1
|
Bancel S, Geffard O, Bossy C, Clérandeau C, Coynel A, Daramy F, Delorme N, Garnero L, Mazzella N, Millan-Navarro D, Mzali F, Pierron F, Recoura-Massaquant R, Rochard E, Cachot J. Active biomonitoring of river pollution using an ex-situ exposure system with two model species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178159. [PMID: 39721546 DOI: 10.1016/j.scitotenv.2024.178159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
In the context of increasing pollution pressure on aquatic ecosystems, it is essential to improve our knowledge of habitat quality and its suitability for organisms. It is particularly relevant to better integrate early life stages of fish into pollution biomonitoring programs, as they are reliable indicators of ecosystem integrity and because of their high sensitivity to pollutants. To avoid the influence of environmental parameters on their development, a lab-on-field approach, called the ex-situ exposure method, was developed. Aquatic organisms were exposed to a continuous flux of water under semi-controlled temperature, oxygen, and photoperiod conditions to avoid the influence of these confounding factors when interpreting the results. To investigate the potential role of water contamination, this active biomonitoring method was applied to the Garonne River (Southwest France), where migratory fish populations have declined. Two model species from different taxa were used: embryos of the Japanese medaka (Oryzias latipes) and adults of the crustacean Gammarus fossarum. The results showed a significant impact of water quality on embryo mortality and early hatching in two separate experiments on Japanese medaka. In addition, an induction of feeding rate was observed in exposed gammarids, but no impact on their embryo survival, suggesting differences in sensitivity between the two species selected. Chemical and biological analyses did not identify trace metals, pesticides, or microorganisms as potential sources of toxicity in medaka embryos or G. fossarum. These results raise concerns about the quality of the water in the Garonne River and its toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Sarah Bancel
- INRAE, UR EABX, 50 Avenue de Verdun, 33610 Cestas, France.
| | - Olivier Geffard
- INRAE, UR Riverly, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Cécile Bossy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | | - Alexandra Coynel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Nicolas Delorme
- INRAE, UR Riverly, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Laura Garnero
- INRAE, UR Riverly, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | | | | | - Fatima Mzali
- Bordeaux University, UMR 5234 CNRS, Aquitaine microbiologie, Bordeaux, France
| | - Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | | - Eric Rochard
- INRAE, UR EABX, 50 Avenue de Verdun, 33610 Cestas, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
2
|
Archer E, Holton E, Fidal J, Kasprzyk-Hordern B, Carstens A, Brocker L, Kjeldsen TR, Wolfaardt GM. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160254. [PMID: 36402343 DOI: 10.1016/j.scitotenv.2022.160254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The study evaluated the presence and fate of various contaminants of emerging concern (CECs) from a South African wastewater treatment works (WWTW) and surface waters located around an urban setting. A total of 45 CECs were quantified from nine sampling locations over an 11-month period. Daily loads (g/day) of the target analytes in the WWTW showed persistence of some CECs, along with population-normalised daily loads (mg/day/1000inh) of pharmaceuticals and drugs of abuse (DOA) that were estimated for the first time in the study area. Multiple chemical markers were recorded in river water located upstream of the WWTW discharge throughout the study period, suggesting a high degree of diffuse pollution from urban communities in the study area that are not connected to sewage networks or where sanitation services are limited. The potential of using defined surface water locations to perform community-wide substance use profiling for non-sewered communities was also explored. Environmental risk characterisation for the WWTW effluent and surface waters throughout the study period provided multiple risk quotients (RQ) for the target list of CECs spanning over various sentinel trophic levels. High risk profiles (RQ > 1.0) with a frequency of exceedance (FoE) larger than 75 % were recorded for several CECs in both WWTW effluent and surface water locations that suggest potential long-term ecological health risk impacts of pollution hotspot areas in the river catchment situated around the urban area. We present challenges in surface water quality within the study area that is relatable, or may even present more challenging, in other low- or middle-income country (LMICs) settings. The study also highlighted some challenges and limitations associated with the much-needed application of wastewater-based epidemiology (WBE) intervention in non-sewered communities that can inform on public health and communal substance use profiles of the entire urban setting.
Collapse
Affiliation(s)
- E Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - E Holton
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - J Fidal
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | | | - A Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - L Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - T R Kjeldsen
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | - G M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
3
|
Weng ZF, He YQ, Li GX, Wu XT, Dai Y, Bao P. Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:284-291. [PMID: 34532751 DOI: 10.1007/s00128-021-03363-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in Wastewater treatment plants (WWTPs) have attracted increasing attention. In this study, the abundance of ARB and resistance genes tet32 and defA1 were investigated using high-throughput sequencing and high-throughput qPCR in water samples collected from the inlet of the biological treatment pool and outlet of Beilun Yandong WWTP in Ningbo, China. The result shows there was a high level of ARGs in the water of both the inlets and outlets in 2017 and 2018, whereas no ARGs were detected after adding a new baffled bioreactor (BBR) water treatment process in 2019. The BBR process uses Bacillus subtilis, B. thuringiensis, B. megaterium, B. licheniformis and B. amyloliquefaciens to effectively eliminate the ARGs in wastewater. Notably, this process did not significantly change the bacterial community structure of outlet water samples. The findings demonstrate an effective new method for removing ARGs from sewage.
Collapse
Affiliation(s)
- Zi-Fan Weng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Henan University, Kaifeng, 475004, People's Republic of China
| | - Yu-Qin He
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guo-Xiang Li
- Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Sigwartstrasse 10, 72076, Tuebingen, Germany
| | - Xiao-Tong Wu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Dai
- Ningbo Beilun Water Affairs Limited, Ningbo, 315800, People's Republic of China
| | - Peng Bao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China.
| |
Collapse
|
4
|
Chang P, Li Z. Over-complete deep recurrent neutral network based on wastewater treatment process soft sensor application. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Yıldırım S, Sellitepe HE. Vortex assisted liquid-liquid microextraction based on in situ formation of a natural deep eutectic solvent by microwave irradiation for the determination of beta-blockers in water samples. J Chromatogr A 2021; 1642:462007. [PMID: 33735640 DOI: 10.1016/j.chroma.2021.462007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/19/2022]
Abstract
In this study, a simple, green, and reliable method combining vortex-assisted liquid-liquid microextraction based on in situ formation of a novel hydrophobic natural deep eutectic solvent (NADES-VA-LLME) and high-performance liquid chromatography (HPLC) was developed for the determination of metoprolol and propranolol in water samples. The novel NADES was synthesized in situ within only 20 s by subjecting the water sample containing azelaic acid and thymol to microwave irradiation at 50 ˚C. Initial studies indicated that a 17:1 ratio of thymol to azelaic acid yielded the highest response for analytes. The influence of 7 parameters, including NADES volume, salt amount, sample pH, vortex time, centrifugation time, microwave time, and temperature, were screened using a 27-3 fractional factorial design. The obtained significant parameters were optimized by response surface methodology employing a Box-Behnken design. The method displayed satisfactory linearity (r=0.9996) for metoprolol and propranolol with limits of detection of 0.2 and 0.1 µg/L, respectively. The relative standard deviation at 2.5, 40, and 80 µg/L levels was lower than 6%, with accuracy in the range of 90.8-100.2%. Enrichment factors were 147.0 and 144.4 for metoprolol and propranolol, respectively. This study demonstrates that the developed in situ NADES-VA-LLME-HPLC technique can be considered as a fast and environmentally friendly alternative for isolation/preconcentration of β-blockers from water samples.
Collapse
Affiliation(s)
- Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.
| | - Hasan Erdinç Sellitepe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Alothman ZA, Badjah AY, Alharbi OML, Ali I. Cobalt doping of titanium oxide nanoparticles for atenolol photodegradation in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7423-7430. [PMID: 33030688 DOI: 10.1007/s11356-020-11071-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Cobalt-doped TiO2 nanoparticles were prepared and characterized by FT-IR, TEM, SEM, and XRD. The surface morphology was sphere-shaped with ~ 26.46 nm of the size of the nanoparticles. Ninety percent atenolol photodegradation was obtained with 15 mg/L concentration, 40 min stirring time, 2 pH, 2.0 g/L dosage of nanoparticles, 200.0 nm irradiation UV wavelength, and hydrogen peroxide amount 2.0 mL/L at 30 °C temp. Atenolol photodegradation conformed the first-order kinetics with a mechanism comprising atenolol sorption on the doped TiO2 nanoparticles and its degradation in UV irradiation. Hole (h+) and electron (e-) pairs are produced by doped TiO2 nanoparticles, creating hydroxyl free radicals and superoxide oxygen anions. These species break down atenolol.
Collapse
Affiliation(s)
- Zeid A Alothman
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Ahmad Yacine Badjah
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Omar M L Alharbi
- Department of Biology, Faculty of Sciences, Taibah University, Al-Medina Al-Munawara, 41477, Saudi Arabia
| | - Imran Ali
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Biology, Faculty of Sciences, Taibah University, Al-Medina Al-Munawara, 41477, Saudi Arabia.
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara, 41477, Saudi Arabia.
- Department of Chemistry, Jamia Millia Islamia (Central University) New Delhi, New Delhi, India.
| |
Collapse
|
7
|
Armaković SJ, Armaković S, Šibul F, Četojević-Simin DD, Tubić A, Abramović BF. Kinetics, mechanism and toxicity of intermediates of solar light induced photocatalytic degradation of pindolol: Experimental and computational modeling approach. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122490. [PMID: 32197201 DOI: 10.1016/j.jhazmat.2020.122490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
In this work, we have investigated the stability of pindolol (PIN), a non-selective β1-blocker detected in the river and wastewater of hospitals, in water solution under solar irradiation. Further, detailed insights into the stability of PIN were obtained by the density functional theory (DFT) calculations and molecular dynamics simulations. The kinetics of PIN photocatalytic degradation and mineralization has been studied using four commercial photocatalysts ZnO and TiO2 (P25, Hombikat, and Wackherr). It was found that the major role in degradation of PIN play the reactive hydroxyl radicals. The structures of degradation intermediates were suggested by LC-ESI-MS/MS and DFT calculations. Also, DFT calculations were used to refine molecular structures of intermediates and obtain their geometries. Toxicity of PIN and its mixtures formed during photocatalytic degradation were investigated using mammalian cell lines (H-4-II-E, HT-29, and MRC-5). The H-4-II-E cell line was the most sensitive to PIN and its photodegradation mixtures. The computational results were combined with the experimental data on the amounts of degradation intermediates for determination of the intermediates that were principally responsible for the toxicity. Intermediate with two hydroxyl groups, positioned on indole ring in meta and para positions, was proposed as the one with the highest contribution to toxicity.
Collapse
Affiliation(s)
- Sanja J Armaković
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
| | - Stevan Armaković
- University of Novi Sad Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Filip Šibul
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
| | - Dragana D Četojević-Simin
- University of Novi Sad Faculty of Medicine, Oncology Institute of Vojvodina, Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Aleksandra Tubić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
| | - Biljana F Abramović
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia.
| |
Collapse
|
8
|
Cornejo J, González-Pérez DM, Pérez JI, Gómez MA. Ibuprofen removal by a microfiltration membrane bioreactor during the startup phase. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:374-384. [PMID: 31793382 DOI: 10.1080/10934529.2019.1697587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The behavior of ibuprofen (IBU) during the startup phase of a microfiltration membrane bioreactor (MBR) was determined. A full-scale experimental installation treating real urban wastewater was used for the study. The MBR was composed of an anoxic and an aerobic bioreactors working in pre-denitrification configuration, followed of a membrane reactor. A full mass balance was carried out to estimate the contribution of biotransformation and sorption to biomass to the overall removal of the IBU. During the startup phase of the MBR system there were significant oscillations of the operational variables, mainly of the sludge retention time (SRT); nevertheless, the capacity of the system for IBU removal was very high, with yields of over 94%, despite reaching minimum SRT values of 4.15 d. The main IBU removal occurs in the aerobic reactor, both in the liquid phase and the one associated with the sludge, while in the anoxic bioreactor the removal was scarce, although a certain transfer of IBU from the liquid phase to the sludge took place under anoxic conditions. Despite the high IBU removal yields during startup, the SRT was the most influential variable in IBU removal, an effect observed in all bioreactors, particularly in the anoxic one.
Collapse
Affiliation(s)
- José Cornejo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, and Water Research Institute, University of Granada, Granada, Spain
| | - Daniel M González-Pérez
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, and Water Research Institute, University of Granada, Granada, Spain
| | - Jorge I Pérez
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, and Water Research Institute, University of Granada, Granada, Spain
| | - Miguel A Gómez
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, and Water Research Institute, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Pérez-Coyotl I, Galar-Martínez M, García-Medina S, Gómez-Oliván LM, Gasca-Pérez E, Martínez-Galero E, Islas-Flores H, Pérez-Pastén BR, Barceló D, López de Alda M, Pérez-Solsona S, Serra-Roig MP, Montemurro N, Peña-Herrera JM, Sánchez-Aceves LM. Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:510-521. [PMID: 31103011 DOI: 10.1016/j.envpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
Collapse
Affiliation(s)
- I Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - M Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - S García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - L M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - E Gasca-Pérez
- Cátedra CONACYT. Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - E Martínez-Galero
- Laboratory of Reproductive Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - H Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Borja R Pérez-Pastén
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - D Barceló
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M López de Alda
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez-Solsona
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M P Serra-Roig
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Montemurro
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J M Peña-Herrera
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - L M Sánchez-Aceves
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
10
|
Palli L, Spina F, Varese GC, Vincenzi M, Aragno M, Arcangeli G, Mucci N, Santianni D, Caffaz S, Gori R. Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. Int J Hyg Environ Health 2019; 222:717-725. [DOI: 10.1016/j.ijheh.2019.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
|
11
|
Kalhori EM, Ghahramani E, Al-Musawi TJ, Saleh HN, Sepehr MN, Zarrabi M. Effective reduction of metronidazole over the cryptomelane-type manganese oxide octahedral molecular sieve (K-OMS-2) catalyst: facile synthesis, experimental design and modeling, statistical analysis, and identification of by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34164-34180. [PMID: 30284713 DOI: 10.1007/s11356-018-3352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
High concentrations of antibiotic compounds within pharmaceutical wastewater have hazardous impacts toward environment and human health. Therefore, there is an immediate requirement of efficient treatment method for removal of antibiotics from aquatic environment. In the present study, the cryptomelane catalyst-type manganese oxide octahedral molecular sieve (K-OMS-2) was synthesized in the presence of benzyl alcohol as a reducing agent and cetyltrimethylammonium bromide as a structure-directing agent and then utilized to reduce the metronidazole. The central composite design method was the experimental design adopted. The FESEM analysis revealed that the K-OMS-2 surface contained many uniformly cylindrical aggregates less than about 40 nm in diameter and about 80-100 nm in length. Besides, a high specific surface area of 129 m2/g and average pore size of 45.47 nm were recorded. According to the TGA/DTA analysis, the prepared catalyst revealed high thermal stability. The maximum metronidazole degradation (95.36%) was evident at conditions of pH = 3, catalyst mass = 0.97 g/L, contact time = 200 min, and metronidazole concentration = 20 mg/L. Metronidazole did not form a complex with nitrate, fluoride, sulfate, or hardness. These ions exerted a negligible effect on metronidazole reduction using the K-OMS-2 catalyst, except for hardness, which reduced the removal efficiency of metronidazole by 17%. The FTIR and LC-MS revealed a complex mechanism involved in the metronidazole degradation by the K-OMS-2 involving the formation of an amino group, a hydroxyelated compound via N-denitration, and hydrogenation process on the K-OMS-2 catalyst surface.
Collapse
Affiliation(s)
- Ebrahim Mohammadi Kalhori
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Esmaeil Ghahramani
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Tariq J Al-Musawi
- Department of Civil Engineering, Faculty of Engineering, Isra University, Amman, Jordan
| | - Hossien Najafi Saleh
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Mohammad Noori Sepehr
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mansur Zarrabi
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 219:189-207. [PMID: 29747102 DOI: 10.1016/j.jenvman.2018.04.103] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO2-mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld 4811, Australia
| | - Michael Oelgemöller
- Discipline of Chemistry, College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|