1
|
Adedipe DT, Chen C, Lai RWS, Xu S, Luo Q, Zhou GJ, Boxall A, Brooks BW, Doblin MA, Wang X, Wang J, Leung KMY. Occurrence and potential risks of pharmaceutical contamination in global Estuaries: A critical review and analysis. ENVIRONMENT INTERNATIONAL 2024; 192:109031. [PMID: 39321536 DOI: 10.1016/j.envint.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Input of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.86 ng/L), with 30 pharmaceuticals reported. North America (24,316.39 ng/L) was ranked second in terms of WACL, followed by South America (20,784.13 ng/L), Asia (5958.38 ng/L), Europe (4691.23 ng/L), and Oceania (2916.32 ng/L). Carbamazepine, diclofenac, and paracetamol were detected in all continents. A total of 41 functional categories of pharmaceuticals were identified, and analgesics, antibiotics, and stimulants were amongst the most ubiquitous groups in estuaries worldwide. Although many pharmaceuticals were observed to present lower than or equal to moderate ecological risk, 34 pharmaceuticals were identified with high or very high ecological risks in at least one continent. Pharmaceutical pollution in estuaries was positively correlated with regional unemployment and poverty ratios, but negatively correlated with life expectancy and GDP per capita. There are some limitations that may affect this synthesis, such as comparability of the sampling and pretreatment methodology, differences in the target pharmaceuticals for monitoring, and potentially limited number and diversity of estuaries covered, which prompt us to standardize methods for monitoring these pharmaceutical contaminants in future global studies.
Collapse
Affiliation(s)
- Demilade T Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, The University of Macau, Macau, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qiong Luo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York YO10 5DD, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Juying Wang
- National Marine Environment Monitoring Center, Liaoning, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
M A E, K K, N F, E D, M R, A F, S R, A L, K, H B, A J, E J. An assessment and characterization of pharmaceuticals and personal care products (PPCPs) within the Great Lakes Basin: Mussel Watch Program (2013-2018). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:345. [PMID: 38438687 PMCID: PMC10912168 DOI: 10.1007/s10661-023-12119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 03/06/2024]
Abstract
Defining the environmental occurrence and distribution of chemicals of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) in coastal aquatic systems, is often difficult and complex. In this study, 70 compounds representing several classes of pharmaceuticals, including antibiotics, anti-inflammatories, insect repellant, antibacterial, antidepressants, chemotherapy drugs, and X-ray contrast media compounds, were found in dreissenid mussel (zebra/quagga; Dreissena spp.) tissue samples. Overall concentration and detection frequencies varied significantly among sampling locations, site land-use categories, and sites sampled proximate and downstream of point source discharge. Verapamil, triclocarban, etoposide, citalopram, diphenhydramine, sertraline, amitriptyline, and DEET (N,N-diethyl-meta-toluamide) comprised the most ubiquitous PPCPs (> 50%) detected in dreissenid mussels. Among those compounds quantified in mussel tissue, sertraline, metformin, methylprednisolone, hydrocortisone, 1,7-dimethylxanthine, theophylline, zidovudine, prednisone, clonidine, 2-hydroxy-ibuprofen, iopamidol, and melphalan were detected at concentrations up to 475 ng/g (wet weight). Antihypertensives, antibiotics, and antidepressants accounted for the majority of the compounds quantified in mussel tissue. The results showed that PPCPs quantified in dreissenid mussels are occurring as complex mixtures, with 4 to 28 compounds detected at one or more sampling locations. The magnitude and composition of PPCPs detected were highest for sites not influenced by either WWTP or CSO discharge (i.e., non-WWTPs), strongly supporting non-point sources as important drivers and pathways for PPCPs detected in this study. As these compounds are detected at inshore and offshore locations, the findings of this study indicate that their persistence and potential risks are largely unknown, thus warranting further assessment and prioritization of these emerging contaminants in the Great Lakes Basin.
Collapse
Affiliation(s)
- Edwards M A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA.
| | - Kimbrough K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Fuller N
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Davenport E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Rider M
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Freitag A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Regan S
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | | | - K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Burkart H
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Jacob A
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Johnson E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| |
Collapse
|
3
|
Kidd KA, Backhaus T, Brodin T, Inostroza PA, McCallum ES. Environmental Risks of Pharmaceutical Mixtures in Aquatic Ecosystems: Reflections on a Decade of Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:549-558. [PMID: 37530415 DOI: 10.1002/etc.5726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) occur as variable mixtures in surface waters receiving discharges of human and animal wastes. A key question identified a decade ago is how to assess the effects of long-term exposures of these PPCP mixtures on nontarget organisms. We review the recent progress made on assessing the aquatic ecotoxicity of PPCP mixtures-with a focus on active pharmaceutical ingredients-and the challenges and research needs that remain. New knowledge has arisen from the use of whole-mixture testing combined with component-based approaches, and these studies show that mixtures often result in responses that meet the concentration addition model. However, such studies have mainly been done on individual species over shorter time periods, and longer-term, multispecies assessments remain limited. The recent use of targeted and nontargeted gene analyses has improved our understanding of the diverse pathways that are impacted, and there are promising new "read-across" methods that use mammalian data to predict toxicity in wildlife. Risk assessments remain challenging given the paucity of ecotoxicological and exposure data on PPCP mixtures. As such, the assessment of PPCP mixtures in aquatic environments should remain a priority given the potential for additive-as well as nontarget-effects in nontarget organisms. In addition, we need to improve our understanding of which species, life stages, and relevant endpoints are most sensitive to which types of PPCP mixtures and to expand our knowledge of environmental PPCP levels in regions of the globe that have been poorly studied to date. We recommend an increased use of new approach methodologies, in particular "omics," to advance our understanding of the molecular mechanics of mixture effects. Finally, we call for systematic research on the role of PPCP mixtures in the development of antimicrobial resistance. Environ Toxicol Chem 2024;43:549-558. © 2023 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
4
|
Hanamoto S, Minami Y, Hnin SST, Yao D. Localized pollution of veterinary antibiotics in watersheds receiving treated effluents from swine farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166211. [PMID: 37567304 DOI: 10.1016/j.scitotenv.2023.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Swine excrement is discharged into surface waters mainly as effluent in Asian countries. As swine production consumes more antibiotics and less water than humans, a mismatch of the size of swine farms and that of the rivers receiving their effluent could create severe pollution by antibiotics. However, little is known about the occurrence of antibiotics in such rivers. We therefore monitored seven veterinary drugs, six human drugs (including a metabolite), three drugs for both use (including a metabolite), and major water qualities at 30 sites in Japanese watersheds where swine outnumber humans and where their excrement is largely treated on-site by aerobic biological wastewater processes. The compositions of veterinary drugs differed substantially among sites, unlike human drugs, indicating various patterns of use among swine farms. Median concentrations at the 30 sites were <1 ng/L for seven out of the ten drugs used in livestock, whereas maximum concentrations were >1000 ng/L for three and 100-1000 ng/L for four of them, giving median-maximum among the sites of >3 log for two and 2-3 log for six of them. The spatial distribution ranges of concentrations of veterinary drugs were wider than those of human drugs (mostly <1.5 log) and other analytes (mostly <1 log), despite the correlation between those of total veterinary drugs and nitrogen, attributable to fewer swine farms than households, the intensive animal husbandry, and the various drug-use patterns among the farms. The range of maximum concentrations of veterinary drugs in the watersheds was comparable to those reported in other Asian watersheds with less strict management of swine excrement, attributable to their slow decay in conventional wastewater treatment on swine farms. Thus, attention should be paid to hot-spot pollution of antibiotics on large Asian swine farms adjacent to streams with limited dilution capacity.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Su Su Thet Hnin
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
5
|
Wöhler L, Hogeboom RJ, Berger M, Krol MS. Water pollution from pharmaceutical use in livestock farming: Assessing differences between livestock types and production systems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1495-1509. [PMID: 36894332 DOI: 10.1002/ieam.4761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Livestock production is a major source of pharmaceutical emissions to the environment. The current scientific discourse focuses on measuring and modeling emissions as well as assessing their risks. Although several studies corroborate the severity of pharmaceutical pollution resulting from livestock farming, differences in pollution between livestock types and production systems are largely unknown. In fact, there is no comprehensive analysis of factors influencing pharmaceutical use-the emission's source-in the diverse production systems. To address these knowledge gaps, we developed a framework to investigate pharmaceutical pollution from different livestock production systems and applied it in a first pilot assessment to compare pollution from organic and conventional cattle, pig, and chicken production systems on selected indicator substances, covering antibiotics, antiparasitics, hormones, and nonsteroidal anti-inflammatory drugs (NSAIDs). Given the lack of statistics, for this article we retrieved novel qualitative information about influential factors for pharmaceutical use and pollution from expert interviews and combined this with quantitative data on, among other factors, the environmental behavior of specific substances from the literature. Our analysis reveals that factors across a pharmaceutical's entire life cycle influence pollution. However, not all factors are livestock type or production-system dependent. The pilot assessment furthermore reveals that differences in pollution potential between conventional and organic production exist, but for antibiotics, NSAIDs, and partially for antiparasitics, some factors lead to greater pollution potential in conventional systems, and others in organic systems. For hormones, we identified a comparatively greater pollution potential from conventional systems. Among the indicator substances, the assessment over the entire pharmaceutical life cycle illustrates that flubendazole in broiler production has the greatest per unit impact. The framework and its application in the pilot assessment generated insights useful to identifying which substances, livestock types, production systems, or the combination thereof have great or little pollution potential, informing more sustainable agricultural management practices. Integr Environ Assess Manag 2023;19:1495-1509. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Lara Wöhler
- Multidisciplinary Water Management, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
- Water Footprint Network, Enschede, The Netherlands
| | - Rick J Hogeboom
- Multidisciplinary Water Management, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
- Water Footprint Network, Enschede, The Netherlands
| | - Markus Berger
- Multidisciplinary Water Management, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Maarten S Krol
- Multidisciplinary Water Management, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
6
|
Kock A, Glanville HC, Law AC, Stanton T, Carter LJ, Taylor JC. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162939. [PMID: 36934940 DOI: 10.1016/j.scitotenv.2023.162939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals are a ubiquitous group of emerging pollutants of considerable importance due to their biological potency and potential to elicit effects in wildlife and humans. Pharmaceuticals have been quantified in terrestrial, marine, fresh, and transitional waters, as well as the fauna and macro-flora that inhabit them. Pharmaceuticals can enter water ways through different human and veterinary pathways with traditional wastewater treatment, unable to completely remove pharmaceuticals, discharging often unknown quantities to aquatic ecosystems. However, there is a paucity of available information regarding the effects of pharmaceuticals on species at the base of aquatic food webs, especially on phytoplankton, with research typically focussing on fish and aquatic invertebrates. Diatoms are one of the main classes of phytoplankton and are some of the most abundant and important organisms in aquatic systems. As primary producers, diatoms generate ∼40 % of the world's oxygen and are a vital food source for primary consumers. Diatoms can also be used for bioremediation of polluted water bodies but perhaps are best known as bio-indicators for water quality studies. However, this keystone, non-target group is often ignored during ecotoxicological studies to assess the effects of pollutants of concern. Observed effects of pharmaceuticals on diatoms have the potential to be used as an indicator of pharmaceutical-induced impacts on higher trophic level organisms and wider ecosystem effects. The aim of this review is to present a synthesis of research on pharmaceutical exposure to diatoms, considering ecotoxicity, bioremediation and the role of diatoms as bio-indicators. We highlight significant omissions and knowledge gaps which need addressing to realise the potential role of diatoms in future risk assessment approaches and help evaluate the impacts of pharmaceuticals in the aquatic environment at local and global scales.
Collapse
Affiliation(s)
- A Kock
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom 2520, South Africa
| | - H C Glanville
- Geography and Environment, Loughborough University, Loughborough LE11 3TU, UK.
| | - A C Law
- School of Geography, Geology and the Environment, Keele University, Staffordshire ST5 5BG, UK
| | - T Stanton
- Geography and Environment, Loughborough University, Loughborough LE11 3TU, UK
| | - L J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - J C Taylor
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom 2520, South Africa; South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa
| |
Collapse
|
7
|
Hanamoto S, Yamamoto-Ikemoto R, Tanaka H. Spatiotemporal distribution of veterinary and human drugs and its predictability in Japanese catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161514. [PMID: 36634780 DOI: 10.1016/j.scitotenv.2023.161514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Little is known about the predictability of mass flows of veterinary drugs in Asian catchments, where effluent from livestock farms is a major source. We therefore conducted this study to understand the applicability and limitations of a population-based emission model, which assumed usage of veterinary and human drugs to be evenly distributed over the national livestock or human population throughout the year, and sources to be effluent discharges at livestock farms, households, and sewage treatment plants in Japanese catchments. We monitored five veterinary drugs (lincomycin, sulfamonomethoxine, tiamulin, tylosin, and tilmicosin), two human and livestock drugs (sulfamethoxazole and trimethoprim), two human drugs (carbamazepine and clarithromycin), and a metabolite (sulfapyridine) of a human drug once a month over 2 years in eight Japanese rivers which have active livestock farming in their catchments. Mass flows of carbamazepine and sulfapyridine were stable, while those of veterinary drugs fluctuated widely, especially sulfamonomethoxine and tilmicosin, whose 25 %-100 % ranges averaged 1.5 and 1.2 log units, respectively, attributable mainly to their usage patterns. The model accurately predicted mean mass flows of carbamazepine in the rivers with errors of <±0.3 log unit. Although it slightly to moderately overestimated those of the other four human-related compounds, the incorporation of an empirical correction factor, determined to minimize mean absolute error (MAE) among the rivers, substantially lowered their MAEs to <0.23 log units. However, the MAEs of the five veterinary drugs were as high as 0.42 (sulfamonomethoxine) to 0.60 (tiamulin) log units even with the coefficient, likely due mainly to the spatial distribution of their usage per capita. So as not to overlook spatiotemporal elevation of risks of veterinary drugs, a stochastic method should be applied in their management. This is the first study to assess the use of spatiotemporal homogeneity in usage per capita of veterinary drugs in Asian catchments.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryoko Yamamoto-Ikemoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
8
|
Sura S, Larney FJ, Charest J, McAllister TA, Headley JV, Cessna AJ. Veterinary antimicrobials in cattle feedlot environs and irrigation conveyances in a high-intensity agroecosystem in southern Alberta, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12235-12256. [PMID: 36107301 PMCID: PMC9898329 DOI: 10.1007/s11356-022-22889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The South Saskatchewan River Basin (SSRB) is considered one of the most intensively farmed regions in Canada, with high densities of livestock and expansive areas of irrigated cropland. We measured concentrations of seven veterinary antimicrobials (VAs) in 114 surface water samples from feedlot environs and 219 samples from irrigation conveyances in the SSRB. Overall, detection frequencies in feedlot environs were 100% for chlortetracycline (CTC) and tetracycline (TC), 94% for monensin (MON), 84% for tylosin (TYL), 72% for lincomycin (LIN), 66% for erythromycin (ERY), and 23% for sulfamethazine (SMZ). For irrigation conveyances, detection frequencies for CTC and TC remained high (94-100%), but dropped to 18% for ERY, 15% for TYL, 10% for MON, and 4% for SMZ. Lincomycin was not detected in irrigation conveyance water. Maximum concentrations of VAs ranged from 1384 µg L-1 (TC) to 17 ng L-1 (SMZ) in feedlot environs while those in irrigation conveyances were 155 ng L-1 (TC) to 29 ng L-1 (ERY). High detection frequencies and median concentrations of VAs in both feedlot environs and irrigation conveyances were associated with high amounts of precipitation. However, an irrigation district (ID) with high livestock density (Lethbridge Northern) did not exhibit higher concentrations of VAs compared to IDs with less livestock, while levels of VAs in irrigation conveyances were less influenced by the degree of surface runoff. The ubiquity of CTC and TC in our study is likely a reflection of its widespread use in intensive livestock operations. Additional investigation is required to link environmental concentrations of VAs with livestock densities and increase our understanding of potential antimicrobial resistance in high-intensity agroecosystems.
Collapse
Affiliation(s)
- Srinivas Sura
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Jollin Charest
- Natural Resource Management Branch, Alberta Agriculture, Forestry, and Rural Economic Development, 5401 1st Avenue S, Lethbridge, AB, T1J 4V6, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - John V Headley
- Environment and Climate Change Canada, National Hydrology Research Centre, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
| | - Allan J Cessna
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
9
|
Wei W, Lu Z, Wu T, Wang H, Han Q, Liang Q. One-step fabrication of COF-coated melamine sponge for in-syringe solid-phase extraction of active ingredients from traditional Chinese medicine in serum samples. Anal Bioanal Chem 2022; 414:8071-8079. [PMID: 36169676 DOI: 10.1007/s00216-022-04340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
In this study, a covalent organic framework (COF)-TpBD-supported melamine sponge (MS) was fabricated through a one-step hydrothermal method. The obtained monolithic column was then applied in in-syringe solid-phase extraction (IS-SPE) for the separation of three volatile ingredients from serum samples. Given credit for the superior adsorption capacity of the COF and the homogeneous microporous property of MS, the developed column exhibited satisfactory separation of the targets. And the dominating adsorption mechanism was the hydrophobic interaction forces between TpBD and targets and the high mass transfer efficiency provided by the large pore structure of MS. The results of dynamic adsorption showed that the MS@TpBD column displayed much better adsorption performance than blank MS and TpBD. And it has featured great reusability up to 5 cycles and obtained satisfied recovery values (87.9 ~ 110.3%) in serum samples. As a result of sample clean-up, this column offers low limit of detections (LODs) down to 0.014, 0.010, and 0.020 μg/mL, respectively. In summary, we believe that this convenient separation column has prominent application promise in the fields of separating activity ingredients in biological samples.
Collapse
Affiliation(s)
- Wei Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China
| | - Zenghui Lu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ting Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China
| | - Haibo Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China.
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Hong B, Yu S, Zhou M, Li J, Li Q, Ding J, Lin Q, Lin X, Liu X, Chen P, Zhang L. Sedimentary spectrum and potential ecological risks of residual pharmaceuticals in relation to sediment-water partitioning and land uses in a watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152979. [PMID: 35026280 DOI: 10.1016/j.scitotenv.2022.152979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical residues in river surficial sediment are prone to anthropogenic impacts and environmental factors in watershed, but the mechanisms remain unclear. This study attempted to reveal surficial sediment-water pseudo-partitioning and anthropogenic (land use) patterns of pharmaceutical residues in surficial sediment among 23 subwatersheds of Jiulong River, southeast China with a gradient of urban land use percentile in dry and wet seasons. Thirty-eight out of target 86 compounds from six-category pharmaceuticals were quantified and ranged from below the quantification limits (0.001 mg kg-1 dry mass) up to 8.19 mg kg-1 dry mass (chlortetracycline) using a developed SPE-HPLC-MS/MS protocol. Antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) collectively dominated sedimentary pharmaceutical residues for 34.5-99.8% of the total quantified compounds (median at 92%). Land uses in subwatersheds showed high consistency with sedimentary pharmaceutical residues in the dry season rather than the wet season, especially for human use only and veterinary use only compounds. Surficial sediment-water partitioning of pharmaceutical compounds influenced their sedimentary residues regardless of season, which were determined by properties of compound and surficial sediment interactively. All tetracycline compounds, trimethoprim (sulfonamides synergist), caffeine (central nervous system drug), and oxfendazole (antiparasitic drug) were quantified to pose high potential ecological risks to aquatics. Findings of this study suggest that pseudo-persistent legacy of human and veterinary pharmaceuticals requires a wider coverage of pharmaceutical compounds for a comprehensive ecological assessment in the environment and more involvement of anthropogenic impacts and socioeconomic factors in the future studies.
Collapse
Affiliation(s)
- Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Min Zhou
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ding
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiaoying Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaodan Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xun Liu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiji Chen
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Zhang
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
11
|
Gundlach M, Di Paolo C, Chen Q, Majewski K, Haigis AC, Werner I, Hollert H. Clozapine modulation of zebrafish swimming behavior and gene expression as a case study to investigate effects of atypical drugs on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152621. [PMID: 34968598 DOI: 10.1016/j.scitotenv.2021.152621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Mental illnesses affect more than 150 million people in Europe and lead to an increasing consumption of neuroactive drugs during the last twenty years. The antipsychotic compound, clozapine, is one of the most used psychotropic drugs worldwide, with potentially negative consequences for the aquatic environment. Hence, the objectives of the study presented here were the quantification of clozapine induced changes in swimming behavior of exposed Danio rerio embryos and the elucidation of the molecular effects on the serotonergic and dopaminergic systems. Yolk-sac larvae were exposed to different concentrations (0.2 mg/L, 0.4 mg/L, 0.8 mg/L, 1.6 mg/L, 3.2 mg/L and 6.4 mg/L) of clozapine for 116 h post-fertilization, and changes in the swimming behavior of the larvae were assessed. Further, quantitative real-time PCR was performed to analyze the expression of selected genes. The qualitative evaluation of changes in the swimming behavior of D. rerio larvae revealed a significant decrease of the average swimming distance and velocity in the light-dark transition test, with more than a 36% reduction at the highest exposure concentration of 6.4 mg/L. Furthermore, the total larval body length was reduced at the highest concentration. An in-depth analysis based on expression of selected target genes of the serotonin (slc6a4a) and dopamine (drd2a) system showed an upregulation at a concentration of 1.6 mg/L and above. In addition, a lower increase in expression was detected for biomarkers of general stress (adra1a and cyp1a2). Our data show that exposure to clozapine during development inhibits swimming activity of zebrafish larvae, which could, in part, be due to disruption of the serotonin- and dopamine system.
Collapse
Affiliation(s)
- Michael Gundlach
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Kendra Majewski
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ann-Cathrin Haigis
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 131, 8600 Dübendorf, Switzerland
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Zhang Y, Rashid A, Guo S, Jing Y, Zeng Q, Li Y, Adyari B, Yang J, Tang L, Yu CP, Sun Q. Spatial autocorrelation and temporal variation of contaminants of emerging concern in a typical urbanizing river. WATER RESEARCH 2022; 212:118120. [PMID: 35114530 DOI: 10.1016/j.watres.2022.118120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The distribution and fate of contaminants of emerging concern (CECs) was studied in relation to hydrological conditions, land use characteristics, and spatial contiguity in Houxi River. Thirty-four CECs were detected in the surface water during a three-year sampling campaign. Caffeine was most prevalent (99% frequency), while bisphenol A had the highest median concentration (78.2 ng/L) among the detected CECs. Caffeine and the other prevalent CECs lincomycin and bisphenol A, with median concentrations of 3.89 ng/L, 0.26 ng/L, and 78.2 ng/L, respectively, were positively correlated with land use types related to anthropogenic activities (grass, barren, built up, and cropland areas and landscape indexes for human activities). The analysis of similarities revealed significant annual variations, with increasing trends in both the concentrations and detection frequencies of CECs. Spatial variations were demonstrated by higher concentrations and detection frequencies downstream compared to upstream. The singular value decomposition analysis revealed that the downstream sites were the major contributors (55.6%-100%) to the spatial variability of most CECs. Moran's I analysis based on downstream contiguity indicated strong spatial autocorrelation among the connected sites for most CECs. This was further supported by longer correlation lengths for 18 CECs than the average distance between the sampling sites. The spatial autocorrelation can be attributed to the physicochemical properties of CECs and local hydrological dynamics, including temperature, wind speed, and sunshine hours. For most CECs, local contribution predominated over neighbor influence with an average value of 75.5%. The results of this study provide new insight to evaluate CEC distributions, which will be beneficial to policymakers for the management and prioritization of CEC contaminants in the Houxi watershed.
Collapse
Affiliation(s)
- Yiqing Zhang
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Shanshan Guo
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanchun Jing
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoting Zeng
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Li
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bob Adyari
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Pertamina University, Jakarta 12220, Indonesia
| | - Jun Yang
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lina Tang
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, China
| | - Qian Sun
- Fujian Key Laboratory of Watershed Ecology, CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Park Y, Park J, Lee HS. Endocrine disrupting potential of veterinary drugs by in vitro stably transfected human androgen receptor transcriptional activation assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117201. [PMID: 33965802 DOI: 10.1016/j.envpol.2021.117201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We describe the androgen receptor (AR) agonistic/antagonistic effects of 140 veterinary drugs regulated in Republic of Korea, by setting maximum residue limits. It was conducted using two in vitro test guidelines of the Organization for Economic Cooperation and Development (OECD)-the AR-EcoScreen AR transactivation (TA) assay and the 22Rv1/MMTV_GR-KO AR TA assay. These were performed alongside the AR binding affinity assay to confirm whether their AR agonistic/antagonistic effects are based on the binding affinity to AR. Prior to conducting the AR TA assay, the proficiency test was passed the proficiency performance criterion for the AR agonist and AR antagonist assays. Among the veterinary drugs tested, four veterinary drugs (dexamethasone, trenbolone, altrenogest, and nandrolone) and six veterinary drugs (cymiazole, dexamethasone, zeranol, phenothiazine, bromopropylate, and isoeugenol) were determined as AR agonist and AR antagonist, respectively in both in vitro AR TA assays. Zeranol exhibited weak AR agonistic effects with a PC10 value only in the 22Rv1/MMTV_GR-KO AR TA assay. Regarding changing the AR agonistic/antagonistic effects through metabolism, the AR antagonistic activities of zeranol, phenothiazine, and isoeugenol decreased significantly in the presence of phase I + II enzymes. These data indicate that various veterinary drugs could have the potential to disrupt AR-mediated human endocrine system. Furthermore, this is the first report providing information on AR agonistic/antagonistic effects of veterinary drugs using in vitro OECD AR TA assays.
Collapse
Affiliation(s)
- Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Juhee Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
14
|
Im JK, Kim SH, Kim YS, Yu SJ. Spatio-Temporal Distribution and Influencing Factors of Human and Veterinary Pharmaceuticals in the Tributary Surface Waters of the Han River Watershed, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157969. [PMID: 34360259 PMCID: PMC8345536 DOI: 10.3390/ijerph18157969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Human and veterinary pharmaceuticals are being increasingly used for disease treatment; hence, their distribution and factors influencing them in the aquatic environment need to be investigated. This study observed the effect of human and animal populations, usage, purchasing criteria (prescription vs. non-prescription), and land use to identify the spatio-temporal distribution of eight pharmaceuticals at twenty-four sites of the tributaries of the Han River watershed. In rural areas, the mean concentration (detection frequency) of non-prescription pharmaceuticals (NPPs) was higher (lower) compared to that of prescription pharmaceuticals (PPs); in urban areas, a reverse trend was observed. Pharmaceutical concentrations in urban and rural areas were mainly affected by wastewater treatment plants (WWTPs) and non-point sources, respectively; concentrations were higher downstream (4.9 times) than upstream of the WWTPs. The concentration distribution (according to the target) was as follows: human–veterinary > human > veterinary. Correlation between total concentration and total usage of the pharmaceuticals was high, except for NPPs. Most livestock and land use (except cropland) were significantly positively correlated with pharmaceutical concentrations. Concentrations were mainly higher (1.5 times) during cold seasons than during warm seasons. The results of this study can assist policymakers in managing pharmaceutical pollutants while prioritizing emerging pollutants.
Collapse
|
15
|
Thiebault T, Alliot F, Berthe T, Blanchoud H, Petit F, Guigon E. Record of trace organic contaminants in a river sediment core: From historical wastewater management to historical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145694. [PMID: 33940762 DOI: 10.1016/j.scitotenv.2021.145694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Some trace organic contaminants (TrOCs) can be considered as ubiquitous contaminants since the 1950s, and the study of their historical distribution within river sediments allows us to better understand the temporal variation of the chemical quality of sediments, and make assumptions about the most insightful forcings impacting these distributions. In this study, the occurrence of 41 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was studied in a sedimentary core sampled in a disused dock along the Seine River, France. This core covers a 60 year-long period between 1944 and 2003, and 23 TrOCs were detected at least once. Their concentrations mainly ranged between 1 and 10 ng g-1 within the core, except for tetracycline that exhibited higher concentrations (~hundreds of ng·g-1). The dating of the core, based on previous studies, enabled the characterization of the changes since 1945, potentially impacted by (i) the sewer connectivity, (ii) the upgrading of wastewater treatment technologies, (iii) historical modifications in the use of each TrOC, and (iv) the sedimentary composition. In every case the deepest occurrence of each TrOC in the core matched its market authorization date, indicating the potential of TrOC to be used as chronomarkers. This study also reveals that the recent upgrading of wastewater treatment technologies within the watershed decreased the concentrations of each TrOC, despite an increase in TrOC diversity in the most recent years.
Collapse
Affiliation(s)
- Thomas Thiebault
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France.
| | - Fabrice Alliot
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Thierry Berthe
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Hélène Blanchoud
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Fabienne Petit
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Elodie Guigon
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| |
Collapse
|
16
|
Ramírez-Morales D, Masís-Mora M, Beita-Sandí W, Montiel-Mora JR, Fernández-Fernández E, Méndez-Rivera M, Arias-Mora V, Leiva-Salas A, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. CHEMOSPHERE 2021; 272:129574. [PMID: 33485042 DOI: 10.1016/j.chemosphere.2021.129574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceuticals in the environment is known to have multiple origins; livestock activities comprise one scarcely studied source, both globally and specially in Latin-America. This work aims to study the occurrence of pharmaceuticals in wastewater from swine farms and their surrounding surface waters, in a highland livestock production area of Costa Rica. The monitoring of 70 pharmaceutical active compounds resulted in the detection of 10 molecules in farm wastewater (influents and effluents of the on-farm treatment system), including compounds of animal and human use. A 57% of effluents showed high hazard (ΣHQ > 1), mainly due to the compounds risperidone, ketoprofen, ibuprofen and naproxen. Additionally, ecotoxicological tests with Daphnia magna and Microtox classified at least 21% of the effluents as very toxic (10 < TU ≤ 100); likewise, 86% of effluents exhibited germination index (GI) inhibition values over 90% for Lactuca sativa. Seven molecules were detected in surface water, six of them of human use (1,7-dimethylxanthine, caffeine, cephalexin, carbamazepine, gemfibrozil, ibuprofen) and one (acetaminophen) of dual (human and veterinary) use; nonetheless, most of the detections were found in sampling points closer to human settlements than animal farms. Considering the set of molecules and their distribution, the livestock influence on surface water seems minimal in comparison with the urban influence. Only 16% of surface water samples showed high risk, mainly due to ibuprofen, gemfibrozil and caffeine; similarly, 45% samples presented GI inhibition >20% (no toxicity was determined towards Daphnia magna or Microtox). These findings in surface water suggest an incipient environmental risk in the area.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Wilson Beita-Sandí
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Ericka Fernández-Fernández
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Víctor Arias-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Adrián Leiva-Salas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
17
|
Vatovec C, Kolodinsky J, Callas P, Hart C, Gallagher K. Pharmaceutical pollution sources and solutions: Survey of human and veterinary medication purchasing, use, and disposal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112106. [PMID: 33588165 DOI: 10.1016/j.jenvman.2021.112106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 05/26/2023]
Abstract
Human and veterinary pharmaceuticals offer many benefits, but they also pose risks to both the environment and public health. Life-cycle stewardship of medications offers multiple strategies for minimizing the risks posed by pharmaceuticals, and further insight is required for developing best practices for pharmaceutical management. The goal of this study was to clarify points of intervention for minimizing environmental and public health risks associated with pharmaceuticals. Specifically, our objectives were to provide insight on purchasing, use, and disposal behaviors associated with human and veterinary medications. This study used a state-wide representative sample of Vermont adults (n = 421) to survey both human and veterinary pharmaceuticals as potential sources of the unintended consequences of prescribed and over-the-counter (OTC) medications. The majority (93%) of respondents had purchased some form of medication within the past twelve months, including OTC (85%), prescription (74%), and veterinary (41%) drugs. Leftover drugs of any kind were reported by 59% of respondents. While 56% of people were aware of drug take-back programs, the majority reported never being told what to do with leftover medications by their physician (78%), pharmacist (76%), or veterinarian (53%). Among all respondents, take-back programs were the most common disposal method (22%), followed by trash (19%), and flushing (9%), while 26% of respondents reported keeping unused drugs. Awareness of pharmaceutical pollution in the environment and having received information about proper disposal were both significantly associated with participation in take-back programs. These findings indicate that a large volume of drugs are going unused annually, and that only a portion of leftover medications are returned to take-back programs where they can be appropriately disposed. Our results warrant further investigation of clinical interventions that support lower dose prescribing and dispensing practices in order to reduce the unintended environmental and public health consequences of pharmaceuticals within the consumer sphere. In addition, our findings suggest that directed efforts to raise awareness of proper disposal may be more effective than broad awareness campaigns, and we recommend research on the efficacy of providing disposal instructions on drug packaging.
Collapse
Affiliation(s)
- Christine Vatovec
- Gund Institute for Environment & Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Jane Kolodinsky
- Community Development and Applied Economics, University of Vermont, Burlington, VT, USA
| | - Peter Callas
- Department of Mathematics & Statistics, University of Vermont, Burlington, VT, USA
| | - Christine Hart
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, USA
| | - Kati Gallagher
- Community Development and Applied Economics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Jiang X, Zhu Y, Liu L, Fan X, Bao Y, Deng S, Cui Y, Cagnetta G, Huang J, Yu G. Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige Canal (2018-2019). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143138. [PMID: 33121774 DOI: 10.1016/j.scitotenv.2020.143138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 05/08/2023]
Abstract
A systematic monitoring campaign of pharmaceuticals and personal-care products (PPCPs) was performed in the Taige Canal basin, which is located in a rural area of the Yangtze River Delta. A total of 55 out of 61 monitored PPCPs were detected, with concentrations up to 647 ng/L. The maximum concentrations of 75% of monitored antibiotics and 80% of non-antibiotics were above the median values of previously reported maximum concentrations in China, indicating that the basin is heavily contaminated. It is estimated that the PPCP mass flow of the Taige Canal (0.06-0.58 kg/day) entering into Lake Taihu is similar to that of the influent of a wastewater treatment plant. Analysis of the seasonal variation shows that, during the wet season, the average total concentration of sulfonamides was 8 and 11 times that of the normal season and dry season, respectively. The concentration of sulfachlorpyridazine accounted for 40.37% of total antibiotics, suggesting heavy pollution from the animal-breeding industry in this area. The PPCP mass flow rates observed in 2019 were lower than those of 2018 in the same season, and this interannual variation is mainly attributable to water pollution controls in the watershed. Combined analysis of ordination and clustering indicates that the distribution of PPCPs in the Taige Canal is affected by the confluence with Yong'an River and human activities such as water pollution control. Water-sediment distribution analysis demonstrates that the sediment-water distribution coefficients of quinolone and macrolide were higher than those of sulfonamide, lincosamide and chloramphenicol.
Collapse
Affiliation(s)
- Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongqing Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liquan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xueqi Fan
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yixiang Bao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Shanshan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunxia Cui
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Manjunatha B, Sreevidya B, Lee SJ. Developmental toxicity triggered by benzyl alcohol in the early stage of zebrafish embryos: Cardiovascular defects with inhibited liver formation and degenerated neurogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141631. [PMID: 32889257 DOI: 10.1016/j.scitotenv.2020.141631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/24/2023]
Abstract
Benzyl alcohol (BnOH) is an aromatic alcohol used worldwide as an excipient in foods, cosmetics, household products, and medications. Although BnOH is a bacteriostatic agent found in many parenteral preparations, this agent is responsible for precipitating the gasping syndrome in premature neonates. Increasing evidence of human exposure to BnOH and environmental contamination of BnOH requires a detailed toxicity assessment of this aromatic chemical. Few studies on the toxicity of BnOH have been reported on different animal models, but its developmental toxicity effects are not fully understood yet. Studies on the effects of BnOH on the specific endpoints of organ toxicity are rare. Thus, the present study aimed to examine the developmental toxicity effects of BnOH by using zebrafish (Danio rerio) embryo as a biological disease model. Four-hour post fertilization zebrafish embryos were exposed to BnOH for 72 h to assess BnOH toxicity on an ecological viewpoint. The median lethal concentrations of varying BnOH concentrations in zebrafish embryos were estimated. The embryonic toxicity induced by BnOH was revealed by the apoptosis in embryos and pathological alterations, such as increased mortality, inhibited hatching rate, and decreased somite number. Moreover, pericardial edema and string heartbeat were observed because of arrhythmia and cardiac malformation. The number of normal vessels in the head and trunk regions was remarkably reduced in transgenic zebrafish line Tg (Fli-1: EGFP). Morphological defects and yolk sac retention were related to the degenerated liver formation in Tg (Lfabp: dsRED). Furthermore, BnOH exposure led to the disruption of motor neuron axonal integrity and the alteration of the axon pattern in Tg (olig2: dsRED). In addition, the results exhibited the pathological effects of BnOH exposure on major organs. We believe that this study is the second to report the developmental organ toxicity of BnOH to zebrafish embryos. This study provides important information for further elucidating the mechanism of BnOH-induced developmental organ toxicity.
Collapse
Affiliation(s)
- Bangeppagari Manjunatha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| | - B Sreevidya
- Narayana Medical College and Hospital, Nellore, Andhra Pradesh 524003, India
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| |
Collapse
|
20
|
Peña-Velasco G, Hinojosa-Reyes L, Escamilla-Coronado M, Turnes-Palomino G, Palomino-Cabello C, Guzmán-Mar JL. Iron metal-organic framework supported in a polymeric membrane for solid-phase extraction of anti-inflammatory drugs. Anal Chim Acta 2020; 1136:157-167. [PMID: 33081940 DOI: 10.1016/j.aca.2020.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023]
Abstract
A solid-phase extraction methodology using a MIL-101(Fe)/PVDF membrane was proposed as a useful alternative for the simultaneous determination of naproxen, diclofenac, and ibuprofen, three anti-inflammatory drugs (NSAIDs), in wastewater samples by HPLC-CCD analysis. The MIL-101(Fe) was prepared by a rapid microwave-assisted method and supported in a polymeric PVDF membrane. The prepared material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). The factors that affect the extraction of the NSAIDs using the MIL-101(Fe)/PVDF membrane as the sample volume, the solution pH and the elution solvent were studied in detail. The selected conditions were 50 mL of sample solution at pH 3 and 5 mL of methanol: acetone (30:70, v v-1) acidified with formic acid at 2% as elution solvent. The analytical method was linear with determination coefficients (r2 ≥ 0.998) in the calibration ranges from 2 to 100 ng mL-1 for naproxen, 20-200 ng mL-1 for diclofenac, and 100-300 ng mL-1 for ibuprofen. The intra and inter-day precision (repeatability and reproducibility, respectively) of the method (RSD%, n = 5) were lower than 4.8% and 7.1%, respectively. The accuracy reported as recovery percentages ranged from 82 to 118%, and the limits of detection were between 1.8 and 32.3 ng mL-1. Moreover, MIL-101(Fe)/PVDF membrane exhibited improved adsorption efficiency compared to that of its analog MIL-101(Cr)/PVDF and the pristine PVDF membranes, obtaining in an easy and rapid (60 min) way a low-cost and low-toxic adsorbent with excellent stability, reusability, mechanic resistance, and simple operation which shows excellent performance.
Collapse
Affiliation(s)
- Gabriela Peña-Velasco
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico.
| | - Maricela Escamilla-Coronado
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico
| | - Gemma Turnes-Palomino
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain
| | - Carlos Palomino-Cabello
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain
| | - Jorge Luis Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico.
| |
Collapse
|
21
|
Popova IE, Morra MJ. Fate of the nonsteroidal, anti-inflammatory veterinary drug flunixin in agricultural soils and dairy manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19746-19753. [PMID: 32221835 DOI: 10.1007/s11356-020-08438-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A large percentage of flunixin, a nonsteroidal anti-inflammatory drug widely used for treating livestock, is excreted in intact form and thus potentially available for environmental transport. As the fate of flunixin in the environment is unknown, our objective was to quantify sorption, desorption, and transformation in five agricultural soils and manure using batch equilibrium methods. Concentrations of flunixin and degradation products were determined by high performance liquid chromatography time of flight mass spectrometry. For all studied soils, sorption of flunixin exhibited linear character, with both linear and Freundlich models providing adequate fit. Linear sorption coefficients varied from 8 to 112 L kg-1. The strongest Pearson correlations with sorption coefficients were for clay content (r = 0.8693), total nitrogen (r = 0.7998), and organic carbon (r = 0.6291). Desorption of the reversibly bound fraction (3-10% of total sorbed flunixin) from all five studied soils exhibited non-hysteretic character suggesting low affinity of this fraction of flunixin to soil. Flunixin degradation in soils was relatively slow, exhibiting half-lives of 39-203 days, thus providing time for off-site transport and environmental contamination. The biological impacts of flunixin at environmentally relevant concentrations must be determined given its environmental behavior and extensive use as a nonsteroidal anti-inflammatory drug in livestock. Graphical abstract.
Collapse
Affiliation(s)
- Inna E Popova
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID, 83844-2340, USA.
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID, 83844-2340, USA
| |
Collapse
|
22
|
Su D, Ben W, Strobel BW, Qiang Z. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134525. [PMID: 31822417 DOI: 10.1016/j.scitotenv.2019.134525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the occurrence of 27 pharmaceuticals with diverse physicochemical properties in a year-long monitoring campaign in the Chaobai River, China. The correlation between the distribution of pharmaceuticals in the river and the adjacent sources was elucidated. The results indicate that the agriculture area was the most polluted area with a median summed pharmaceutical concentration of 225.3 ng L-1, followed by the urban area and the mountain area with the corresponding values of 136.9 and 29.9 ng L-1, respectively. In terms of individual compounds, 22 out of 27 compounds were detected with concentrations ranging from <1 to 1972 ng L-1. Caffeine, carbamazepine, azithromycin, bezafibrate, metoprolol, sulfadiazine, sulfamethoxazole, clarithromycin, erythromycin, roxithromycin, and trimethoprim were pharmaceuticals with relatively high levels, with median concentrations ranging from 3.3 to 25.6 ng L-1 and detection frequencies ranging from 40% to 97%. Higher concentrations were mainly observed during cold seasons, with mean concentrations 1 to 52 times as high as those during warm seasons. Spatial analysis reveals that the pharmaceutical concentrations in different areas were impacted by different sources. A wastewater treatment plant was an important source in the urban area, while the agriculture area was impacted by various treated and untreated wastewater sources. The species sensitivity distribution model and risk quotient (RQ) method were combined in the ecological risk assessment. The results indicate that the multi-substance potentially affected fraction (msPAF) values of the sampling sites were below 0.04%, whereas nearly half of RQ values were higher than 1. Caffeine was proposed as a priority compound due to its high contribution rate (i.e., 79%) to the cumulative msPAF value, which implies that increased control and management of untreated wastewater sources along the Chaobai River is necessary.
Collapse
Affiliation(s)
- Du Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
23
|
de Oliveira M, Frihling BEF, Velasques J, Filho FJCM, Cavalheri PS, Migliolo L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135568. [PMID: 31846817 DOI: 10.1016/j.scitotenv.2019.135568] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 04/13/2023]
Abstract
Emerging contaminants are increasingly present in the environment, and their appearance on both the environment and health of living beings are still poorly understood by society. Conventional sewage treatment facilities that are under validity and were designed years ago are not developed to remove pharmaceutical compounds, their main focus is organic and bacteriological removal. Pharmaceutical residues are associated directly with quantitative production aspects as well as inadequate waste management policies. Persistent classes of emerging compounds such as xenobiotics present molecules whose physicochemical properties such as small molecular size, ionizability, water solubility, lipophilicity, polarity and volatility make degradability, identification and quantification of these complex compounds difficult. Based on research results showing that there is a possibility of risk to human and environmental health the presence of these compounds in the environment this article aimed to review the main pharmaceutical and xenobiotic residues present in the environment, as well as to present the most common methodologies used. The most commonly used analytical methods for identifying these compounds were HPLC and Gas Chromatography coupled with mass spectrometry with potential for characterize complex substances in the environment with low concentrations. An alternative and low-cost technology for emerging compound treatment demonstrated in the literature with a satisfactory performance for several types of sewage such as domestic sewage, wastewater and agroindustrial, was the Wetlands Constructed. The study was able to identify the main compounds that are being found in the environment and identify the most used analytical methods to identify and quantify these compounds, bringing some alternatives combining technologies for the treatment of compounds. Environmental contamination is eminent, since the production of emerging compounds aims to increase along with technological development. This demonstrates the need to explore and aggregate sewage treatment technologies to reduce or prevent the deposition of these compounds into the environment.
Collapse
Affiliation(s)
- Milina de Oliveira
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Jannaina Velasques
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Fernando Jorge Corrêa Magalhães Filho
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Ludovico Migliolo
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
24
|
Simultaneous Determination of Pesticides and Veterinary Pharmaceuticals in Environmental Water Samples by UHPLC–Quadrupole-Orbitrap HRMS Combined with On-Line Solid-Phase Extraction. SEPARATIONS 2020. [DOI: 10.3390/separations7010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pesticides and veterinary pharmaceuticals are used for effective crop production and prevention of livestock diseases; these chemicals are released into the environment via various pathways. Although the chemicals are typically present in trace amounts post-release, they could disturb aquatic ecosystems and public health through resistance development toward drugs or diseases, e.g., reproductive disorders. Thus, the residues of pesticides and veterinary pharmaceuticals in the environment must be managed and monitored. To that end, we developed a simultaneous analysis method for 41 target chemicals in environmental water samples using ultra-high-performance liquid chromatography (UHPLC)–quadrupole-orbitrap high-resolution mass spectrometry (HRMS) coupled with an on-line solid-phase extraction system. Calibration curves for determining linearity were constructed for 10–750 ng∙L−1, and the coefficient of determination for each chemical exceeded 0.99. The method’s detection and quantitation limits were 0.32–1.72 ng∙L−1 and 1.02–5.47 ng∙L−1, respectively. The on-line solid-phase extraction system exhibited excellent method reproducibility and reduced experimental error. As the proposed method is applicable to the monitoring of pesticides and veterinary pharmaceuticals in surface water and groundwater samples acquired near agricultural areas, it allows for the management of chemicals released into the environment.
Collapse
|
25
|
Charuaud L, Jardé E, Jaffrézic A, Liotaud M, Goyat Q, Mercier F, Le Bot B. Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:605-615. [PMID: 30763841 DOI: 10.1016/j.scitotenv.2019.01.303] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
In intensive livestock areas, veterinary pharmaceutical residues (VPRs) can occur in water resources, but also in tap water because treatment processes are not designed to remove these contaminants. The main objective of this study is to assess the occurrence of VPRs in water resources and tap waters in Brittany. As several identical compounds are used in both veterinary and human medicine, a toolbox (stanols and pharmaceuticals) is used to help determine the origin of contamination in the case of mixed-use molecules. Water resources samples were collected from 25 sites (23 surface waters and two groundwaters) used for tap water production and located in watersheds considered as sensitive due to intensive husbandry activities. Samples were also taken at 23 corresponding tap water sites. A list of 38 VPRs of interest was analyzed. In water resources, at least one VPR was quantified in 32% of the samples. 17 different VPRs were quantified, including antibiotics, antiparasitic drugs and anti-inflammatory drugs. Concentration levels ranged between 5 ng/L and 2946 ng/L. Mixed-use pharmaceuticals were quantified in twelve samples of water resources and among these samples nine had a mixed overall fecal contamination. In the context of this large-scale study, it appeared difficult to determine precisely the factors impacting the occurrence of VPRs. VPRs were quantified in 20% of the tap water samples. Twelve VPRs were quantified, including ten compounds exclusively used in veterinary medicine and two mixed-use compounds. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of the antibiotic florfenicol which was quantified at 159 ng/L and 211 ng/L. The population of Brittany may therefore be exposed to these contaminants through tap water. These observations should be put into perspective with the detection frequencies per compound which are all below 10% in both water resources and tap water.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Emilie Jardé
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | | | - Marine Liotaud
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | - Quentin Goyat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France.
| |
Collapse
|
26
|
Zhou S, Chen Q, Di Paolo C, Shao Y, Hollert H, Seiler TB. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:89-98. [PMID: 30739855 DOI: 10.1016/j.scitotenv.2019.01.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Although the effects of pharmaceuticals on aquatic organisms have been widely investigated during the last decades, toxic effects, especially delayed toxicity, during the developmental stage at environmental relevant concentrations were rarely known. In this study, a sensitive assay based on behavioral alterations was used for studying the delayed toxicity during the developmental stage on zebrafish embryos. Eight pharmaceuticals that were frequently detected with concentrations ranging from ng/l to μg/l were screened for this study. Behavioral alterations of zebrafish at 118 hpf (hours post fertilization) after exposing to eight single pharmaceuticals with concentrations in the ranges of environmental detected and their mixtures during embryonic development (2-50 h post fertilization, hpf) were observed. Multiple endpoints, including mortality, hatching rate, swimming speed and angular velocity were evaluated. Results showed that behavioral profile alterations in zebrafish larvae are promising for predicting delayed sublethal effects of chemicals. Delayed hatch was observed at 72 hpf following embryonic exposure to triclosan (1 μg/l) and carbamazepine (100 μg/l) up to 50 hpf. The zebrafish larval locomotor behavior following embryonic exposure to 0.1 μg/l triclosan and 1 μg/l caffeine in the early stages of development (2-50 hpf) was altered. Furthermore, the effects of the mixture of 8 pharmaceuticals each with the highest environmental concentration on larval behavior were observed during embryonic development. Generally, this study showed that the effects of pharmaceuticals singly or their mixtures in surface waters cannot be ignored.
Collapse
Affiliation(s)
- Shangbo Zhou
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Carolina Di Paolo
- Shell Health, Shell International B.V., Carel van Bylandtlaan 23, 2596 HP The Hague, the Netherlands
| | - Ying Shao
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
27
|
Cipoletti N, Jorgenson ZG, Banda JA, Hummel SL, Kohno S, Schoenfuss HL. Land Use Contributions to Adverse Biological Effects in a Complex Agricultural and Urban Watershed: A Case Study of the Maumee River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1035-1051. [PMID: 30883853 DOI: 10.1002/etc.4409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
Agricultural and urban contaminants are an environmental concern because runoff may contaminate aquatic ecosystems, resulting in stress for exposed fish. The objective of the present controlled, field-based study was to assess the impacts of high-intensity agriculture and urban land use on multiple life stages of the fathead minnow (Pimephales promelas), using the Maumee River (Toledo, OH, USA) as a case study. Laboratory cultured adult and larval fathead minnows were exposed for 21 d, and embryos were exposed until hatching to site-specific water along the lower reach of the Maumee River. Adult minnows were analyzed for reproduction and alterations to hematologic characteristics (vitellogenin, glucose, estradiol, 11-ketotestosterone). Water and fish tissue samples were analyzed for a suite of multiresidue pesticides, hormones, and pharmaceuticals. Contaminants were detected in every water and tissue sample, with 6 pesticides and 8 pharmaceuticals detected in at least 82% of water samples and at least half of tissue samples. Effects differed by exposed life stage and year of exposure. Fecundity was the most sensitive endpoint measured and was altered by water from multiple sites in both years. Physiological parameters associated with fecundity, such as plasma vitellogenin and steroid hormone concentrations, were seldom impacted. Larval fathead minnows appeared to be unaffected. Embryonic morphological development was delayed in embryos exposed to site waters collected in 2016 but not in 2017. A distinction between agricultural and urban influences in the Maumee River was not realized due to the great overlap in contaminant presence and biological effects. Differences in precipitation patterns between study years likely contributed to the observed biological differences and highlight the need for environmental exposure studies to assess the environmental risk of contaminants. Environ Toxicol Chem 2019;00:1-17. © 2019 SETAC.
Collapse
Affiliation(s)
- Nicholas Cipoletti
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Zachary G Jorgenson
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Jo A Banda
- US Fish & Wildlife Service, Columbus, Ohio, USA
| | | | - Satomi Kohno
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
28
|
Feng M, Baum JC, Nesnas N, Lee Y, Huang CH, Sharma VK. Oxidation of Sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by Ferrate(VI): Kinetics and Mechanistic Insight into SO 2 Extrusion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2695-2704. [PMID: 30715861 DOI: 10.1021/acs.est.8b06535] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work presents ferrate(VI) (FeVIO42-, FeVI) oxidation of a wide range of sulfonamide antibiotics (SAs) containing five- and six-membered heterocyclic moieties ( R) in their molecular structures. Kinetics measurements of the reactions between FeVI and SAs at different pH (6.5-10.0) give species-specific second-order rate constants, k5 and k6 of the reactions of protonated FeVI (HFeO4-) and unprotonated FeVI (FeVIO42-) with protonated SAs (HX), respectively. The values of k5 varied from (1.2 ± 0.1) × 103 to (2.2 ± 0.2) × 104 M-1 s-1, while the range of k6 was from (1.1 ± 0.1) × 102 to (1.0 ± 0.1) × 103 M-1 s-1 for different SAs. The transformation products of reaction between FeVI and sulfadiazine (SDZ, contains a six-membered R) include SO2 extrusion oxidized products (OPs) and aniline hydroxylated products. Comparatively, oxidation of sulfisoxazole (SIZ, a five-membered R) by FeVI has OPs that have no SO2 extrusion in their structures. Density functional theory calculations are performed to demonstrate SO2 extrusion in oxidation of SDZ by FeVI. The detailed mechanisms of oxidation are proposed to describe the differences in the oxidation of six- and five-membered heterocyclic moieties ( R) containing SAs (i.e., SDZ versus SIZ) by FeVI.
Collapse
Affiliation(s)
- Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843 , United States
| | - J Clayton Baum
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
29
|
Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:169-186. [PMID: 30179788 DOI: 10.1016/j.jhazmat.2018.08.075] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
Veterinary pharmaceuticals (VPs) increasingly used in animal husbandry have led to their presence in aquatic environments -surface water (SW) or groundwater (GW) - and even in tap water. This review focuses on studies from 2007 to 2017. Sixty-eight different veterinary pharmaceutical residues (VPRs) have been quantified worldwide in natural waters at concentrations ranging from nanograms per liter (ng L-1) to several micrograms per liter (μg L-1). An extensive up-to-date on sales and tonnages of VPs worldwide has been performed. Tetracyclines (TCs) antibiotics are the most sold veterinary pharmaceuticals worldwide. An overview of VPRs degradation pathways in natural waters is provided. VPRs can be degraded or transformed by biodegradation, hydrolysis or photolysis. Photo-degradation appears to be the major degradation pathway in SW. This review then reports occurrences of VPRs found in tap water, and presents data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process. VPRs have been quantified in tap water at ng L-1 concentration levels in four studies of the eleven studies dealing with VPRs occurrence in tap water. Overall removals of VPRs in DWTPs generally exceed 90% and advanced treatment processes (oxidation processes, adsorption on activated carbon, membrane filtration) greatly contribute to these removals. However, studies performed on full-scale DWTPs are scarce. A large majority of fate studies in DWTPs have been conducted under laboratory at environmentally irrelevant conditions (high concentration of VPRs (mg L-1), use of deionized water instead of natural water, high concentration of oxidant, high contact time etc.). Also, studies on VPRs occurrence and fate in tap water focus on antibiotics. There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Emilie Jarde
- Univ Rennes, CNRS, Géosciences Rennes - UMR6118, 35000 Rennes, France
| | | | - Marie-Florence Thomas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
30
|
Hong B, Lin Q, Yu S, Chen Y, Chen Y, Chiang P. Urbanization gradient of selected pharmaceuticals in surface water at a watershed scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:448-458. [PMID: 29631135 DOI: 10.1016/j.scitotenv.2018.03.392] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitous detection of pharmaceuticals in the aquatic environment around the world raises a great public concern. Aquatic residuals of pharmaceuticals have been assumed to relate to land use patterns and various human activities within a catchment or watershed. This study generated a gradient of human activity in the Jiulong River watershed, southeastern China by urban land use percentage in 20 research subwatersheds. Thirty-three compounds from three-category pharmaceuticals [26 compounds of 5 antibiotic groups, 6 compounds of non-steroidal anti-inflammatory drugs (NSAIDs), and 1 compound of respiratory system drugs (RSDs)] were quantified in stream water before the research subwatershed confluences with two sampling events in dry and wet seasons. In total, 27 out of the 33 pharmaceutical compounds of interest were found in stream waters. Seasonality of instream pharmaceuticals was observed, with less compounds and lower concentrations in the wet season sampling event than in the dry season one. Urban land use in the research subwatershed was identified as the main factor influencing in stream pharmaceutical concentrations and composition regardless of season. Rural land uses contributed a mixture of human and veterinary pharmaceuticals possibly from agricultural application of manure and sewage sludge and aquaculture in the research subwatersheds. Erythromycin in both sampling events showed medium to high risks to aquatic organisms. Results of this study suggest that urban pharmaceutical management, such as a strict prescription regulations and high-efficient removal of pharmaceuticals in wastewater treatment, is critical in reducing aquatic pharmaceutical loads.
Collapse
Affiliation(s)
- Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoying Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| | - Yongshan Chen
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yuemin Chen
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | |
Collapse
|