1
|
Vishwa Priya U, Saranya A, Sankara Narayanan TSN, Ravichandran K. Photocatalytic removal of methylene blue via HAp/AGCN composites: Synergistic effects and mechanistic insights. ENVIRONMENTAL RESEARCH 2025; 278:121582. [PMID: 40216055 DOI: 10.1016/j.envres.2025.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
The demand for heterogeneous photocatalysts has increased due to their potential application in dye degradation, utilizing natural and artificial light sources to mitigate environmental pollution. Hydroxyapatite (HAp), a biocompatible and non-toxic biomaterial, exhibits excellent adsorption properties for the removal of dyes and toxic heavy metals. However, its agglomeration and pressure drop limit its wide applicability. Graphitic carbon nitride (GCN), a metal-free semiconductor with a bandgap of 2.7 eV, is a stable visible-light photocatalyst. However, its utility is limited by quicker charge recombination and low surface area. To overcome the limitations as well as to utilize the beneficial attributes of both HAp and GCN, the present study aims to synthesize in situ HAp/AGCN composites with varying fractions of HAp and AGCN (HAp70/AGCN30, HAp50/AGCN50, and HAp30/AGCN70). XRD patterns confirmed the formation of HAp70/AGCN30, HAp50/AGCN50, and HAp30/AGCN70 composites while the change in intensity and broadening of the diffraction patterns along with peak positions in FTIR spectra established the existence of strong chemical interactions between HAp and AGCN. The XPS spectra confirm the successful formation of HAp/AGCN composites. Zeta potentials (-36.8 mV to -43.4 mV) of the composites validate their ability to promote strong adsorption of MB (cationic dye), particularly for HAp30/AGCN70. The HAp50/AGCN50 composite exhibited the lowest bandgap (2.27 eV) and a blue-shifted absorption peak, demonstrating its superior photocatalytic performance. Photocatalytic experiments showed HAp50/AGCN50 achieved 93 % MB removal, outperforming HAp70/AGCN30 (85 %) and HAp30/AGCN70 (74 %). The synergistic effect of the ability of HAp to serve as a good adsorbent and the porous and spongy structure of AGCN with excellent photocatalytic efficiency has enabled 93 % of MB removal for the HAp50/AGCN50 composite. The findings of the study highlight the synergistic effect of HAp and AGCN, establishing HAp50/AGCN50 as a promising photocatalyst for the effective removal of MB.
Collapse
Affiliation(s)
- U Vishwa Priya
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602117, India; Department of Analytical Chemistry, University of Madras, Guindy campus, Chennai, 600025, India.
| | - A Saranya
- Department of Analytical Chemistry, University of Madras, Guindy campus, Chennai, 600025, India; Department of Chemistry, Bhaktavatsalam Memorial College for Women, Chennai, 600080, India
| | - T S N Sankara Narayanan
- Department of Analytical Chemistry, University of Madras, Guindy campus, Chennai, 600025, India
| | - K Ravichandran
- Department of Analytical Chemistry, University of Madras, Guindy campus, Chennai, 600025, India; KREA University, Campus:5655, Central Express Way, Sri City, Andhra Pradesh, 517646, India.
| |
Collapse
|
2
|
Jędras A, Matusik J, Dhanaraman E, Fu YP, Cempura G. Tuning the Structural and Electronic Properties of Zn-Cr LDH/GCN Heterostructure for Enhanced Photodegradation of Estrone in UV and Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39140300 PMCID: PMC11363147 DOI: 10.1021/acs.langmuir.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Estrone is an emerging contaminant found in waters and soils all over the world. Conventional water treatment methods are not suitable for estrone removal due to its nonpolarity and low bioavailability. Heterogeneous photocatalysis is a promising approach; however, pristine semiconductors need optimization for efficient estrone photodegradation. Herein, we compared Zn-Cr LDH/GCN heterostructures obtained by three different synthesis methods. The influence of the GCN content in the heterostructure on photoactivity was also tested. The morphology, structure, and electronic properties of the materials were analyzed and compared. The photocatalytic kinetic tests were conducted with 1 ppm of estrone in both UV and visible light, separately. The HLDH-G50 material, obtained by the hydrothermal route and containing 50 wt % of GCN exhibited the highest photocatalytic efficiency. After 1 h, 99.5% of the estrone was degraded in visible light. In UV light, the pollutant concentration was below the detection limit after 0.5 h. The superior effectiveness was caused by numerous factors such as high homogeneity of the formed heterostructure, lower band gap energy of hydrothermal LDH, and increased photocurrent. These characteristics led to prolonged lifetimes of charge carriers, a wider light absorption range, and uniformity of the material for predictable performance. This study highlights the importance of a proper heterostructure engineering strategy for acquiring highly effective photocatalysts designed for water purification. In particular, this work provides innovative insight into comparing different synthesis methods and their influence on materials' properties.
Collapse
Affiliation(s)
- Anna Jędras
- Faculty
of Geology, Geophysics and Environmental Protection, Department of
Mineralogy, Petrography and Geochemistry, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Matusik
- Faculty
of Geology, Geophysics and Environmental Protection, Department of
Mineralogy, Petrography and Geochemistry, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Esakkinaveen Dhanaraman
- Department
of Materials Science and Engineering, National
Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department
of Materials Science and Engineering, National
Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Grzegorz Cempura
- Faculty
of Metal Engineering and Industrial Computer Science, International
Centre of Electron Microscopy for Materials Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
3
|
González-Rodríguez J, Conde JJ, Vargas-Osorio Z, Vázquez-Vázquez C, Piñeiro Y, Rivas J, Feijoo G, Moreira MT. LED-driven photo-Fenton process for micropollutant removal by nanostructured magnetite anchored in mesoporous silica. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119461. [PMID: 37922820 DOI: 10.1016/j.jenvman.2023.119461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The presence of organic micropollutants in water bodies represents a threat to living organisms and ecosystems due to their toxicological effects and recalcitrance in conventional wastewater treatments. In this context, the application of heterogeneous photo-Fenton based on magnetite nanoparticles supported on mesoporous silica (SBA15) is proposed to carry out the non-specific degradation of the model compounds ibuprofen, carbamazepine, hormones, bisphenol A and the dye ProcionRed®. The operating conditions (i.e., pH, catalyst load and hydrogen peroxide concentration) were optimized by Response Surface Methodology (RSM). The paramagnetic properties of the nanocatalysts allowed their repeated use in sequential batch operations with catalyst losses below 1%. The feasibility of the process was demonstrated as removal rates above 90% after twelve accomplished after twelve consecutive cycles. In addition, the contributions of different reactive oxygen species, mainly •OH, were analyzed together with the formation of by-products, achieving total mineralization values of 15% on average.
Collapse
Affiliation(s)
- J González-Rodríguez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - J J Conde
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Z Vargas-Osorio
- Department of Biomaterials, Centre for Functional and Surface Functionalized Glass (FUNGLASS), Alexander Dubcek University of Trencin, Slovakia; Laboratory of Magnetism and Nanotechnology, Department of Physical Chemistry, Faculty of Chemistry, and Applied Physics, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - C Vázquez-Vázquez
- Laboratory of Magnetism and Nanotechnology, Department of Physical Chemistry, Faculty of Chemistry, and Applied Physics, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Y Piñeiro
- Laboratory of Magnetism and Nanotechnology, Department of Physical Chemistry, Faculty of Chemistry, and Applied Physics, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J Rivas
- Laboratory of Magnetism and Nanotechnology, Department of Physical Chemistry, Faculty of Chemistry, and Applied Physics, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - G Feijoo
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M T Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Zeng Z, Li S, Que X, Peng J, Li J, Zhai M. Gamma Radiation Synthesis of Ag/P25 Nanocomposites for Efficient Photocatalytic Degradation of Organic Contaminant. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101666. [PMID: 37242082 DOI: 10.3390/nano13101666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Titanium dioxide (TiO2) has garnered significant attention among various photocatalysts, whereas its photocatalytic activity is limited by its wide bandgap and inefficient charge separation, making the exploration of new strategies to improve its photocatalytic performance increasingly important. Here, we report the synthesis of Ag/P25 nanocomposites through a one-step gamma-ray radiation method using AgNO3 and commercial TiO2 (Degussa P25). The resulting products were characterized by powder X-ray diffraction, UV-Vis diffused reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The effect of free radical scavengers, feed ratios of Ag/P25, and dose rates on the photocatalytic activity of the Ag/P25 nanocomposites were systematically investigated using rhodamine B under Xenon light irradiation. The results showed that the Ag/P25 photocatalyst synthesized with a feed ratio of 2.5 wt% and isopropyl alcohol as the free radical scavenger at a dose rate of 130 Gy/min exhibited outstanding photocatalytic activity, with a reaction rate constant of 0.0674 min-1, much higher than that of P25. Additionally, we found that the particle size of Ag could be effectively controlled by changing the dose rate, and the Ag/P25 nanocomposites doped with smaller size of Ag nanoparticles performed higher photocatalytic activities. The synthesis strategy presented in this study offers new insight into the future development of highly efficient photocatalysts using radiation techniques.
Collapse
Affiliation(s)
- Zihua Zeng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuangxiao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xueyan Que
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
da Silva JR, Almeida PF, Santos LE, Brugnera MF. TiO2 nanotubes impregnated with Au nanoparticles: characterization and application in carbendazim and atrazine degradation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
7
|
Sendão RMS, Esteves da Silva JCG, Pinto da Silva L. Photocatalytic removal of pharmaceutical water pollutants by TiO 2 - Carbon dots nanocomposites: A review. CHEMOSPHERE 2022; 301:134731. [PMID: 35489458 DOI: 10.1016/j.chemosphere.2022.134731] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals are becoming increasingly more relevant water contaminants, with photocatalysts (such as TiO2) being a promising approach to remove these compounds from water. However, TiO2 has poor sunlight-harvesting capacity, low photonic efficiency, and poor adsorption towards organic pollutants. One of the emerging strategies to enhance the photocatalytic performance of TiO2 is by conjugating it with fluorescent carbon dots. Herein, we performed a critical review of the development of TiO2 - carbon dots nanocomposites for the photocatalytic removal of pharmaceuticals. We found that carbon dots can improve the photocatalytic efficiency of the resulting nanocomposites, mostly due to increasing the adsorption of organic pollutants and enhancing the absorption in the visible range. However, while this approach shows significant promise, we also identified and discussed several aspects that need to be addressed before this strategy could be more widely used. We hope that this review can guide future studies aiming to the development of enhanced photocatalytic TiO2 - carbon dots nanocomposites.
Collapse
Affiliation(s)
- Ricardo M S Sendão
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
8
|
González-González RB, Rodríguez-Hernández JA, Araújo RG, Sharma P, Parra-Saldívar R, Ramirez-Mendoza RA, Bilal M, Iqbal HMN. Prospecting carbon-based nanomaterials for the treatment and degradation of endocrine-disrupting pollutants. CHEMOSPHERE 2022; 297:134172. [PMID: 35248594 DOI: 10.1016/j.chemosphere.2022.134172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in water resources has significant negative implications for the environment. Traditional technologies implemented for water treatment are not completely efficient for removing EDCs from water. Therefore, research on sustainable remediation has been mainly directed to novel decontamination approaches including nano-remediation. This emerging technology employs engineered nanomaterials to clean up the environment quickly, efficiently, and sustainably. Thus, nanomaterials have contributed to a wide variety of remediation techniques like adsorption, filtration, coagulation/flocculation, and so on. Among the vast diversity of decontamination technologies catalytic advanced oxidation processes (AOPs) outstand as simple, clean, and efficient alternatives. A vast diversity of catalysts has been developed demonstrating high efficiencies; however, the search for novel catalysts with enhanced performances continues. In this regard, nanomaterials used as nanocatalysts are exhibiting enhanced performances on AOPs due to their special nanostructures and larger specific surface areas. Therefore, in this review we summarize, compare, and discuss the recent advances on nanocatalysts, catalysts doped with metal-based nanomaterials, and catalysts doped with carbon-based nanomaterials on the degradation of EDCs. Finally, further research opportunities are identified and discussed to achieve the real application of nanomaterials to efficiently degrade EDCs from water resources.
Collapse
Affiliation(s)
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, 226 025, Uttar Pradesh, India
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
González-González RB, Parra-Arroyo L, Parra-Saldívar R, Ramirez-Mendoza RA, Iqbal HM. Nanomaterial-based catalysts for the degradation of endocrine-disrupting chemicals – A way forward to environmental remediation. MATERIALS LETTERS 2022; 308:131217. [DOI: 10.1016/j.matlet.2021.131217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
11
|
Naqvi SMZA, Zhang Y, Ahmed S, Abdulraheem MI, Hu J, Tahir MN, Raghavan V. Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review. Talanta 2022; 236:122823. [PMID: 34635213 DOI: 10.1016/j.talanta.2021.122823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Plant hormones are the molecules that control the vigorous development of plants and help to cope with the stress conditions efficiently due to vital and mechanized physiochemical regulations. Biologists and analytical chemists, both endorsed the extreme problems to quantify plant hormones due to their low level existence in plants and the technological support is devastatingly required to established reliable and efficient detection methods of plant hormones. Surface Enhanced Raman Spectroscopy (SERS) technology is becoming vigorously favored and can be used to accurately and specifically identify biological and chemical molecules. Subsistence molecular properties with varying excitation wavelength require the pertinent substrate to detect SERS signals from plant hormones. Three typical mechanisms of Raman signal enhancement have been discovered, electromagnetic, chemical and Tip-enhanced Raman spectroscopy (TERS). Though, complex detection samples hinder in consistent and reproducible results of SERS-based technology. However, different algorithmic models applied on preprocessed data enhanced the prediction performances of Raman spectra by many folds and decreased the fluorescence value. By incorporating SERS measurements into the microfluidic platform, further highly repeatable SERS results can be obtained. This review paper tends to study the fundamental working principles, methods, applications of SERS systems and their execution in experiments of rapid determination of plant hormones as well as several ways of integrated SERS substrates. The challenges to develop an SERS-microfluidic framework with reproducible and accurate results for plant hormone detection are discussed comprehensively and highlighted the key areas for future investigation briefly.
Collapse
Affiliation(s)
- Syed Muhammad Zaigham Abbas Naqvi
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Yanyan Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Shakeel Ahmed
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China; Oyo State College of Education, Lanlate, 202001, Nigeria.
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Muhammad Naveed Tahir
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
12
|
Sharma S, Mittal A, Singh Chauhan N, Makgwane PR, Kumari K, Maken S, Kumar N. Developments in visible-light active TiO2/SnX (X = S and Se) and their environmental photocatalytic applications – A mini-review. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
El Gaidoumi A, Loqman A, Zouheir M, Tanji K, Mertah O, Dra A, El Bali B, Kherbeche A. Sol–gel fluorinated TiO2–clay nanocomposite: study of fluor-titanium interaction on the photodegradation of phenol. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Mafra G, Brognoli R, Carasek E, López-Lorente ÁI, Luque R, Lucena R, Cárdenas S. Photocatalytic Cellulose-Paper: Deepening in the Sustainable and Synergic Combination of Sorption and Photodegradation. ACS OMEGA 2021; 6:9577-9586. [PMID: 33869938 PMCID: PMC8047745 DOI: 10.1021/acsomega.1c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 05/08/2023]
Abstract
Clean water is one of the sustainable development goals set by the United Nations for 2030. The development of effective but worldwide affordable strategies is essential to guarantee this achievement. Photocatalysis technology fulfills these criteria whenever the photocatalyst is sustainable and nontoxic. In this article, a cellulose-paper modified with a polyamide-titanium dioxide (TiO2) nanocomposite by dip-coating is evaluated to degrade estrogens efficiently under solar light. The study deepens on the synergic combination of the sorptive capacity of the polyamide and the activity of TiO2. The photocatalytic performance was studied under artificial and sunlight in a miniaturized experimental setup (batch of six reactors). Also, the effects of the dispersed/immobilized catalyst, irradiation time, and adsorption evaluation were studied under kinetic conditions. The photocatalyst composition, considering the polyamide (nylon-6) and TiO2 amounts and the dipping cycles, was studied by a response surface methodology, and the reusability of the photocatalytic cellulose-paper was investigated. The LED source provided removal efficiencies of 65, 62, and 52% (for estrone, 17β-estradiol, and estriol, respectively) after 420 min of light exposure. Under sunlight, the efficiency increased up to 99.5% for estrone and 17β-estradiol and 98.5% for estriol after 180 min of irradiation. The sustainable character of the cellulosic substrate, the low toxicity of the nanocomposite ingredients, and its performance under sunlight make the material attractive for in-field application.
Collapse
Affiliation(s)
- Gabriela Mafra
- Departamento
de Química Analítica, Instituto Universitario de Investigación
en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, E-14071 Córdoba, Spain
- Departamento
de Química, Universidade Federal
de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Rafael Brognoli
- Departamento
de Química, Universidade Federal
de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Eduardo Carasek
- Departamento
de Química, Universidade Federal
de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ángela I. López-Lorente
- Departamento
de Química Analítica, Instituto Universitario de Investigación
en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, E-14071 Córdoba, Spain
| | - Rafael Luque
- Departamento
de Química Orgánica, Instituto Universitario de Investigación
en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, E-14071 Córdoba, Spain
| | - Rafael Lucena
- Departamento
de Química Analítica, Instituto Universitario de Investigación
en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, E-14071 Córdoba, Spain
- . Phone: +34 957218616
| | - Soledad Cárdenas
- Departamento
de Química Analítica, Instituto Universitario de Investigación
en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, E-14071 Córdoba, Spain
| |
Collapse
|
15
|
Bertagna Silva D, Buttiglieri G, Babić S. State-of-the-art and current challenges for TiO 2/UV-LED photocatalytic degradation of emerging organic micropollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:103-120. [PMID: 33052564 DOI: 10.1007/s11356-020-11125-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/04/2020] [Indexed: 05/08/2023]
Abstract
The development of ultraviolet light-emitting diodes (UV-LED) opens new possibilities for water treatment and photoreactor design. TiO2 photocatalysis, a technology that has been continuously drawing attention, can potentially benefit from LEDs to become a sustainable alternative for the abatement of organic micropollutants (OMPs). Recently reported data on photocatalytic degradation of OMPs and their parameters of influence are here critically evaluated. The literature on OMP degradation in real water matrices, and at environmentally relevant concentrations, is largely missing, as well as the investigations of the impact of photoreactor design in pollutant degradation kinetics. The key factors for reducing UV-LED treatment technology costs are pointed out, like the increase in external quantum and wall-plug efficiencies of UV-LEDs compared to other technologies, as well as the need for an appropriate design optimizing light homogeneity in the reactor. Controlled periodic illumination, wavelength coupling and H2O2 addition are presented as efficiency enhancement options. Although electrical energy per order (EEO) values for UV-LED photocatalysis have decreased to the range of traditional mercury lamps, values are still not low enough for practical employment. Moreover, due to the adoption of high initial OMP concentration in most experiments, it is likely that most literature EEO values are overestimated. Given the process characteristics, which are favoured by translucent matrices and small diameters for more homogenous light distribution and better transportation of radicals, innovative reactor designs should explore the potential of point-of-use applications to increase photocatalysis applicability at large scale.
Collapse
Affiliation(s)
- Danilo Bertagna Silva
- Faculty of Chemical Engineering, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Gianluigi Buttiglieri
- Catalan Institute of Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Sandra Babić
- Faculty of Chemical Engineering, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Yao X, Hu X, Liu Y, Wang X, Hong X, Chen X, Pillai SC, Dionysiou DD, Wang D. Simultaneous photocatalytic degradation of ibuprofen and H 2 evolution over Au/sheaf-like TiO 2 mesocrystals. CHEMOSPHERE 2020; 261:127759. [PMID: 32731028 DOI: 10.1016/j.chemosphere.2020.127759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Considerable effort has been devoted to the efficient degradation of pharmaceuticals and personal care products (PPCPs), while the chemical energy in these processes has been widely overlooked. In this study, we demonstrated the simultaneous hydrogen production and ibuprofen degradation through heterogeneous photocatalysis. By anchoring Au nanoparticles (NPs) on the (101) surface of sheaf-like TiO2 mesocrystals with [001] orientation, efficient charge separation is achieved, which is essential for the photocatalytic redox reactions. XPS analysis showed that the binding energies of Ti 2p and O 1s indicated no shift after Au addition. Peaks observed at 81.8 and 85.5 eV due to Au 4f7/2 and Au 4f5/2 of metallic gold on the surface of Au/meso-TiO2, confirmed the formation of Au NPs. The as-synthesized anatase TiO2 mesocrystals are composed of small nanocrystals with a size of 8 nm and exhibit the uniform sheaf-like morphology along [001] orientation. As expected, the 1 wt% Au/TiO2 mesocrystals shows the largest photocurrent density, highest H2-evolution rate, and fastest photodegradation rate of ibuprofen under simulated sunlight irradiation among all the studied catalyst. Furthermore, the effect of solution pH, common anions (Cl-, NO3-, and SO42-) and cations (Na+, K+, and Ca2+) on photocatalytic H2 evolution and degradation of ibuprofen were individually investigated and discussed. A mechanism for the simultaneous photocatalytic hydrogen generation and degradation of ibuprofen has also been proposed. This work opens up new opportunities for the development of energy efficient techniques for PPCPs degradation.
Collapse
Affiliation(s)
- Xiaxi Yao
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, PR China
| | - Xiuli Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, PR China
| | - Yi Liu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, PR China
| | - Xuhong Wang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, PR China
| | - Xuekun Hong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, PR China
| | - Xuefeng Chen
- Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Division, Department of Environmental Science, Faculty of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Dawei Wang
- Department of Environmental Science and Earth Sciences, Clemson University, Clemson, SC, 29634, USA; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
17
|
Nawaz M, Khan AA, Hussain A, Jang J, Jung HY, Lee DS. Reduced graphene oxide-TiO 2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. CHEMOSPHERE 2020; 261:127702. [PMID: 32750619 DOI: 10.1016/j.chemosphere.2020.127702] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/19/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, graphene oxide and titanium dioxide in combination with sodium alginate were used to synthesize the reduced graphene oxide-TiO2/sodium alginate (RGOT/SA) aerogel. The potential of RGOT/SA aerogel was evaluated for the photocatalytic degradation of ibuprofen and sulfamethoxazole and was compared with that of bare titanium dioxide nanoparticles. More than 99% removal of both the contaminants was obtained within 45-90 min by using the RGOT/SA aerogel under UV-A light. Mineralization of both the pollutants was also higher in case of RGOT/SA aerogel as compared to bare TiO2 nanoparticles. The optimal mass ratio of TiO2 nanoparticles with respect to graphene oxide was 2:1 in RGOT/SA aerogel in the presence of 1 wt% sodium alginate solution. High photodegradation of Ibuprofen was observed at neutral pH and acidic to neutral pH was found suitable for the photodegradation of sulfamethoxazole. Three-dimensional interconnected macroporous assembly, large surface area for settling TiO2 nanoparticles, efficient charge partitioning, and enhanced physical and chemical adsorption of ibuprofen and sulfamethoxazole on the surface of RGOT/SA aerogel were the significant characteristics of RGOT/SA aerogels. Moreover, ease of separation and recyclability of the RGOT/SA aerogel could further save the extra energy used to separate nanoparticles from the effluent.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Old Shujabad Road, Multan 60000, Pakistan
| | - Alamgir A Khan
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Old Shujabad Road, Multan 60000, Pakistan
| | - Abid Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Old Shujabad Road, Multan 60000, Pakistan
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Escudeiro de Oliveira M, Barroso BL, de Almeida J, Moraes MLL, de Arruda Rodrigues C. Photoelectrocatalytic degradation of 17α-ethinylestradiol and estrone under UV and visible light using nanotubular oxide arrays grown on Ti-0.5wt%W. ENVIRONMENTAL RESEARCH 2020; 191:110044. [PMID: 32818502 DOI: 10.1016/j.envres.2020.110044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Environmental concern with emerging contaminants has increased in recent years, especially with regard to endocrine-disrupting compounds (EDCs), among them hormones. Conventional water treatment processes have been shown to be ineffective in removing these compounds from water and sewage, while heterogeneous photocatalysis has been demonstrated to be a promising technique. However, the catalytic efficiency is strongly related to the choice of the photocatalyst material. In order to obtain a fast and efficient degradation of these endocrine disruptors, nanotubes grown on Ti-0.5wt%W alloy (NT/Ti-0.5W) were used in photocatalytic (PC) and photoelectrocatalytic (PEC) processes for the degradation of estrone (E1) and 17α-ethinylestradiol (EE2) under irradiation with ultraviolet (UV) and visible light. The NT/Ti-0.5W catalysts were synthesized by an anodization process, followed by thermal treatment at 450 °C. Raman, X-ray diffraction and diffuse reflectance spectroscopic analyses indicated that the tungsten doping process had modified the nanotubular TiO2. The doped samples exhibited superior photoactivity compared to un-doped samples and other semiconductors under UV and visible irradiation due to a reduction in the rate of recombination of photogenerated charges and the displacement of the flat-band potential to more negative values. Higher values of the degradation rate constant were found for both hormones in the PEC process using NT/Ti-0.5W under UV radiation; the percentage removals of EE2 and E1 were 66% and 53.4%, respectively, after only 2 min of treatment. With visible light, 1.8 min and 4.6 h were required for the removal of 50% of E1 and EE2, respectively. The degradation of E1 could be fit with a zero-order kinetic model, while a first-order kinetic model was required for EE2 degradation. Degradation routes were suggested for E1 and EE2. The results demonstrate that the combined use of NT/Ti-0.5W and the PEC process provides excellent performance for the degradation of emerging contaminants in wastewater when compared to a NT/TiO2 electrode.
Collapse
Affiliation(s)
- Marizilda Escudeiro de Oliveira
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Bruno Lupi Barroso
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Juliana de Almeida
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Maria Lourdes Leite Moraes
- Department of Chemistry, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Christiane de Arruda Rodrigues
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Perondi T, Michelon W, Basso A, Bohrer JK, Viancelli A, Fonseca TG, Treichel H, Moreira RFPM, Peralta RA, Düsman E, Pokrywiecki TS. Degradation of estriol (E3) and transformation pathways after applying photochemical removal processes in natural surface water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1445-1453. [PMID: 33079722 DOI: 10.2166/wst.2020.411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Steroidal hormones such as estriol (E3), are resistant to biodegradation; hence their removal by conventional treatment systems (aerobic and anaerobic) facilities is limited. These substances are detected in surface water, and present risks to the aquatic ecosystem and humans via potential biological activity. Photochemical treatments can be used to remove E3; however, just a few studies have analyzed the kinetics, intermediates, and E3 degradation pathways in natural surface water. In this study, the behavior of E3 under ultraviolet irradiation associated with H2O2, O3 or TiO2 was investigated to determine the degradation potential and the transformation pathways in reactions performed with a natural surface water sample. E3 degradation kinetics (200 ppb) fitted well to the pseudo-first-order kinetics model, with kinetic constant k in the following order: kUV/O3 > kUV/TiO2 > kUV/H2O2 > kUV. The mechanism of degradation using different advanced oxidative processes seemed to be similar and 12 transformation byproducts were identified, with 11 of them being reported here for the first time. The byproducts could be formed by the opening of the aromatic ring and addition of a hydroxyl radical. A possible route of E3 degradation was proposed based on the byproducts identified, and some of the byproducts presented chronic toxicity to aquatic organisms, demonstrating the risks of exposure.
Collapse
Affiliation(s)
- T Perondi
- Francisco Beltrão, Federal University of Technology - Paraná, Linha Santa Bárbara, s/n, PR, 85601-970, Paraná, Brazil
| | - W Michelon
- Concordia, Santa Catarina, Universidade do Contestado, Victor Sopelsa, 3000, 89711-330, Concórdia, SC, Brazil E-mail:
| | - A Basso
- Eng. Agronômico Andrei Cristian Ferreira, Federal University of Santa Catarina, s/n - Trindade, Florianópolis - SC, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J K Bohrer
- Francisco Beltrão, Federal University of Technology - Paraná, Linha Santa Bárbara, s/n, PR, 85601-970, Paraná, Brazil
| | - A Viancelli
- Concordia, Santa Catarina, Universidade do Contestado, Victor Sopelsa, 3000, 89711-330, Concórdia, SC, Brazil E-mail:
| | - T G Fonseca
- Concordia, Santa Catarina, Universidade do Contestado, Victor Sopelsa, 3000, 89711-330, Concórdia, SC, Brazil E-mail:
| | - H Treichel
- Federal University of Fronteira Sul, RS-135, 200 - Zona Rural, Erechim - RS, 99700-000, Erechim, Rio Grande do Sul, Brazil
| | - R F P M Moreira
- Eng. Agronômico Andrei Cristian Ferreira, Federal University of Santa Catarina, s/n - Trindade, Florianópolis - SC, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - R A Peralta
- Eng. Agronômico Andrei Cristian Ferreira, Federal University of Santa Catarina, s/n - Trindade, Florianópolis - SC, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - E Düsman
- Francisco Beltrão, Federal University of Technology - Paraná, Linha Santa Bárbara, s/n, PR, 85601-970, Paraná, Brazil
| | - T S Pokrywiecki
- Francisco Beltrão, Federal University of Technology - Paraná, Linha Santa Bárbara, s/n, PR, 85601-970, Paraná, Brazil
| |
Collapse
|
20
|
Environment-Friendly Removal Methods for Endocrine Disrupting Chemicals. SUSTAINABILITY 2020. [DOI: 10.3390/su12187615] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past few decades, many emerging pollutants have been detected and monitored in different water sources because of their universal consumption and improper disposal. Among these, endocrine-disrupting chemicals (EDCs), a group of organic chemicals, have received global attention due to their estrogen effect, toxicity, persistence and bioaccumulation. For the removal of EDCs, conventional wastewater treatment methods include flocculation, precipitation, adsorption, etc. However, there are some limitations on these common methods. Herein, in order to enhance the public’s understanding of environmental EDCs, the definition of EDCs and the characteristics of several typical EDCs (physical and chemical properties, sources, usage, concentrations in the environment) are reviewed and summarized in this paper. In particular, the methods of EDC removal are reviewed, including the traditional methods of EDC removal, photocatalysis, biodegradation of EDCs and the latest research results of EDC removal. It is proposed that photocatalysis and biodegradation could be used as an environmentally friendly and efficient EDC removal technology. Photocatalytic technology could be one of the water treatment methods with the most potential, with great development prospects due to its high catalytic efficiency and low energy consumption. Biodegradation is expected to replace traditional water treatment methods and is also considered to be a highly promising method for efficient removal of EDCs. Besides, we summarize several photocatalysts with high catalytic activity and some fungi, bacteria and algae with strong biodegradability.
Collapse
|
21
|
Gopinath KP, Madhav NV, Krishnan A, Malolan R, Rangarajan G. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110906. [PMID: 32721341 DOI: 10.1016/j.jenvman.2020.110906] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
The evolution of modern technology and industrial processes has been accompanied by an increase in the utilization of chemicals to derive new products. Water bodies are frequently contaminated by the presence of conventional pollutants such as dyes and heavy metals, as well as microorganisms that are responsible for various diseases. A sharp rise has also been observed in the presence of new compounds heretofore excluded from the design and evaluation of wastewater treatment processes, categorized as "emerging pollutants". While some are harmless, certain emerging pollutants possess the ability to cause debilitating effects on a wide spectrum of living organisms. Photocatalytic degradation has emerged as an increasingly popular solution to the problem of water pollution due to its effectiveness and versatility. The primary objective of this study is to thoroughly scrutinize recent applications of titanium dioxide and its modified forms as photocatalytic materials in the removal and control of several classes of water pollutants as reported in literature. Different structural modifications are used to enhance the performance of the photocatalyst such as doping and formation of composites. The principles of these modifications have been scrutinized and evaluated in this review in order to present their advantages and drawbacks. The mechanisms involved in the removal of different pollutants through photocatalysis performed by TiO2 have been highlighted. The factors affecting the mechanism of photocatalysis and those affecting the performance of different TiO2-based photocatalysts have also been thoroughly discussed, thereby presenting a comprehensive view of all aspects involved in the application of TiO2 to remediate and control water pollution.
Collapse
Affiliation(s)
| | - Nagarajan Vikas Madhav
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Abhishek Krishnan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Goutham Rangarajan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Ontario, M5S 3E5, Canada
| |
Collapse
|
22
|
Badalov SV, Wilhelm R, Schmidt WG. Photocatalytic properties of
graphene‐supported
titania clusters from
density‐functional
theory. J Comput Chem 2020; 41:1921-1930. [DOI: 10.1002/jcc.26363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Sabuhi V. Badalov
- Lehrstuhl für Theoretische MaterialphysikUniversität Paderborn Paderborn Germany
| | - René Wilhelm
- Institut für Organische ChemieTechnische Universität Clausthal Clausthal‐Zellerfeld Germany
| | - Wolf G. Schmidt
- Lehrstuhl für Theoretische MaterialphysikUniversität Paderborn Paderborn Germany
| |
Collapse
|
23
|
Zhu N, Li C, Bu L, Tang C, Wang S, Duan P, Yao L, Tang J, Dionysiou DD, Wu Y. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi 2O 3 for a high photocatalytic performance. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121258. [PMID: 32028547 DOI: 10.1016/j.jhazmat.2019.121258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/01/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
An innovative advanced oxidation process was successfully developed to photocatalytic-degradation of estrone through the synergistic effect of biochar and Bi/Bi2O3 in bismuth-containing photocatalytic biochar (BiPB). The highest reaction rate constant (kobs) of estrone degradation by BiPB was 0.045 min-1 under the conditions of initial concentration of estrone =10.4 μmol L-1, [BiPB] =1 g L-1, pH = 7.0. The kobs was almost tenfold and more than 20 times than that of biochar without bismuth impregnation and pristine Bi/Bi2O3, respectively. The best photocatalytic performance of BiPB composites for the degradation of estrone was primarily attributed to generation of OH radicals. Impregnation of bismuth helped control the concentration of persistent free radicals (PFRs) and develop a hierarchical porous structure of biochar. The presence of biochar facilitated pre-concentration estrone on BiPB and improved the separation and transfer efficiency of charge carriers. The synergistic effect between biochar and Bi/Bi2O3 contributed to the generation of OH radicals for estrone degradation under neutral pH conditions. The transformation pathway of estrone was also proposed based on the measured transformation products in the presence of BiPB. The high efficiency of BiPB composites indicated that this easily-obtained material was promising for estrone-wastewater treatment applications as a low-cost composite photocatalyst.
Collapse
Affiliation(s)
- Ningyuan Zhu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Hubei Yichang 443002, China
| | - Sichu Wang
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Jun Tang
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA
| | - Yonghong Wu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Hubei Yichang 443002, China.
| |
Collapse
|
24
|
Enhanced Photocatalytic Activity of Semiconductor Nanocomposites Doped with Ag Nanoclusters Under UV and Visible Light. Catalysts 2019. [DOI: 10.3390/catal10010031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging contaminants (ECs) represent a wide range of compounds, whose complete elimination from wastewaters by conventional methods is not always guaranteed, posing human and environmental risks. Advanced oxidation processes (AOPs), based on the generation of highly oxidizing species, lead to the degradation of these ECs. In this context, TiO2 and ZnO are the most widely used inorganic photocatalysts, mainly due to their low cost and wide availability. The addition of small amounts of nanoclusters may imply enhanced light absorption and an attenuation effect on the recombination rate of electron/hole pairs, resulting in improved photocatalytic activity. In this work, we propose the use of silver nanoclusters deposited on ZnO nanoparticles (ZnO–Ag), with a view to evaluating their catalytic activity under both ultraviolet A (UVA) and visible light, in order to reduce energetic requirements in prospective applications on a larger scale. The catalysts were produced and then characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and inductively coupled plasma-optical emission spectrometry (ICP-OES). As proof of concept of the capacity of photocatalysts doped with nanoclusters, experiments were carried out to remove the azo dye Orange II (OII). The results demonstrated the high photocatalytic efficiency achieved thanks to the incorporation of nanoclusters, especially evident in the experiments performed under white light.
Collapse
|
25
|
The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123996] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Cao Z, Liu C, Chen D, Liu J. Preparation of an Au-TiO 2 photocatalyst and its performance in removing phycocyanin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:572-581. [PMID: 31539964 DOI: 10.1016/j.scitotenv.2019.07.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
A novel TiO2 photocatalyst (Au-TiO2 composite film) with enhanced photocatalytic activity has been synthesized, characterized and its performance in the removal of phycocyanin (PC) was investigated. The results show that the Au-TiO2 composite film has a lower electron-hole recombination rate, wider optical response range and high electron transfer rate. The photocatalytic activity of the as-prepared Au-TiO2 composite photocatalyst was observed to be enhanced with the removal efficiency of PC and dissolved organic nitrogen found to be 96.7% and 59%, respectively using the UV/Au-TiO2 process. In addition, the combination of photocatalytic pretreatment and coagulation can achieve an enhanced removal efficiency. The Au-TiO2 photocatalyst was found to decrease the dichloroacetonitrile formation potential (105.9 to 79.3 μg/L), however, it exacerbated the production of trichloromethane and dichloroacetamide beyond their initial levels (116.7 to 224.9 μg/L and 2.27 to 2.31 μg/L, respectively). The divergent trends of these disinfection by-products are due to the fundamental differences in the precursor material.
Collapse
Affiliation(s)
- Zhen Cao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China.
| | - Danwen Chen
- College of Environment, Hohai University, Nanjing 210098, China
| | - Jiaqi Liu
- College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
27
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
28
|
Ayoub H, Roques-Carmes T, Potier O, Koubaissy B, Pontvianne S, Lenouvel A, Guignard C, Mousset E, Poirot H, Toufaily J, Hamieh T. Comparison of the removal of 21 micropollutants at actual concentration from river water using photocatalysis and photo-Fenton. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Differences in the Catalytic Behavior of Au-Metalized TiO2 Systems During Phenol Photo-Degradation and CO Oxidation. Catalysts 2019. [DOI: 10.3390/catal9040331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
For this present work, a series of Au-metallized TiO2 catalysts were synthesized and characterized in order to compare their performance in two different catalytic environments: the phenol degradation that occurs during the liquid phase and in the CO oxidation phase, which proceeds the gas phase. The obtained materials were analyzed by different techniques such as XRF, SBET, XRD, TEM, XPS, and UV-Vis DRS. Although the metallization was not totally efficient in all cases, the amount of noble metal loaded depended strongly on the deposition time. Furthermore, the differences in the amount of loaded gold were important factors influencing the physicochemical properties of the catalysts, and consequently, their performances in the studied reactors. The addition of gold represented a considerable increase in the phenol conversion when compared with that of the TiO2, despite the small amount of noble metal loaded. However, this was not the case in the CO oxidation reaction. Beyond the differences in the phase where the reaction occurred, the loss of catalytic activity during the CO oxidation reaction was directly related to the sintering of the gold nanoparticles.
Collapse
|
30
|
Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. Catalysts 2018. [DOI: 10.3390/catal8110491] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of titanium dioxide, TiO2 as a photocatalyst in water decontamination has witnessed continuous interest due to its efficiency, stability, low toxicity and cost-effectiveness. TiO2 use is limited by its large band gap energy leading to light absorbance in the UV region of the spectrum, and by the relatively fast rate of recombination of photogenerated electrons and positive holes. Both limitations can be mitigated by using carbon-TiO2 nanocomposites, such as those based on graphene (G) and graphene oxide (GO). Relative to bare TiO2, these nanocomposites have improved photocatalytic activity and stability under the UV–visible light, constituting a promising way forward for improved TiO2 photocatalytic performance. This review focuses on the recent developments in the chemistry of TiO2/G and TiO2/GO nanocomposites. It addresses the mechanistic fundamentals, briefly, of TiO2 and TiO2/G and TiO2/GO photocatalysts, the various synthesis strategies for preparing TiO2/G and TiO2/GO nanocomposites, and the different characterization techniques used to study TiO2/G and TiO2/GO nanocomposites. Some applications of the use of TiO2/G and TiO2/GO nanocomposites in water decontamination are included.
Collapse
|
31
|
Synthesis of iron-based metal organic framework and its visible light-driven photocatalytic degradation of dye pollutants. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Xu B, Ahmed MB, Zhou JL, Altaee A, Xu G, Wu M. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:546-559. [PMID: 29579666 DOI: 10.1016/j.scitotenv.2018.03.206] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has drawn great attention recently because of its visible light response, suitable energy band gap, good redox ability, and metal-free nature. g-C3N4 can absorb visible light directly, therefore has better photocatalytic ability under solar irradiation and is more energy-efficient than TiO2. However, pure g-C3N4 still has the drawbacks of insufficient light absorption, small surface area and fast recombination of photogenerated electron and hole pairs. This review summarizes the recent progress in the development of g-C3N4 nanocomposites to photodegrade organic contaminants in water. Element doping especially by potassium has been reported to be an efficient method to promote the degradation efficacy. In addition, compound doping improves photodegradation performance of g-C3N4, especially Ag3PO4-g-C3N4 which can completely degrade 10mgL-1 of methyl orange under visible light irradiation in 5min, with the rate constant (k) as high as 0.236min-1. Moreover, co-doping enhances the photodegradation rate of multiple contaminants while immobilization significantly improves catalyst stability. Most of g-C3N4 composites possess high reusability enabling their practical applications in wastewater treatment. Furthermore, environmental conditions such as solution pH, reaction temperature, dissolved oxygen, and dissolved organic matter all have important effects on the photocatalytic ability of g-C3N4 photocatalyst. Future work should focus on the synthesis of innovative g-C3N4 nanocomposites for the efficient removal of organic contaminants in water and wastewater.
Collapse
Affiliation(s)
- Bentuo Xu
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
33
|
Dong YZ, Han WJ, Choi HJ. Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology. Polymers (Basel) 2018; 10:E299. [PMID: 30966334 PMCID: PMC6414992 DOI: 10.3390/polym10030299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022] Open
Abstract
Functional core-shell-structured particles have attracted considerable attention recently. This paper reviews the synthetic methods and morphologies of various electro-stimuli responsive polyaniline (PANI)-coated core-shell-type microspheres, including PANI-coated Fe₃O₄, SiO₂, Fe₂O₃, TiO₂, poly(methyl methacrylate), poly(glycidyl methacrylate), and polystyrene along with their electrorheological (ER) characteristics when prepared by dispersing these particles in an insulating medium. In addition to the various rheological characteristics and their analysis, such as shear stress and yield stress of their ER fluids, this paper summarizes some of the mechanisms proposed for ER fluids to further understand the responses of ER fluids to an externally applied electric field.
Collapse
Affiliation(s)
- Yu Zhen Dong
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| | - Wen Jiao Han
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| |
Collapse
|