1
|
Tao MT, Ding TT, Wang ZJ, Gu ZW, Liu SS. Prediction of toxicity and identification of key components for complex mixtures containing hormetic components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177733. [PMID: 39626415 DOI: 10.1016/j.scitotenv.2024.177733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Mixtures containing hormetic components are likely to induce hormesis. However, due to the presence of stimulatory effects, predicting the toxicity of such mixtures and identifying their key components face challenges. This study investigated the complex relationship between the stimulatory effects of individual components and their mixtures, focusing on predicting mixture toxicity and identifying key components influencing this toxicity. Sixteen chemicals, commonly found in disinfectants and hand sanitizers, were selected to construct a complex mixture system containing hormetic components. Using Vibrio qinghaiensis sp.-Q67 as an indicator organism, the study employed microplate toxicity tests to collect toxicity data for individual chemicals and their mixtures. The independent action (IA) and back-propagation neural network (BPNN) methods were utilized to predict mixture toxicity, while global sensitivity analysis (GSA) identified key components affecting toxicity. Results revealed that six of the sixteen chemicals exhibited time-dependent hormesis. However, when combined into mixtures, the stimulatory effects observed in individual components tended to diminish or disappear, leading to higher overall toxicity, likely due to synergism. Traditional models like the IA significantly underestimated mixture toxicity, whereas the BPNN model demonstrated superior predictive performance. GSA identified five key components, and changes in the levels of some non-toxic components significantly altered the toxicity of the mixtures. Moreover, increasing the levels of certain key components could either increase or decrease the mixture's toxicity, making the strategy of reducing their concentration to control mixture toxicity ineffective. This study revealed the potential of neural networks in predicting the toxicity of mixtures containing hormetic components and the possible characteristics of the effects of key components on mixture toxicity.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Baral D, Bhattarai A, Chaudhary NK. Aquifer pollution by metal-antibiotic complexes: Origins, transport dynamics, and ecological impacts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117390. [PMID: 39579446 DOI: 10.1016/j.ecoenv.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Aquifer pollution by metal-antibiotic complexes is a rising environmental and public health concern owing to their enhanced mobility and persistence in groundwater. The purpose of this review is to examine the origins, transport dynamics, and ecological impacts of complexes formed through interactions between metal ions and antibiotics in agricultural runoff, pharmaceutical effluents, and wastewater discharge. Metal-antibiotic complexes are more resistant to degradation and are more soluble than their components. This complicates the conventional water purification efforts. These complexes disrupt microbial ecosystems, facilitate the spread of antibiotic-resistance genes, and negatively affect aquatic organisms. The entry of pollutants into drinking water sources poses notable health risks, including chronic exposure to contaminants and the emergence of antibiotic-resistant pathogens. This review emphasizes both preventative and remedial strategies to mitigate these impacts. Preventative measures emphasize the regulation of antibiotic and metal use in agriculture and industry and promote green chemistry alternatives. Remediation approaches include advanced treatment technologies such as membrane filtration, oxidation, and bioremediation. Integrated management practices and ongoing monitoring were discussed to address this complex issue. To protect water quality and public health, metal-antibiotic complexes in aquifers require stringent regulatory measures, innovative treatment solutions, and heightened public awareness. This review highlights the importance of coordinated efforts to prevent and remediate the emerging pollution problem.
Collapse
Affiliation(s)
- Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal.
| |
Collapse
|
3
|
Mujingni JT, Ytreberg E, Hassellöv IM, Rathnamali GBM, Hassellöv M, Salo K. Sampling strategy, quantification, characterization and hazard potential assessment of greywater from ships in the Baltic Sea. MARINE POLLUTION BULLETIN 2024; 208:116993. [PMID: 39357366 DOI: 10.1016/j.marpolbul.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Ship-generated greywater contains a variety of pollutants which, through various pathways, usually are discharged into the sea. To understand the seasonal variation in greywater volumes, the contaminant concentrations in, and the potential hazard of, ship-generated greywater streams, a four-phase strategy for sampling, characterization and hazard assessment of greywater was developed and implemented. Eight greywater streams, sampled from five ships, were characterized for selected pollutants. The metals Zn, Cu, Mn and the metalloid, As, collectively contributed 98 % to the Hazard Index. Laundry greywater had the highest average concentration of phosphorus (42 mg/l) while galley greywater had the highest average concentration of nitrogen (30 mg/l). The geometric means of COD-Cr, BOD5, TSS and P exceeded the IMO resolution MEPC 227(64) guideline values for sewage effluent from Advanced Wastewater Treatment Plants. The results establish the basis for and contribute to discussions on, the optimization of ship-generated greywater management and the establishment of potential regulatory strategies in the Baltic Region.
Collapse
Affiliation(s)
- J T Mujingni
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - E Ytreberg
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - I-M Hassellöv
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - G B M Rathnamali
- Department of Marine Sciences, Gothenburg University, 405 30 Gothenburg, Sweden
| | - M Hassellöv
- Department of Marine Sciences, Gothenburg University, Kristineberg Marine Research Station, SE-451 78 Fiskebäckskil, Sweden
| | - K Salo
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Lai Y, Ay M, Hospital CD, Miller GW, Sarkar S. Seminar: Functional Exposomics and Mechanisms of Toxicity-Insights from Model Systems and NAMs. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:94201. [PMID: 39230330 PMCID: PMC11373422 DOI: 10.1289/ehp13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Significant progress has been made over the past decade in measuring the chemical components of the exposome, providing transformative population-scale frameworks in probing the etiologic link between environmental factors and disease phenotypes. While the analytical technologies continue to evolve with reams of data being generated, there is an opportunity to complement exposome-wide association studies (ExWAS) with functional analyses to advance etiologic search at organismal, cellular, and molecular levels. OBJECTIVES Exposomics is a transdisciplinary field aimed at enabling discovery-based analysis of the nongenetic factors that contribute to disease, including numerous environmental chemical stressors. While advances in exposure assessment are enhancing population-based discovery of exposome-wide effects and chemical exposure agents, functional screening and elucidation of biological effects of exposures represent the next logical step toward precision environmental health and medicine. In this work, we focus on the use, strategies, and prospects of alternative approaches and model systems to enhance the current human exposomics framework in biomarker search and causal understanding, spanning from bench-based nonmammalian organisms and cell culture to computational new approach methods (NAMs). DISCUSSION We visit the definition of the functional exposome and exposomics and discuss a need to leverage alternative models as opposed to mammalian animals for delineating exposome-wide health effects. Under the "three Rs" principle of reduction, replacement, and refinement, model systems such as roundworms, fruit flies, zebrafish, and induced pluripotent stem cells (iPSCs) are advantageous over mammals (e.g., rodents or higher vertebrates). These models are cost-effective, and cell-specific genetic manipulations in these models are easier and faster, compared to mammalian models. Meanwhile, in silico NAMs enhance hazard identification and risk assessment in humans by bridging the translational gaps between toxicology data and etiologic inference, as represented by in vitro to in vivo extrapolation (IVIVE) and integrated approaches to testing and assessment (IATA) under the adverse outcome pathway (AOP) framework. Together, these alternatives offer a strong toolbox to support functional exposomics to study toxicity and causal mediators underpinning exposure-disease links. https://doi.org/10.1289/EHP13120.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Muhammet Ay
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Souvarish Sarkar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Gao Y. Application of toxicokinetic-toxicodynamic models in the aquatic ecological risk assessment of metals: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104511. [PMID: 39025423 DOI: 10.1016/j.etap.2024.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The issue of toxic metal pollution is a considerable environmental concern owing to its complex nature, spatial and temporal variability, and susceptibility to environmental factors. Current water quality criteria and ecological risk assessments of metals are based on single-metal toxicity data from short-term, simplified indoor exposure conditions, ignoring the complexity of actual environmental conditions. This results in increased uncertainty in predicting toxic metal toxicity and risk assessment. Using appropriate bioavailability and effect modeling of metals is critical for establishing environmental quality standards and performing risk assessments for metals. Traditional dose-effect models are based on a static statistical relationship and fall short of revealing the bioavailability and effect processes of metals and do not effectively assess ecological impacts under complex exposure conditions. This paper summarizes the toxicokinetic-toxicodynamic (TK-TD) model, which is gaining interest in environmental and ecotoxicological research. The key concepts, and theories of its construction theories, are discussed and the application of the TK-TD model in toxicity prediction and risk assessment of different metals in the aquatic environment, and trends in the development of the TK-TD model are highlighted. The findings of our review prove that the TK-TD model can effectively predict toxic metal toxicity in real time and under complex exposure conditions in the future.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province (Zhejiang Shuren University), Hangzhou 310015, PR China.
| |
Collapse
|
6
|
Wang S, Zhang T, Li Z, Hong J. Exploring pollutant joint effects in disease through interpretable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133707. [PMID: 38335621 DOI: 10.1016/j.jhazmat.2024.133707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Identifying the impact of pollutants on diseases is crucial. However, assessing the health risks posed by the interplay of multiple pollutants is challenging. This study introduces the concept of Pollutants Outcome Disease, integrating multidisciplinary knowledge and employing explainable artificial intelligence (AI) to explore the joint effects of industrial pollutants on diseases. Using lung cancer as a representative case study, an extreme gradient boosting predictive model that integrates meteorological, socio-economic, pollutants, and lung cancer statistical data is developed. The joint effects of industrial pollutants on lung cancer are identified and analyzed by employing the SHAP (Shapley Additive exPlanations) interpretable machine learning technique. Results reveal substantial spatial heterogeneity in emissions from CPG and ILC, highlighting pronounced nonlinear relationships among variables. The model yielded strong predictions (an R of 0.954, an RMSE of 4283, and an R2 of 0.911) and emphasized the impact of pollutant emission amounts on lung cancer responses. Diverse joint effects patterns were observed, varying in terms of patterns, regions (frequency), and the extent of antagonistic and synergistic effects among pollutants. The study provides a new perspective for exploring the joint effects of pollutants on diseases and demonstrates the potential of AI technology to assist scientific discovery.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tianzhuo Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ziheng Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jinglan Hong
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Ye M, Fang S, Yu Q, Chen J, Li P, Zhang C, Ge Y. Copper and zinc interact significantly in their joint toxicity to Chlamydomonas reinhardtii: Insights from physiological and transcriptomic investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167122. [PMID: 37717753 DOI: 10.1016/j.scitotenv.2023.167122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Copper (Cu) and zinc (Zn) often discharge simultaneously from industrial and agricultural sectors and cause stress to aquatic biota. Although microalgae have been extensively investigated for their responses to Cu or Zn exposure, how they cope with the mixtures of two metals, especially at transcriptomic level, remains largely unknown. In this study, Chlamydomonas reinhardtii was exposed to environmentally relevant concentrations of two metals. It was found that Zn promoted the entry of Cu into the algal cells. With the increase of combined toxicity, extracellular polymeric substances (EPS) and cell wall functional groups immobilized significant amounts of Cu and Zn. Furthermore, C. reinhardtii adjusted resistance strategies internally, including starch consumption and synthesis of chlorophyll and lipids. Upon high level of Cu and Zn coexistence, synergistic effects were observed in lipid peroxidation and catalase (CAT) activity. Under 1.05 mg/L Cu + 0.87 mg/L Zn, 256 differentially expressed genes (DEGs) were mainly involved in oxidative phosphorylation, ribosome, nitrogen metabolism; while 4294 DEGs induced by 4.21 mg/L Cu + 3.48 mg/L Zn were mainly related to photosynthesis, citric acid cycle, etc. Together, this study revealed a more comprehensive understanding of mechanisms of Cu/Zn detoxification in C. reinhardtii, emphasizing critical roles of photosynthetic carbon sequestration and energy metabolism in the metal resistance.
Collapse
Affiliation(s)
- Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Niu Z, Liu Y, Wang Y, Liu Y, Chai L, Wang H. Impairment of bile acid metabolism and altered composition by lead and copper in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165901. [PMID: 37524187 DOI: 10.1016/j.scitotenv.2023.165901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Lead (Pb) and copper (Cu) are two common heavy metal contaminants in environments, and liver is recognized as one of the main target organs for toxicity of Pb and Cu in animal organisms. Bile acids play a critical role in regulating hepatic metabolic homeostasis by activating farnesoid X receptor (Fxr). However, there were few studies on the interactions between bile acids and liver pathology caused by heavy metals. In this work, the histopathological changes, targeted metabolome and transcriptome responses in the liver of Bufo gargarizans tadpoles to Pb and/or Cu were examined. We found that exposure to Pb and/or Cu altered the hepatic bile acid profile, resulting in increased hydrophobicity and toxicity of the bile acid pool. And the expression of genes involved in bile acid metabolism and their downstream signaling pathways in the liver were significantly altered by Pb and/or Cu exposure. The alteration of bile acid profiles and the expression of genes related to bile acid metabolism might induce oxidative stress and inflammation, ultimately inducing hepatocyte injury observed in the histological sections. To our knowledge, this is the first study to provide histological, biochemical, and molecular evidence for establishing the link between Pb and Cu exposure, disturbances in hepatic bile acid metabolism, and liver injury.
Collapse
Affiliation(s)
- Ziyi Niu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yaxi Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Arrokhman S, Luo YH, Lin P. Additive cardiotoxicity of a bisphenol mixture in zebrafish embryos: The involvement of calcium channel and pump. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115225. [PMID: 37418940 DOI: 10.1016/j.ecoenv.2023.115225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Bisphenol A (BPA) and its analogs, such as bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol B (BPB), are often simultaneously detected in environmental and human specimens. Thus, assessing the toxicity of bisphenol (BP) mixtures is more relevant than assessing that of each BP type. Here, we found that BPs, individually or in a mixture, concentration-dependently and additively increased the mortality of zebrafish embryos (ZFEs) at 96 h post fertilization (hpf) and induced bradycardia (i.e., reduced heart rate) at 48 hpf, indicating their cardiotoxic potency. BPAF was the most potent, followed by BPB, BPA, and BPF. We then explored the mechanism underlying BP-induced bradycardia in ZFEs. Although BPs increased the mRNA expression of the estrogen-responsive gene, treatment with the estrogen receptor inhibitor ICI 182780 did not prevent BP-induced bradycardia. Because they did not change cardiomyocyte counts or heart development-related gene expression, BPs might not affect cardiomyocyte development. By contrast, BPs might impair calcium homeostasis during cardiac contraction and relaxation through the downregulation of the expression of the mRNAs for the pore-forming subunit of L-type Ca2+ channel (LTCC; cacna1c) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA; atp2a2a). BPs reduced SERCA activity significantly. BPs also potentiated the cardiotoxicity induced by the LTCC blocker nisoldipine, conceivably by inhibiting SERCA activity. In conclusion, BPs additively induced bradycardia in ZFEs, possibly by impeding calcium homeostasis during cardiac contraction and relaxation. BPs also potentiated the cardiotoxicity of calcium channel blockers.
Collapse
Affiliation(s)
- Salim Arrokhman
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
10
|
Hou Y, Liu X, Qin Y, Hou Y, Hou J, Wu Q, Xu W. Zebrafish as model organisms for toxicological evaluations in the field of food science. Compr Rev Food Sci Food Saf 2023; 22:3481-3505. [PMID: 37458294 DOI: 10.1111/1541-4337.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yanlin Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Zhang X, Zhu Y, Li Z, Li J, Wei S, Chen W, Ren D, Zhang S. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils. ENVIRONMENTAL RESEARCH 2023; 217:114968. [PMID: 36455628 DOI: 10.1016/j.envres.2022.114968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Evaluation joint cadmium (Cd) and copper (Cu) phytotoxicity in wide range of subtropical agricultural soils is highly vital for phytoremediation of soils contaminated with Cd and Cu. In this study, barley root elongation assays were performed in 30 representative soils in response to single and combined Cd and Cu inhibition. The single Cd caused nearly 50% inhibition of barley root elongation, and Cu induced more than 50% inhibition in most soils. Mixed Cd + Cu caused significant inhibition on barley growth with average relative root elongation values of 20.0% and 30.4% in soil with a pH < 7 and pH > 7, respectively. An antagonistic interaction was evaluated in combined Cd + Cu toxicity, which was strong in soils containing low soluble Cu and Cd contents. Soil pH was the controlling factor in predicting single and mixed Cd and Cu phytotoxicity, which could explain 44% and 46% variation of single Cd and Cu toxicity, respectively. Soil organic carbon and effective cation exchange capacity were another important factor positively influencing metal toxicity, which further improved empirical prediction models accuracy, with determined coefficient (r2) values of 0.44-0.84. These results provide a theoretical basis for soils Cd and Cu pollution control.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yuanjie Zhu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhuangzhuang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiong Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shan Wei
- College of Wuhan University, Wuhan, Hubei, 430081, China.
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
12
|
Chai L, Jabbie IS, Chen A, Jiang L, Li M, Rao H. Effects of waterborne Pb/Cu mixture on Chinese toad, Bufo gargarizans tadpoles: morphological, histological, and intestinal microbiota assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90656-90670. [PMID: 35871197 DOI: 10.1007/s11356-022-22143-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Coexistence of heavy metals in aquatic environments exert complex effects on amphibians. Here, the adverse effects of Pb (0.14 μM) combined with Cu at concentrations of 0, 0.25, and 1.0 μM were investigated in Bufo gargarizans tadpoles. Tadpoles were chronically exposed from Gosner stage (Gs) 26 to Gs 38, and morphology of tadpoles as well as intestinal histology and bacterial community were assessed. Our results indicated that Pb+Cu1.0 exposure induced significant retardation of somatic mass, total length, intestine mass, and intestine length as well as intestinal histological alterations. Pb+Cu0.25 and Pb+Cu1.0 exposure were associated with the loss of gut bacterial diversity. Proteobacteria and Bacteroidetes were two dominant phyla in tadpoles independently of heavy metal exposure, but the abundance of Proteobacteria increased significantly in Pb+Cu1.0 group and Bacteroidetes decreased significantly in all treatment groups. Furthermore, functional prediction indicated that metabolic disorders were associated with Pb+Cu0.25 and Pb+Cu1.0 exposure. Overall, relative limited shifts in intestinal bacterial diversity, composition, and functionality caused by Pb+Cu0 exposure, while coexistence of Pb and Cu induced gut dysbiosis and might further cause disturbance of metabolic homeostasis. The findings of this study provide insights into the effects of Pb and Cu coexistence on the health of amphibians.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Ibrahim Sory Jabbie
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Mengfan Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Huihui Rao
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
13
|
Chormare R, Kumar MA. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. CHEMOSPHERE 2022; 302:134836. [PMID: 35525441 DOI: 10.1016/j.chemosphere.2022.134836] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The environment pollutants, which are landed up in environment because of human activities like urbanization, mining and industrializations, affects human health, plants and animals. The living organisms present in environment are constantly affected by the toxic pollutants through direct contact or bioaccumulation of chemicals from the environment. The toxic and hazardous pollutants are easily transferred to different environmental matrices like land, air and water bodies such as surface and ground waters. This comprehensive review deeply discusses the routes and causes of different environmental pollutants along with their toxicity, impact, occurrences and fate in the environment. Environment health and risk assessment tools that are used to evaluate the harmfulness, exposure of living organisms to pollutants and the amount of pollutant accumulated are explained with help of bio-kinetic models. Biotransfer, toxicity factor, biomagnification and bioaccumulation of different pollutants in the air, water and marine ecosystems are critically addressed. Thus, the presented survey would be collection of correlations those addresses the factors involved in assessing the environmental health and risk impacts of distinct environmental pollutants.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Madhava Anil Kumar
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
14
|
Zhang Y, Gao Q, Liu SS, Tang L, Li XG, Sun H. Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154581. [PMID: 35304143 DOI: 10.1016/j.scitotenv.2022.154581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Quinolones (QNs), dechloranes (DECs), and chlorinated paraffins (CPs) are three kinds of new halogenated organic pollutants (HOPs), which originate from the use of flame retardants, lubricants and pesticides. Since QNs, DECs, and CPs are frequently detected in waters and sediments, it is necessary to investigate the toxic effects of these HOPs with dwelling phytoplankton, especially for cyanobacteria, to explore their potential hormetic effects and contributions to algal blooms. In the present study, we investigate single and joint toxicity of QNs, DECs and CPs on Microcystis aeruginosa (M. aeruginosa), a cyanobacterium that is frequently implicated with algal blooms. The results indicate single QNs and DECs induce marked hormetic effects on the proliferation of M. aeruginosa but CPs do not. The stimulatory effect of hormesis is linked with accelerated replication of DNA, which is considered to stem from the moderate rise in intracellular reactive oxygen species (ROS). Joint toxicity tests reveal that both QNs & CPs mixtures and DECs & CPs mixtures show hormetic effects on M. aeruginosa, but QNs & DECs mixtures show no hormetic effect. QNs & DECs mixtures exhibit synergistic toxic actions, which may be caused by a sharp rise in intracellular ROS simultaneously produced by the agents. Joint toxic actions of both QNs & CPs, and DECs & CPs shift from addition to antagonism as concentration increases, and this shift may mainly depend on the influence of CPs on cell membrane hydrophobicity of M. aeruginosa. This study provides data and toxic mechanisms for the hormetic phenomenon of single and joint HOPs on M. aeruginosa. The hormetic effects of HOPs may benefit the proliferation of M. aeruginosa in the aquatic environment, aggravating the formation of algal blooms. This study also reflects the important role of hormesis in environmental risk assessment of pollutants.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Nilén G, Obamwonyi OS, Liem-Nguyen V, Engwall M, Larsson M, Keiter SH. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106175. [PMID: 35523058 DOI: 10.1016/j.aquatox.2022.106175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Osagie S Obamwonyi
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| | - Van Liem-Nguyen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
16
|
Van Der Ven LT, Van Ommeren P, Zwart EP, Gremmer ER, Hodemaekers HM, Heusinkveld HJ, van Klaveren JD, Rorije E. Dose Addition in the Induction of Craniofacial Malformations in Zebrafish Embryos Exposed to a Complex Mixture of Food-Relevant Chemicals with Dissimilar Modes of Action. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47003. [PMID: 35394809 PMCID: PMC8992969 DOI: 10.1289/ehp9888] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Humans are exposed to combinations of chemicals. In cumulative risk assessment (CRA), regulatory bodies such as the European Food Safety Authority consider dose addition as a default and sufficiently conservative approach. The principle of dose addition was confirmed previously for inducing craniofacial malformations in zebrafish embryos in binary mixtures of chemicals with either similar or dissimilar modes of action (MOAs). OBJECTIVES In this study, we explored a workflow to select and experimentally test multiple compounds as a complex mixture with each of the compounds at or below its no observed adverse effect level (NOAEL), in the same zebrafish embryo model. METHODS Selection of candidate compounds that potentially induce craniofacial malformations was done using in silico methods-structural similarity, molecular docking, and quantitative structure-activity relationships-applied to a database of chemicals relevant for oral exposure in humans via food (EuroMix inventory, n = 1,598 ). A final subselection was made manually to represent different regulatory fields (e.g., food additives, industrial chemicals, plant protection products), different chemical families, and different MOAs. RESULTS A final selection of eight compounds was examined in the zebrafish embryo model, and craniofacial malformations were observed in embryos exposed to each of the compounds, thus confirming the developmental toxicity as predicted by the in silico methods. When exposed to a mixture of the eight compounds, each at its NOAEL, substantial craniofacial malformations were observed; according to a dose-response analysis, even embryos exposed to a 7-fold dilution of this mixture still exhibited a slight abnormal phenotype. The cumulative effect of the compounds in the mixture was in accordance with dose addition (added doses of the individual compounds after adjustment for relative potencies), despite different MOAs of the compounds involved. DISCUSSION This case study of a complex mixture inducing craniofacial malformations in zebrafish embryos shows that dose addition can adequately predicted the cumulative effect of a mixture of multiple substances at low doses, irrespective of the (expected) MOA. The applied workflow may be useful as an approach for CRA in general. https://doi.org/10.1289/EHP9888.
Collapse
Affiliation(s)
- Leo T.M. Van Der Ven
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Paul Van Ommeren
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Edwin P. Zwart
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Eric R. Gremmer
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Hennie M. Hodemaekers
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Harm J. Heusinkveld
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | | | - Emiel Rorije
- Centre for Safety of Substances and Products, RIVM, Bilthoven, Netherlands
| |
Collapse
|
17
|
Nogueira DJ, Silva ACDOD, da Silva MLN, Vicentini DS, Matias WG. Individual and combined multigenerational effects induced by polystyrene nanoplastic and glyphosate in Daphnia magna (Strauss, 1820). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151360. [PMID: 34774938 DOI: 10.1016/j.scitotenv.2021.151360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, the acute and multigenerational effects of the individual and combined toxicity of polystyrene nanoplastic (PSNP - 15.6, 31.2 62.5, 125, 250 and 500 mg/L) and glyphosate (Gly - 6.2, 12.5, 25, 50, 100 and 200 mg/L) on the freshwater crustacean Daphnia magna were investigated. The acute toxicity interactions were predicted mathematically using Abbott's model and multiple toxicological endpoints. In the multigenerational tests, we evaluated the effects in filial (F1 and F2) generations of daphnids after parental (F0) exposure to Gly and PSNP, as individual compounds and as a mixture, during their life history. Based on Abbott's model, the combined individual toxicities of Gly and PSNP are increased when they are present as a mixture. This indicates synergy between the components of the mixture, especially in the case of co-exposure to Gly and PSNP in higher equitoxic proportions. The mixture of PSNP and Gly caused an increase in immobility and ROS production and decrease in swimming activity. Multigenerational responses indicated that the exposure of F0 daphnids to Gly and PSNP as a mixture induced effects in the F1 and F2 reproduction parameters in the recovery tests. Thus, the results reported herein provide important information on the interaction of hydrophilic organic and nanoplastic pollutants in aqueous ecosystems. This will be useful in future studies on the toxicity of mixtures and multigenerational effects and provide a basis for management decisions aimed at the protection of environmental health.
Collapse
Affiliation(s)
- Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Aline Conceição de Oliveira da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil.
| |
Collapse
|
18
|
Wang N, Zhang J, Ma X, Zhang H, Sun J, Wang X, Zhou J, Wang J, Ge C. Study of the joint action of multi-component mixtures based on parameter σ 2(k∙ECx) characterizing the shape difference of concentration-response curves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118486. [PMID: 34780756 DOI: 10.1016/j.envpol.2021.118486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A previous study has revealed that the parameter k∙ECx, characterizing the shape of concentration-response curves (CRCs), could predict the combined toxicity of binary mixtures. This study further explored the predictability of multi-component mixtures. Eleven component mixtures were designed using the uniform design ray, and the acute toxicity of the eleven environmental pollutants and their mixtures to Vibrio fischeri was determined using microplate toxicity analysis. We used independent action (IA) and the effect residual ratio (ERRx) models to evaluate the combined toxicity of multi-component mixtures and ascertain the functional relationship between σ2(k∙ECx), a parameter characterizing the CRC morphological difference of multi-component mixtures, and combined toxicity. The variance σ2(k∙ECx) of each component characteristic parameter of multi-component mixtures gradually increased in the concentration range, and the relationship between σ2(k∙ECx) and ERRx was consistent with the exponential function. The literature verification showed that this rule is generally applicable to the acute toxicity of multi-component mixtures to luminescent bacteria. The exponential function showed the variation rule of the joint action of multi-component mixtures. In the present study, the joint toxicity of multi-component mixtures can be predicted from single toxicity and small amount of multiple toxicity, circumventing complex multi-component toxicity experiments.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China.
| | - Jingkun Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Huanle Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd., Dongying, 257300, Shandong, China
| |
Collapse
|
19
|
Frías-Espericueta MG, Soto-Jiménez MF, Abad-Rosales SM, López-Morales ML, Trujillo-Alvarez SY, Arellano-Sarabia JA, Quintero-Alvarez JM, Osuna-López JI, Bojórquez C, Aguilar-Juárez M. Physiological and histological effects of cadmium, lead, and combined on Artemia franciscana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7344-7351. [PMID: 34476687 DOI: 10.1007/s11356-021-16147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
This study analyzed the effects of cadmium (Cd) and lead (Pb) on growth, sexual couples, and histological structures of Artemia franciscana exposed to individual concentrations of these metals and combined. No histological effects were observed at tissue level in digestive, respiratory, nervous, and reproductive systems (i.e., necrosis, loss of regular structure) in individual and mixed applications on A. franciscana for 20 days of exposure. No significant differences (p > 0.05) were determined in final size and growth rate among the organisms exposed to Cd and those of control. For Pb, only the final size (3.59 ± 0.59 mm) of organisms exposed to the highest concentration was significantly lower (p < 0.05) than those of the control (4.53 ± 0.34 mm) group, whereas for the combined experiment, no significant differences (p > 0.05) were observed in final size and growth rate. At all Cd concentrations, mean sexual couples were significantly lower (p < 0.05) than those of the control, as well as for Pb. For the combined experiment (8 μg/L of Cd + 8 μg/L of Pb), sexual couples were not observed, indicating synergism and negative reproduction effects. The results showed that Cd and Pb aquatic environmental regulations (as the Criterion of Continuous Concentration) proposed by the US Environmental Protection Agency (EPA) should include their interactions with other metals.
Collapse
Affiliation(s)
| | - Martín Federico Soto-Jiménez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 82040, Mazatlán, Sinaloa, Mexico
| | - Selene María Abad-Rosales
- Unidad Mazatlán en Acuicultura y Manejo Ambiental, Centro de Investigación en Alimentación y Desarrollo, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Marely Lizet López-Morales
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Sandy Yumee Trujillo-Alvarez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | | | - Jesús Manuel Quintero-Alvarez
- Posgrado en Ciencias del Mar y Limnología, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 82040, Mazatlán, Sinaloa, Mexico
| | | | - Carolina Bojórquez
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km.3 Mazatlán-Higueras Colonia Genaro Estrada, CP 82199, Mazatlán, Sinaloa, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
20
|
Swank A, Wang L, Ward J, Schoenfuss H. Multigenerational effects of a complex urban contaminant mixture on the behavior of larval and adult fish in multiple fitness contexts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148095. [PMID: 34139491 DOI: 10.1016/j.scitotenv.2021.148095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Agricultural and urban storm water runoffs can introduce chemicals of emerging concern (CECs) into waterways. These chemicals can be continually released, persist, or even accumulate over time, with adverse effects on the physiology and behavior of aquatic species. Most studies aimed at evaluating the intergenerational effects of CECs have focused exclusively on single chemicals. By comparison, little is known about the effects of complex CEC mixtures on the behavior of organisms, or how these effects might manifest in subsequent generations. In this study, we exposed three generations of fathead minnows (Pimephales promelas) to environmentally relevant concentrations of a complex CEC mixture representative of urban-impacted waterways and assessed the growth and behavior of larval and adult fish in life-stage-relevant fitness contexts (foraging, boldness, courtship). We found that (i) multigenerational exposure to a complex mixture of CECs altered the behavior of both larvae and adults in different fitness contexts; (ii) concentration-dependent patterns of behavioral impairment were consistent across fitness contexts and life stages; and (iii) the effects of exposure were magnified in the F1 and F2 generations. These results highlight the need for long-term, multigenerational assessments of CECs in affected waterways to robustly inform conservation practices aimed at managing aquatic systems.
Collapse
Affiliation(s)
- Ally Swank
- Department of Biology, Ball State University, United States of America
| | - Lina Wang
- Aquatic Toxicology Laboratory, Department of Biological Sciences, St. Cloud State University, United States of America
| | - Jessica Ward
- Department of Biology, Ball State University, United States of America.
| | - Heiko Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biological Sciences, St. Cloud State University, United States of America
| |
Collapse
|
21
|
Chemical interactions and mixtures in public health risk assessment: An analysis of ATSDR's interaction profile database. Regul Toxicol Pharmacol 2021; 125:104981. [PMID: 34186140 DOI: 10.1016/j.yrtph.2021.104981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022]
Abstract
The Agency for Toxic Substances and Disease Registry (ATSDR) develops interaction profiles using binary weight of evidence (BINWOE) methodology to determine interaction directions of common environmental mixtures. We collected direction of interactions, BINWOE score determination, and BINWOE score confidence rating from 13 interaction profiles along with toxicodynamic and toxicokinetic influences on interaction direction. By doing so, we quantified the 1) direction of interaction and indeterminate evaluations; 2) characterized confidence in the BINWOE determinations; and 3) quantified toxicokinetic/toxicodynamic, and other influences on projected BINWOE interaction directions. Thirty-nine percent (130/336) of the attempts to make a BINWOE were indeterminate due to no interaction data or inadequate or conflicting evidence. Out of remaining BINWOEs, 25% were additive, 9% were greater-than-additive, and 27% were less-than-additive interactions. Fifty-five percent of BINWOEs were explained by toxicokinetic interactions, 12% and 5% were explained by toxicodynamic and other explanations, respectively. High quality mixture toxicology in vivo studies along with mixture in vitro and in silico studies will lead to greater confidence in interaction directions and influences. Limitations for interpretation of the data were also included.
Collapse
|
22
|
Adnan NA, Halmi MIE, Abd Gani SS, Zaidan UH, Abd Shukor MY. Comparison of Joint Effect of Acute and Chronic Toxicity for Combined Assessment of Heavy Metals on Photobacterium sp.NAA-MIE. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126644. [PMID: 34205553 PMCID: PMC8296520 DOI: 10.3390/ijerph18126644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Predicting the crucial effect of single metal pollutants against the aquatic ecosystem has been highly debatable for decades. However, dealing with complex metal mixtures management in toxicological studies creates a challenge, as heavy metals may evoke greater toxicity on interactions with other constituents rather than individually low acting concentrations. Moreover, the toxicity mechanisms are different between short term and long term exposure of the metal toxicant. In this study, acute and chronic toxicity based on luminescence inhibition assay using newly isolated Photobacterium sp.NAA-MIE as the indicator are presented. Photobacterium sp.NAA-MIE was exposed to the mixture at a predetermined ratio of 1:1. TU (Toxicity Unit) and MTI (Mixture Toxic Index) approach presented the mixture toxicity of Hg2+ + Ag+, Hg2+ + Cu2+, Ag+ + Cu2+, Hg2+ + Ag+ + Cu2+, and Cd2+ + Cu2+ showed antagonistic effect over acute and chronic test. Binary mixture of Cu2+ + Zn2+ was observed to show additive effect at acute test and antagonistic effect at chronic test while mixture of Ni2+ + Zn2+ showing antagonistic effect during acute test and synergistic effect during chronic test. Thus, the strain is suitable and their use as bioassay to predict the risk assessment of heavy metal under acute toxicity without abandoning the advantage of chronic toxicity extrapolation.
Collapse
Affiliation(s)
- Nur Adila Adnan
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Siti Salwa Abd Gani
- Department of Agricultural Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.H.Z.); (M.Y.A.S.)
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.H.Z.); (M.Y.A.S.)
| |
Collapse
|
23
|
Zhao S, Wesseling S, Spenkelink B, Rietjens IMCM. Physiologically based kinetic modelling based prediction of in vivo rat and human acetylcholinesterase (AChE) inhibition upon exposure to diazinon. Arch Toxicol 2021; 95:1573-1593. [PMID: 33715020 PMCID: PMC8113213 DOI: 10.1007/s00204-021-03015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
The present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentration-response curves for AChE inhibition obtained in the current study to predicted in vivo dose-response curves. The predicted dose-response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.
Collapse
Affiliation(s)
- Shensheng Zhao
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bert Spenkelink
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
24
|
Yoo JW, Cho H, Lee KW, Won EJ, Lee YM. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108863. [PMID: 32781295 DOI: 10.1016/j.cbpc.2020.108863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
The combined effect of toxic inducers has emerged as a challenging topic, particularly due to their inconsistent impacts on the environment. Using toxic unit (TU) based on LC50 value, we investigated the 48 h acute toxicities of the following combinations: Cd + As, Cd + Pb, As + Pb, and Cd + As + Pb, and binary and ternary combined effects were interpreted using concentration addition (CA) and independent action (IA) model. The molecular effects of these combinations were further examined on the basis of gene expression (four GST and two SOD isoforms) and antioxidant enzymes activity (SOD and GST). The CA-predicted LC50 was similar to the observed results, indicating that the CA model is more applicable for evaluating the combined effects of the metal mixtures. Synergistic effects (ΣTULC50 < 0.8) were observed for the mixtures As + Pb and Cd + Pb, while additive effects (0.8 < ΣTULC50 < 1.2) were observed for the mixtures Cd + As + Pb and Cd + As. No antagonistic effects were observed in this study. Molecular biomarkers for oxidative stress caused by metals, as well as traditional endpoints such as lethality, have shown a clear response in assessing the toxicity of binary and ternary mixtures. This study opens up a new avenue for the use of biomarkers to assess the combined effects of metals in aquatic environments.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyun-Woo Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Youngdo, Busan 49111, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
25
|
Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 2020; 50:619-657. [PMID: 33206730 DOI: 10.1039/d0cs00150c] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-dimensional (2D) materials are at the forefront of materials research. Here we overview their applications beyond graphene, such as transition metal dichalcogenides, monoelemental Xenes (including phosphorene and bismuthene), carbon nitrides, boron nitrides along with transition metal carbides and nitrides (MXenes). We discuss their usage in various biomedical and environmental monitoring applications, from biosensors to therapeutic treatment agents, their toxicity and their utility in chemical sensing. We highlight how a specific chemical, physical and optical property of 2D materials can influence the performance of bio/sensing, improve drug delivery and photo/thermal therapy as well as affect their toxicity. Such properties are determined by crystal phases electrical conductivity, degree of exfoliation, surface functionalization, strong photoluminescence, strong optical absorption in the near-infrared range and high photothermal conversion efficiency. This review conveys the great future of all the families of 2D materials, especially with the expanding 2D materials' landscape as new materials emerge such as germanene and silicene.
Collapse
Affiliation(s)
- Nasuha Rohaizad
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
26
|
Wang ZJ, Liu SS, Feng L, Xu YQ. BNNmix: A new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140317. [PMID: 32806371 DOI: 10.1016/j.scitotenv.2020.140317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 05/24/2023]
Abstract
The chemical mixtures in various environmental media not only have concentration diversity but also mixture-ratio diversity. It is impossible to experimentally determine the toxicities of all mixtures; therefore, it is necessary to develop effective methods based on models to predict mixture toxicity. In this study, a new approach (BNNmix) based on the back-propagation neural network (BPNN) was developed and used to predict the toxicities of seven-component mixtures (consisting of two substituted phenols, two pesticides, two ionic liquids, and one heavy metal) on Caenorhabditis elegans. We found that the combined toxicities of various mixtures used in the experiments were neither global concentration-additive nor global response-additive, which implied that it was impossible to accurately predict the toxicities of such mixtures by using common models such as concentration addition (CA) and response addition (independent action, IA). Using the BNNmix approach to estimate or predict the toxicities of the mixtures under test, it was found that the predictive toxicities of various mixtures with different mixture ratios and concentrations were almost in accordance with those observed experimentally. Unlike the CA and IA models, the BNNmix approach can predict not only the toxicities of mixtures having toxicological interactions but also those with global concentration or response additivities.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Li Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
27
|
Identification of component-based approach for prediction of joint chemical mixture toxicity risk assessment with respect to human health: A critical review. Food Chem Toxicol 2020; 143:111458. [DOI: 10.1016/j.fct.2020.111458] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/22/2022]
|
28
|
Oliver M, Kudłak B, Wieczerzak M, Reis S, Lima SAC, Segundo MA, Miró M. Ecotoxicological equilibria of triclosan in Microtox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137358. [PMID: 32145489 DOI: 10.1016/j.scitotenv.2020.137358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/23/2023]
Abstract
Contaminants of emerging concern may be considered as any chemicals or factors whose unintended continuous release and persistence in the environment may lead to any observable undesirable response of living beings. Still not much is known on reciprocal toxicological impact of given chemicals when present in binary or more complex mixtures. In this work, an attempt was thus undertaken to study the impact of butylparaben, methylparaben and diclofenac on toxicological behavior and properties of triclosan (at varying concentration levels) with respect to Microtox, XenoScreen YES/YAS, Caco-2, HEPG2, and liposomal systems. Having performed analytical and biological studies modeling was done using two modeling approaches, viz., concentration addition (CA) and independent action (IA) at three concentration levels of each chemical studied. The effect of the highest concentration of triclosan studied was impacted by even small amounts of methylparaben and butylparaben in Microtox while diclofenac preferably affected triclosan activity at its lowest concentration level (with CA model). Estrogenic agonistic properties of triclosan were severely impacted by both parabens in an antagonistic way; diclofenac showed in all cases underestimation or synergy at the lowest triclosan concentration studied. Estrogenic antagonistic activity of triclosan was also slightly affected by parabens and by diclofenac in binary mixtures, showing overestimation and antagonist effects. HepG2 cells appeared to be the most resistant to the toxic effect of the mixtures at the concentrations tested and no significant proof of synergy or antagonism could be detected with the MTT assay. The liposome assays on the mixtures followed the same trends obtained with the MTT assay with Caco-2 cells, confirming the validity of the in vitro model used in this research. As studies on emerging contaminants mixtures toxicity are still scarce, research presented here constitute an important part in confirming utility and versatility of emerging contaminants modeling in environmental toxicology.
Collapse
Affiliation(s)
- Miquel Oliver
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| | - Monika Wieczerzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A C Lima
- LAQV, REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
29
|
Pilehvar A, Cordery KI, Town RM, Blust R. The synergistic toxicity of Cd(II) and Cu(II) to zebrafish (Danio rerio): Effect of water hardness. CHEMOSPHERE 2020; 247:125942. [PMID: 32069721 DOI: 10.1016/j.chemosphere.2020.125942] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have evaluated the interactive toxicity of Cu(II) and Cd(II) in water with different hardness levels using adult zebrafish (Danio rerio). Zebrafish were exposed to Cd(II) (0.2-22 μM) or Cu(II) (0.1-8 μM) in single or binary exposures in very soft, moderately hard or very hard water. The whole body burdens of Cd(II) and Cu(II) reflect the net effect of biouptake and elimination, mortality was the indicator of toxicity, and whole body major ion content was measured to assess ion regulatory functions. Cu(II) was found to be more toxic than Cd(II) for zebrafish, and Cu(II) and Cd(II) exhibited a significant synergistic effect. The toxicity of metal ions increased upon decreasing the ionic strength of the exposure medium, probably due to elevated competition between metal ions with other cations in hard water and increased activity of Ca2+ pathways in soft water treatments. Whole body metal accumulation and the accumulation rate of both Cu and Cd increased as the metal ion concentration in the exposure medium increased. Nevertheless, neither parameter explained the observed synergistic effect on mortality. Finally, we observed a significant loss of whole body Na+ in fish which died during the metal exposure compared to surviving fish, irrespective of exposure conditions. Such an effect was not observed for other major cations (K+, Ca2+ and Mg2+). This observation suggests that, under the applied exposure conditions, survival was correlated to the capacity of the organism to maintain Na+ homeostasis.
Collapse
Affiliation(s)
- Ali Pilehvar
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Katherine I Cordery
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
30
|
Vilela P, Jácome G, Kim SY, Nam K, Yoo C. Population response modeling and habitat suitability of Cobitis choii fish species in South Korea for climate change adaptation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109949. [PMID: 31757512 DOI: 10.1016/j.ecoenv.2019.109949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Endangered species ecosystems require appropriate monitoring for assessing population growth related to the emerging pollutants in their habitat conditions. The response of population growth of Cobitis choii, an endangered fish species, under the exposure to emerging pollutants present in the Geum River Basin of South Korea was studied. Toxicity models of concentration addition (CA), independent action (IA), and concentration addition-independent action (CAIA) were implemented utilizing the concentration of a set of 25 chemicals recorded in the study area. Thus, a population-level response analysis was developed based on the abundance of Cobitis choii for period 2011-2015. The results were compared showing that the CA and IA models were the most conservative approaches for the prediction of growth rate. Further, a standard abnormality index (SAI) and habitat suitability (HS) indicators based on the climate, habitat, and abundance data were presented to completely analyze the population growth of the species. Suitability of the species growth was most probable for year 2015 for the variables of air temperature and land surface temperature. A spatial analysis was complementarily presented to visualize the correlation of variables for the best suitability of the species growth. This study presents a methodology for the analysis of the ecosystem's suitability for Cobitis choii growth and its assessment of the chemicals present in Geum River stream.
Collapse
Affiliation(s)
- Paulina Vilela
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - Gabriel Jácome
- Escuela de Recursos Naturales Renovables, Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte (UTN), Avenida 17 de Julio 5-21, y Gral José María Cordova, EC100150, Ibarra, Imbabura, Ecuador
| | - Sang Youn Kim
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - KiJeon Nam
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - ChangKyoo Yoo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea.
| |
Collapse
|
31
|
Yin K, Chan WP, Dou X, Lisak G, Chang VWC. Vertical distribution of heavy metals in seawater column during IBA construction in land reclamation - Re-exploration of a large-scale field trial experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:356-364. [PMID: 30447575 DOI: 10.1016/j.scitotenv.2018.10.407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Data from large-scale field trial experiments simulating the application of incineration bottom ash (IBA) for land reclamation were re-explored, to understand the spot-specific leaching characteristics and re-adsorption of heavy metals associated with various reclamation scenarios. Data showed that IBA leaching changed significantly as a function of seawater depth rather than time. The application of a chute had a minor effect on the total metal leached amounts; however, it would magnify the gradient of leaching concentrations across depths. Metal re-adsorption occurred within half an hour after IBA dumping, which however was significantly alleviated when a chute was applied. It may be ascribed to various degrees of contact with seawater of IBA, seawater movements and particle resuspension. Batch leaching tests from the laboratory under different L/S ratios were conducted as the references to "effective" leaching behaviors in the large-scale experiments, suggesting that the batch leaching test with the liquid to solid ratio = 10 provide a closer estimation of IBA leaching concentrations during land reclamation. As the current study took account of major field factors during land reclamation, including seawater depth (m), IBA loading (ton), IBA dropping method, particle dispersive area (m2), and settling time (min), these findings are valuable for the risk assessment of IBA utilization in land reclamation.
Collapse
Affiliation(s)
- Ke Yin
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; Department of Environmental Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China.
| | - Wei-Ping Chan
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Xiaomin Dou
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Grzegorz Lisak
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Victor Wei-Chung Chang
- Department of Civil Engineering, 23 College Walk, Monash University, Victoria 3800, Australia.
| |
Collapse
|
32
|
Sun H, Pan Y, Gu Y, Lin Z. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:11-19. [PMID: 29471187 DOI: 10.1016/j.scitotenv.2018.02.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Cross-phenomenon in which the concentration-response curve (CRC) for a mixture crosses the CRC for the reference model has been identified in many studies, expressed as a heterogeneous pattern of joint toxic action. However, a mechanistic explanation of the cross-phenomenon has thus far been extremely insufficient. In this study, a time-dependent cross-phenomenon was observed, in which the cross-concentration range between the CRC for the mixture of sulfamethoxypyridazine (SMP) and (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone (C30) to the bioluminescence of Aliivibrio fischeri (A. fischeri) and the CRC for independent action model with 95% confidence bands varied from low-concentration to higher-concentration regions in a timely manner expressed the joint toxic action of the mixture changing with an increase of both concentration and time. Through investigating the time-dependent hormetic effects of SMP and C30 (by measuring the expression of protein mRNA, simulating the bioluminescent reaction and analyzing the toxic action), the underlying mechanism was as follows: SMP and C30 acted on the quorum sensing (QS) system of A. fischeri, which induced low-concentration stimulatory effects and high-concentration inhibitory effects; in the low-concentration region, the stimulatory effects of SMP and C30 made the mixture produce a synergistic stimulation on the bioluminescence; thus, the joint toxic action exhibited antagonism. In the high-concentration region, the inhibitory effects of SMP and C30 in the mixture caused a double block in the loop circuit of the QS system; thus, the joint toxic action exhibited synergism. With the increase of time, these stimulatory and inhibitory effects of SMP and C30 were changed by the variation of the QS system at different growth phases, resulting in the time-dependent cross-phenomenon. This study proposes an induced mechanism for time-dependent cross-phenomenon based on QS, which may provide new insight into the mechanistic investigation of time-dependent cross-phenomenon, benefitting the environmental risk assessment of mixtures.
Collapse
Affiliation(s)
- Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongzheng Pan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Gu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
33
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|