 35763144 DOI: 10.1007/s11356-022-21669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Iron tailings matrix is deficient in nutrients, and phytoremediation is one of the effective methods to improve tailings nutrients. The response of phytoremediation to tailings microorganisms remains to be studied. The present study analyzed rhizospheric soil of two kinds of plants bacterial diversity and community structure and their relationship with soil environmental factors. The results indicate that the rhizospheric soil bacteria species of Robinia pseudoacacia and Juniperus sabina were not significantly different from that of bare tailings, but rhizospheric soil bacterial community compositions and abundance were significantly different from that of bare tailings. Canonical correlation analysis (CCA) showed that soil alkali-hydrolyzable nitrogen (AN), soil total nitrogen (TN), and soil organic matter (SOM) were the main environmental factors affecting bacterial community diversity. Spearman's correlation analysis showed that AN, TN, and SOM were significantly positively correlated with the relative abundance of Gemmatimonadetes and Nitrospirae, and were significantly negatively correlated with that of Firmicutes, Fusobacteria, and Bacteroidetes. FAPROTAX function prediction showed that the functional microbial communities of rhizospheric soil of the two plants were significantly different from those of bare tailings. Overall, the findings support an increase of microbial diversity, SOM, and nitrogen in rhizospheric soil of revegetated tailings compared to bare tailings. These results provide theoretical support for the development and application of phytoremediation in abandoned mines.
Collapse
Affiliation(s)
- Xiaolin Chen
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Haipeng Chen
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Jiaqi Zhao
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Yue Xin
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China.
| |
Collapse
|
8
|
Geng H, Wang F, Yan C, Ma S, Zhang Y, Qin Q, Tian Z, Liu R, Chen H, Zhou B, Yuan R. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129045. [PMID: 35525218 DOI: 10.1016/j.jhazmat.2022.129045] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, the metal(loid) fractions in two alkaline iron tailings areas with similar physico-chemical properties and the enrichment ability of dominant plants in these areas were investigated. Additionally, high-throughput sequencing and metagenome analysis were used to examine the rhizosphere microbial community structures and their strategies and potential for carbon fixation, nitrogen metabolism, and metal(loid) resistance in mining areas. Results showed that Salsola collina, Setaria viridis, and Xanthium sibiricum have strong enrichment capacity for As, and the maximum transport factor for Mn can reach 4.01. The richness and diversity of bacteria were the highest in rhizosphere tailings, and the dominant phyla were Proteobacteria, Actinobacteria, Ascomycota, and Thaumarchaeota. The key taxa present in rhizosphere tailings were generally metal(loid) resistant, especially Sphingomonas, Pseudomonas, Nocardioides, and Microbacterium. The reductive citrate cycle was the main carbon fixation pathway of microorganisms in tailings. Rhizosphere microorganisms have evolved a series of survival strategies and can adapt to oligotrophic and metal(loid) polluted mining environments. The results of this study provide a basis for the potential application of plant-microbial in situ remediation of alkaline tailings.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China.
| | - Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yiyue Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, Beijing 101500, China
| | - Ruiping Liu
- Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, 15 Shixing St, Shijingshan District, Beijing 100043, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
9
|
Rajapakshe RPVGSW, Cross AT, Turner SR, Tomlinson S. Understanding the interplay of temperature and moisture on the germination niche to improve management of threatened species impacted by mining. Restor Ecol 2022. [DOI: 10.1111/rec.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rajapakshe P. V. G. S. W. Rajapakshe
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions Kings Park Western Australia 6005 Australia
| | - Adam T. Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
- EcoHealth Network, 1330 Beacon St, Suite 355a Brookline MA 02446 United States
| | - Shane R. Turner
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions Kings Park Western Australia 6005 Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia 6009 Australia
| | - Sean Tomlinson
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions Kings Park Western Australia 6005 Australia
- School of Biological Sciences, University of Adelaide, North Terrace Adelaide South Australia 5000 Australia
| |
Collapse
|
10
|
Sarathchandra SS, Rengel Z, Solaiman ZM. Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). CHEMOSPHERE 2022; 288:132573. [PMID: 34673039 DOI: 10.1016/j.chemosphere.2021.132573] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Improper disposal of heavy metal-contaminated iron ore tailings poses a significant risk to the surrounding environments. Adding compost and growing ryegrass could be a cost-effective long-term solution for remediation of iron ore tailings. We conducted a glasshouse study to investigate the impact of compost amendment (0, 50, 75 and 100% w/w) on growth and accumulation of heavy metals (Cu, Fe, Mn, Pb, Ni and Zn) and As in shoots of perennial ryegrass (Lolium perenne L.) grown in two iron ore tailings (Site A and Site B mines, Pilbara, Western Australia). Ryegrass was harvested 45 and 60 days after sowing. Site A iron ore tailings had total concentrations (mg kg-1) of Fe (449,000), Mn (6900), Zn (109), Co (16) and As (7.3). Site B mine tailings had total concentrations (mg kg-1) of Fe (457,000), Ni (21), Zn (109) and As (45). Both tailings had low cation exchange capacity, organic matter, air porosity and near-neutral pH, but varied in particle size distribution (Site A-clay loam and Site B-sandy loam). Ryegrass germination was higher in the extract of Site B than Site A tailings. Increasing compost-to-tailings ratio increased dry shoot biomass at 45 days. The heavy metal/metalloid concentrations in shoots significantly decreased with increasing compost-to-tailings ratio, except for Cu and Zn. The bioconcentration factor (BCF) of heavy metals (metal concentration in shoot/total metal concentration in substrate) significantly decreased with an increasing proportion of compost in growth substrate. The BCF was >1 for Zn and Cu, and <1 for other heavy metals. A high concentration of organic matter in compost treatments likely contributed to the enhanced mobilisation of Cu and Zn for plant uptake. In contrast, compost stabilised other metals/metalloids in the tailings to decrease their uptake by ryegrass and maintain plant growth despite relatively high Mn, Fe, As and Pb concentrations in iron ore tailings.
Collapse
Affiliation(s)
- Sajeevee S Sarathchandra
- UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Spectrum Institute of Science and Technology, Kirimandala Mawatha, Colombo, Sri Lanka
| | - Zed Rengel
- UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
11
|
Zhong H, Lambers H, Wong WS, Dixon KW, Stevens JC, Cross AT. Initiating pedogenesis of magnetite tailings using Lupinus angustifolius (narrow-leaf lupin) as an ecological engineer to promote native plant establishment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147622. [PMID: 34034171 DOI: 10.1016/j.scitotenv.2021.147622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 05/22/2023]
Abstract
Mine tailings pose physical and chemical challenges for plant establishment. Our aim was to learn from natural processes in long-term soil and ecosystem development to use tailings as novel parent materials and pioneer ecological-engineering plant species to ameliorate extreme conditions of tailings, and facilitate the establishment of subsequent native plants. A glasshouse trial was conducted using magnetite tailings containing various amendments, investigating the potential of the nitrogen (N)-fixing, non-native pioneer species Lupinus angustifolius (Fabaceae), narrow-leaf lupin, as a potential eco-engineer to promote soil formation processes, and whether amendment type or the presence of pioneer vegetation improved the subsequent establishment and growth of 40 species of native plants. We found that L. angustifolius eco-engineered the mine tailings, by enhancing the N status of tailings and mobilising primary mineral P into organic P via a carboxylate-exudation strategy, thereby enabling subsequent growth of native species. The substantial increases of the soil organic P (from ca. 10 to 150 mg kg-1) pool and organo-bound Al minerals (from 0 to 2 mg kg-1) were particularly evident, indicating the initiation of pedogenesis in mine tailings. Our findings suggest that the annual legume L. angustifolius has eco-engineering potential on mine tailings through N-fixation and P-mobilisation, promoting the subsequent growth of native plants. We proposed Daviesia (Fabaceae) species as native species alternatives for the non-native L. angustifolius in the Western Australian context. Our findings are important for restoration practitioners tasked with mine site restoration in terms of screening pioneer eco-engineering plant species, where native plants are required to restore after mine operations.
Collapse
Affiliation(s)
- Hongtao Zhong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia.
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Wei San Wong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Kingsley W Dixon
- Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Jason C Stevens
- Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
| | - Adam T Cross
- EcoHealth Network, 1330 Beacon St, Suite 355a, Brookline, MA 02446, United States; School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Bentley, WA 6102, Australia.
| |
Collapse
|
12
|
Zhong H, Zhou J, Wong WS, Cross A, Lambers H. Exceptional nitrogen-resorption efficiency enables Maireana species (Chenopodiaceae) to function as pioneers at a mine-restoration site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146420. [PMID: 33743470 DOI: 10.1016/j.scitotenv.2021.146420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Tailings are among the most challenging mined substrates for plant re-establishment, in particular because of a lack of soil-like structure and nitrogen. Potential pioneer plants are sometimes found in such disturbed and infertile sites. We present a group of pioneer species from the genus Maireana (Chenopodiaceae) that are promising candidates for the restoration of magnetite tailings. We found that these Maireana species did not rely on biologically fixed N from the atmosphere, but exhibited an exceptionally high leaf N-resorption efficiency (about 95%) during leaf senescence, at the same time effectively scavenging trace amount of N from the substrate, in part through rapid transpiration.
Collapse
Affiliation(s)
- Hongtao Zhong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA 6102, Australia.
| | - Jun Zhou
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-San Wong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Adam Cross
- EcoHealth Network, 1330 Beacon St, Brookline, MA 02446, United States; School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA 6102, Australia
| |
Collapse
|
13
|
Mghazli N, Sbabou L, Hakkou R, Ouhammou A, El Adnani M, Bruneel O. Description of Microbial Communities of Phosphate Mine Wastes in Morocco, a Semi-Arid Climate, Using High-Throughput Sequencing and Functional Prediction. Front Microbiol 2021; 12:666936. [PMID: 34305834 PMCID: PMC8297565 DOI: 10.3389/fmicb.2021.666936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microbiota are vital for successful revegetation, as they play a critical role in nutrient cycles, soil functions, and plant growth and health. A rehabilitation scenario of the abandoned Kettara mine (Morocco) includes covering acidic tailings with alkaline phosphate mine wastes to limit water infiltration and hence acid mine drainage. Revegetation of phosphate wastes is the final step to this rehabilitation plan. However, revegetation is hard on this type of waste in semi-arid areas and only a few plants managed to grow naturally after 5 years on the store-and-release cover. As we know that belowground biodiversity is a key component for aboveground functioning, we sought to know if any structural problem in phosphate waste communities could explain the almost absence of plants. To test this hypothesis, bacterial and archaeal communities present in these wastes were assessed by 16S rRNA metabarcoding. Exploration of taxonomic composition revealed a quite diversified community assigned to 19 Bacterial and two Archaeal phyla, similar to other studies, that do not appear to raise any particular issues of structural problems. The dominant sequences belonged to Proteobacteria, Bacteroidetes, Actinobacteria, and Gemmatimonadetes and to the genera Massilia, Sphingomonas, and Adhaeribacter. LEfSe analysis identified 19 key genera, and metagenomic functional prediction revealed a broader phylogenetic range of taxa than expected, with all identified genera possessing at least one plant growth-promoting trait. Around 47% of the sequences were also related to genera possessing strains that facilitate plant development under biotic and environmental stress conditions, such as drought and heat.
Collapse
Affiliation(s)
- Najoua Mghazli
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Laila Sbabou
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Hakkou
- IMED_Laboratory, Faculty of Science and Technology, Cadi Ayyad University (UCA), Marrakech, Morocco
- Mining Environment and Circular Economy Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Ahmed Ouhammou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Team of Agrosciences, PhytoBiodiversity and Environment, Regional Herbarium ‘MARK’, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mariam El Adnani
- Resources Valorisation, Environment and Sustainable Development Laboratory, National School of Mines of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Odile Bruneel
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
14
|
Cross AT, Lambers H. Calcicole-calcifuge plant strategies limit restoration potential in a regional semi-arid flora. Ecol Evol 2021; 11:6941-6961. [PMID: 34141267 PMCID: PMC8207153 DOI: 10.1002/ece3.7544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
AIM To examine calcicole and calcifuge plant strategies, as well as nutrient-acquisition strategies, as drivers of the distribution of species in response to edaphic factors, and the degree to which these strategies may act as filters to species establishment in ecological restoration on heavily altered or reconstructed substrates. LOCATION An 82,000-ha area within a major mining province in the Mid-West region of Western Australia, harboring vegetation communities ranging from species-poor halophytic scrub on saline flats to dense biodiverse shrubland on the skeletal soils of ancient Banded Ironstone Formations (BIF). METHODS Univariate and multivariate analyses were employed to examine how variation in soil chemistry and landscape position (undulating plains, slopes, and BIF crests and ridges) influenced patterns of floristic diversity, calcifuge plant strategies, and nutrient-acquisition strategies in 538 plant species from 830 relevés. RESULTS Landscape position was the strongest driver of species richness and vegetation functional composition. Soils became increasingly acidic and P-impoverished along an increasing elevational gradient. Vegetation from different landscape positions was not compositionally dissimilar, but vegetation of BIF crests and ridges was up to twice as biodiverse as vegetation from adjacent lower-relief areas and harbored higher proportions of calcifuge species and species with mycorrhizal associations. MAIN CONCLUSIONS Topographic and edaphic complexity of BIF landforms in an otherwise relatively homogenous landscape has likely facilitated species accumulation over long time periods. They represent musea of regional floristic biodiversity, excluding only species that cannot establish or are inferior competitors in heavily weathered, acidic, skeletal, and nutrient-impoverished soils. Plant strategies likely represent a major filter in establishing biodiverse, representative vegetation on postmining landforms in geologically ancient regions.
Collapse
Affiliation(s)
- Adam T. Cross
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- EcoHealth NetworkBrooklineMAUSA
| | - Hans Lambers
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
15
|
Cross AT, Zhong H, Lambers H. Incorporating rock in surface covers improves the establishment of native pioneer vegetation on alkaline mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145373. [PMID: 33736352 DOI: 10.1016/j.scitotenv.2021.145373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Rates of tailings production and deposition around the world have increased markedly in recent decades, and have grown asynchronously with safe and environmentally suitable solutions for their storage. Tailings are often produced in regions harbouring biodiverse native plant communities adapted to old, highly-weathered soils. The highly-altered edaphic conditions of tailings compared with natural soils in these areas will likely select against many locally endemic plant species, making phytostabilisation, rehabilitation or ecological restoration of these landforms challenging. METHODS We established four substrate cover composition treatments on a dry-stacked magnetite tailings storage facility in semi-arid Western Australia, representative of standard industry practices for rehabilitating or restoring post-mining landforms in the region. Plots were seeded with a selection of locally native plant species and monitored for five years to determine whether different substrate cover treatments yielded different edaphic conditions (soil moisture, substrate surface temperature and substrate chemistry) and influenced soil development and the success of native vegetation establishment. RESULTS No vegetation established from seeds on unamended tailings with no surface cover, and substrate chemistry changed minimally over five years. In contrast, rock-containing surface covers allowed establishment of up to 11 native plant species from broadcast seeds at densities of ca. 1.5 seedlings m-2, and up to 3.5 seedlings m-2 of five native pioneer chenopods from capture of wind-dispersed seeds from surrounding undisturbed native vegetation. Greater vegetation establishment in rock-containing surface covers resulted from increased heterogeneity (e.g., lower maximum soil temperature, greater water capture and retention, surface microtopography facilitating seed capture and retention, more niches for seed germination). Soil development and bio-weathering occurred most rapidly under the canopy of native pioneer plants on rock-containing surface covers, particularly increases in organic carbon, total nitrogen, and organo-bound aluminium and iron. CONCLUSIONS Seed germination and seedling survival on tailings were limited by extreme thermal and hydrological conditions and a highly-altered biogeochemical environment. The design of surface cover layers appears crucial to achieving closure outcomes on tailings landforms, and designs should prioritise increasing surface heterogeneity through the incorporation of rock or other structure-improving amendments to assist the establishment of pioneer vegetation.
Collapse
Affiliation(s)
- Adam T Cross
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia; EcoHealth Network, 1330 Beacon St, Suite 355a, Brookline, MA 02446, United States.
| | - Hongtao Zhong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| |
Collapse
|
16
|
Wu S, You F, Wu Z, Bond P, Hall M, Huang L. Molecular diversity of arbuscular mycorrhizal fungal communities across the gradient of alkaline Fe ore tailings, revegetated waste rock to natural soil sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11968-11979. [PMID: 31983001 DOI: 10.1007/s11356-020-07780-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are important to the establishment of native vegetation for mined land rehabilitation, particularly in semi-arid and infertile landscapes. However, the information has been scarce about the colonization of AM fungal community in alkaline magnetite Fe ore tailing sites (without toxic metal (loid) contamination). The present study has characterized the diversity of AM fungi across typical domains of a magnetite Fe ore mine located in 200 km south-east of Geraldton, Western Australia, by adopting high throughput Illumina Miseq sequencing. The investigated domains included two tailing sites without top soil covering (T1 and T2), a rehabilitated area of tailings with top soil covering (R1), a revegetated waste rock area (R2), and two native undisturbed soil sites (S1 and S2). The results indicated that the T1/T2 sites had different AM fungal community structure, compared with R1/R2 and S1/S2 sites. The dominant families were Glomeraceae, Claroideoglomeraceae, Archaeosporaceae, Ambisporaceae, and Paraglomeraceae, with Paraglomeraceae (more than 50%) as the most abundant in the T1/T2 and R1/R2 sites. At genus level, Ambispora spp. and Archaeospora spp. were rich in T1/T2 sites (> 10%), while Glomus spp. were preferably dominant in S1/S2 sites (> 10%). Furthermore, amorphous Fe and available P were found to explain the variations associated with AM fungal community composition, particularly the abundance of Archaeosporaceae and Glomeraceae. The study revealed the AM fungal community composition shift across the gradient of Fe ore mine sites, as well as the effects of revegetation on AM fungal community development. The findings indicate the possible restoration of AM fungal community in the tailings undergoing revegetation, and potential adoption of indigenous AM fungi to rapid phytostabilization of the Fe ore tailings under semi-arid climatic conditions.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhaoxiang Wu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Philip Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Merinda Hall
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
17
|
Multi-Sensor UAV Tracking of Individual Seedlings and Seedling Communities at Millimetre Accuracy. DRONES 2019. [DOI: 10.3390/drones3040081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increasing spatial and temporal scales of ecological recovery projects demand more rapid and accurate methods of predicting restoration trajectory. Unmanned aerial vehicles (UAVs) offer greatly improved rapidity and efficiency compared to traditional biodiversity monitoring surveys and are increasingly employed in the monitoring of ecological restoration. However, the applicability of UAV-based remote sensing in the identification of small features of interest from captured imagery (e.g., small individual plants, <100 cm2) remains untested and the potential of UAVs to track the performance of individual plants or the development of seedlings remains unexplored. This study utilised low-altitude UAV imagery from multi-sensor flights (Red-Green-Blue and multispectral sensors) and an automated object-based image analysis software to detect target seedlings from among a matrix of non-target grasses in order to track the performance of individual target seedlings and the seedling community over a 14-week period. Object-based Image Analysis (OBIA) classification effectively and accurately discriminated among target and non-target seedling objects and these groups exhibited distinct spectral signatures (six different visible-spectrum and multispectral indices) that responded differently over a 24-day drying period. OBIA classification from captured imagery also allowed for the accurate tracking of individual target seedling objects through time, clearly illustrating the capacity of UAV-based monitoring to undertake plant performance monitoring of individual plants at very fine spatial scales.
Collapse
|
18
|
Hayes PE, Clode PL, Guilherme Pereira C, Lambers H. Calcium modulates leaf cell-specific phosphorus allocation in Proteaceae from south-western Australia. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3995-4009. [PMID: 31049573 PMCID: PMC6685658 DOI: 10.1093/jxb/erz156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/26/2019] [Indexed: 05/02/2023]
Abstract
Over 650 Proteaceae occur in south-western Australia, contributing to the region's exceptionally high biodiversity. Most Proteaceae occur exclusively on severely nutrient-impoverished, acidic soils (calcifuge), whilst only few also occur on young, calcareous soils (soil-indifferent), higher in calcium (Ca) and phosphorus (P). The calcifuge habit of Proteaceae is explained by Ca-enhanced P toxicity, putatively linked to the leaf cell-specific allocation of Ca and P. Separation of these elements is essential to avoid the deleterious precipitation of Ca-phosphate. We used quantitative X-ray microanalysis to determine leaf cell-specific nutrient concentrations of two calcifuge and two soil-indifferent Proteaceae grown in hydroponics at a range of Ca and P concentrations. Calcium enhanced the preferential allocation of P to palisade mesophyll (PM) cells under high P conditions, without a significant change in whole leaf [P]. Calcifuges showed a greater PM [P] compared with soil-indifferent species, corresponding to their greater sensitivity. This study advances our mechanistic understanding of Ca-enhanced P toxicity, supporting the proposed model, and demonstrating its role in the calcifuge distribution of Proteaceae. This furthers our understanding of nutrient interactions at the cellular level and highlights its importance to plant functioning.
Collapse
Affiliation(s)
- Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Peta L Clode
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Caio Guilherme Pereira
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Seed and Seedling Detection Using Unmanned Aerial Vehicles and Automated Image Classification in the Monitoring of Ecological Recovery. DRONES 2019. [DOI: 10.3390/drones3030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring is a crucial component of ecological recovery projects, yet it can be challenging to achieve at scale and during the formative stages of plant establishment. The monitoring of seeds and seedlings, which represent extremely vulnerable stages in the plant life cycle, is particularly challenging due to their diminutive size and lack of distinctive morphological characteristics. Counting and classifying seedlings to species level can be time-consuming and extremely difficult, and there is a need for technological approaches offering restoration practitioners with fine-resolution, rapid and scalable plant-based monitoring solutions. Unmanned aerial vehicles (UAVs) offer a novel approach to seed and seedling monitoring, as the combination of high-resolution sensors and low flight altitudes allow for the detection and monitoring of small objects, even in challenging terrain and in remote areas. This study utilized low-altitude UAV imagery and an automated object-based image analysis software to detect and count target seeds and seedlings from a matrix of non-target grasses across a variety of substrates reflective of local restoration substrates. Automated classification of target seeds and target seedlings was achieved at accuracies exceeding 90% and 80%, respectively, although the classification accuracy decreased with increasing flight altitude (i.e., decreasing image resolution) and increasing background surface complexity (increasing percentage cover of non-target grasses and substrate surface texture). Results represent the first empirical evidence that small objects such as seeds and seedlings can be classified from complex ecological backgrounds using automated processes from UAV-imagery with high levels of accuracy. We suggest that this novel application of UAV use in ecological monitoring offers restoration practitioners an excellent tool for rapid, reliable and non-destructive early restoration trajectory assessment.
Collapse
|
20
|
Wu S, Liu Y, Southam G, Robertson L, Chiu TH, Cross AT, Dixon KW, Stevens JC, Zhong H, Chan TS, Lu YJ, Huang L. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:192-202. [PMID: 30227289 DOI: 10.1016/j.scitotenv.2018.09.171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to characterize key physico-chemical and mineralogical attributes of magnetite iron (Fe) ore tailings to identify potential constraints limiting in situ soil formation and direct phytostabilization. Tailings of different age, together with undisturbed local native soils, were sampled from a magnetite mine in Western Australia. Tailings were extremely alkaline (pH > 9.0), with a lack of water stable aggregate and organic matter, and contained abundant primary minerals including mica (e.g., biotite), with low specific surface area (N2-BET around 1.2 m2 g-1). These conditions remained relatively unchanged after four years' aging under field conditions. Chemical extraction and spectroscopic analysis [e.g., X-ray diffraction (XRD) and synchrotron-based Fe K edge X-ray absorption fine structure spectroscopy (XAFS) analysis] revealed that the aging process decreased biotite-like minerals, but increased hematite and magnetite in the tailings. However, the aged tailings lacked goethite, a compound abundant in natural soils. Examination using backscattered-scanning electron microscope - energy dispersive X-ray spectrometry (BSE-SEM-EDS) revealed that aged tailings contained discrete sharp edged Fe-bearing minerals that did not physically integrate with other minerals (e.g., Si/Al bearing minerals). In contrast, Fe minerals in native soils appeared randomly distributed and closely amassed with Si/Al rich phyllosilicates, with highly eroded edges. The lack of labile organic matter and the persistence of alkaline-saline conditions may have significantly hindered the bioweathering of Fe-minerals and the biogenic formation of secondary Fe-minerals in tailings. However, there is signature that a native pioneer plant, Maireana brevifolia can facilitate the bioweathering of Fe-bearing minerals in tailings. We propose that eco-engineering inputs like organic carbon accumulation, together with the introduction of functional microbes and pioneer plants, should be adopted to accelerate bioweathering of Fe-bearing minerals as a priority for initiating in situ soil formation in the Fe ore tailings.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lachlan Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tsz Ho Chiu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam T Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Science, Curtin University, GPO Box U1987, Bentley, Perth, WA 6102, Australia
| | - Kingsley W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Science, Curtin University, GPO Box U1987, Bentley, Perth, WA 6102, Australia
| | - Jason C Stevens
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kattidj Close, Kings Park, WA 6005, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Hongtao Zhong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Ying-Jui Lu
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
21
|
Hayes PE, Guilherme Pereira C, Clode PL, Lambers H. Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien Bay chronosequence. THE NEW PHYTOLOGIST 2019; 221:764-777. [PMID: 30267566 DOI: 10.1111/nph.15447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Many Proteaceae are highly phosphorus (P)-sensitive and occur exclusively on old nutrient-impoverished acidic soils (calcifuge), whilst a few also occur on young calcareous soils (soil-indifferent) that are higher in available calcium (Ca) and P. Calcium increases the severity of P-toxicity symptoms, but its underlying mechanisms are unknown. We propose that Ca-enhanced P toxicity explains the calcifuge habit of most Proteaceae. Four calcifuge and four soil-indifferent Proteaceae from South-Western Australia were grown in hydroponics, at a range of P and Ca concentrations. Calcium increased the severity of P-toxicity symptoms in all species. Calcifuge Proteaceae were more sensitive to Ca-enhanced P toxicity than soil-indifferent ones. Calcifuges shared these traits: low leaf zinc concentration ([Zn]), low Zn allocation to leaves, low leaf [Zn]:[P], low root : shoot ratio, and high seed P content, compared with soil-indifferent species. This is the first demonstration of Ca-enhanced P toxicity across multiple species. Calcium-enhanced P toxicity provides an explanation for the calcifuge habit of most Proteaceae and is critical for the management of this iconic Australian family. This study represents a major advance towards an understanding of the physiological mechanisms of P toxicity and its role in the distribution of Proteaceae.
Collapse
Affiliation(s)
- Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8656, Japan
| | - Caio Guilherme Pereira
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Peta L Clode
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| |
Collapse
|
22
|
Chen XW, Wong JTF, Chen ZT, Tang TWL, Guo HW, Leung AOW, Ng CWW, Wong MH. Effects of biochar on the ecological performance of a subtropical landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:963-975. [PMID: 30743893 DOI: 10.1016/j.scitotenv.2018.06.379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 06/09/2023]
Abstract
Landfills commonly occupy large areas of land that may be ecologically important. Ecological restoration of landfill cover is a necessary approach to rebuild sustainable habitats. However, unfavourable soil conditions and invasion by exotic plants in certain regions hinder the restoration. In this study, the effects of biochar as a soil amendment on the restoration of a landfill cover were investigated under field condition. Topsoils of a landfill cover in the subtropical region (Shenzhen, China) were mixed with 0, 5 and 10% (v/v) of biochar. Soil pH, electronic conductivity, organic matter, total organic carbon, water content, total N and total P were enhanced by biochar amendment. After nine months of self-succession, plant productivity, species richness and diversity were enhanced by biochar. The structures of soil bacterial and arbuscular mycorrhizal (AM) fungal communities were changed, and species richness and diversity were moderately promoted. Enhanced plant growth and diversity were probably attributed to a number of enhanced bacterial functions related to nutrient cycling including aerobic ammonia oxidation, aerobic nitrite oxidation, nitrification, sulphur respiration, nitrate respiration, nitrogen respiration, ureolysis, chemoheterotrophy and fermentation. The higher abundances of bacteria Streptomyces sp. and Pseudomonas sp. in biochar treatments potentially enhanced the AM fungal diversity. The bacterial diversity was more related to the soil properties, especially pH, than AM fungi. Continuous monitoring is necessary to track the changes of species composition and ecological functions over time. This is the first comprehensive study on the effects of biochar on the ecological performance of a man-made ecosystem. In addition to agricultural application, biochar can be used for restoring degraded lands.
Collapse
Affiliation(s)
- Xun Wen Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - James Tsz Fung Wong
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhan Ting Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Thomas Wui Lung Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hao Wen Guo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Anna Oi Wah Leung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Ming Hung Wong
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|