1
|
Zhao X, Chen Y, Hu J, Wang H, Ye Z, Zhang J, Meng J, Li J, Dahlgren RA, Zhang S, Gao H, Chen Z. Efficacy of nitrate and biochar@birnessite composite microspheres for simultaneous suppression of As(III) mobilization and greenhouse gas emissions in flooded paddy soils. ENVIRONMENTAL RESEARCH 2025; 279:121757. [PMID: 40324616 DOI: 10.1016/j.envres.2025.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Elevated As(III) pollution and greenhouse gas (GHG) emissions are two primary environmental concerns associated with flooded paddy soils. Herein, a novel biochar@birnessite composite microsphere was engineered using a biochar, birnessite and sodium alginate formulation. The microspheres were applied along with nitrate to examine their efficacy in suppressing As(III) mobilization and GHG emissions in an As-contaminated flooded paddy soil. After a 10-day incubation period, the combined nitrate + microsphere treatment achieved desirable remediation effects versus a nitrate-alone treatment, with mobile As(III) (initially 0.1 mM in flooded layer) completely immobilized and N2O, CH4 and CO2 emissions declining by 89 %, 73 % and 31 %, respectively. As(III) immobilization was ascribed to oxidation/adsorption/coprecipitation by FeOx/MnOx regenerated from successive cycles of Feammox/Mnammox and nitrate-reduction coupled with Fe(II) oxidation (NRFO)/nitrate-reduction coupled with Mn(II) oxidation (NRMO). Moreover, NRFO/NRMO-derived full denitrification displayed high thermodynamic feasibility, leading to full denitrification with the generation of N2 rather than N2O. The co-occurrence of anaerobic oxidation of methane (AOM) driven by biochar-shuttling and coupled reduction of nitrate/FeOx/MnOx fostered anaerobic oxidation of CH4 to CO2. A portion of the resulting CO2 was incorporated into poorly-soluble carbonate minerals leading to lower CO2 emission and soil carbon sequestration. Metagenomic sequencing revealed that the nitrate + microsphere treatment enriched the abundances of key microorganisms linked to As/Fe/Mn oxidation and GHG mitigation (e.g., Geobacter, Streptomyces, Cupriavidus and Chloroflexus). Our findings document the efficacy of nitrate + biochar@birnessite microsphere treatment as an effective remediation strategy to simultaneously mitigate As(III) pollution and GHG emissions in flooded paddy soils.
Collapse
Affiliation(s)
- Xiyu Zhao
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yilin Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen, 361100, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China
| | - Zilu Ye
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China
| | - Jun Meng
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jiale Li
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Randy A Dahlgren
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA, 95616, USA
| | - Shuyun Zhang
- School of Medicine, Taizhou University, Taizhou, 318000, PR China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Zheng Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
2
|
Chu Y, Zhang X, Tang X, Jiang L, He R. Uncovering anaerobic oxidation of methane and active microorganisms in landfills by using stable isotope probing. ENVIRONMENTAL RESEARCH 2025; 271:121139. [PMID: 39956419 DOI: 10.1016/j.envres.2025.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Anaerobic oxidation of methane (AOM) coupled electron acceptor reduction has been shown to regulate methane (CH4) emissions from the habitats. Landfill is one of the most important anthropogenic CH4 emission sources. However, the effect of electron acceptors on the AOM process and its microbial mechanism in landfills is poorly characterized. Herein, electron acceptors including nitrate, nitrite, sulfate and ferric iron were used to regulate the AOM process in landfill microcosms by using stable isotope probing analysis. The addition of electron acceptors could promote AOM in the landfilled waste. Among them, nitrate and nitrite had the strongest promoting effect on AOM in the waste with the maximum activities of 5.60-5.76 μg g-1 d-1, which increased by 1070.9%-1103.6% compared with the control without electron acceptor amendation. Candidatus Methylomirabilis was only detected in assimilating CH4 in the ferric iron-amended treatment. The proteobacterial methanotrophs and Methylacidiphilum were mainly observed in the ferric iron 13C-DNA, likely due to O2 released from the conversion of nitric oxide. Methanomassiliicoccus were the most abundant archaea in the treatments with nitrate, nitrite and sulfate, while Methanosarcina dominated in the ferric iron-amended treatment. Nitrate, nitrite, sulfate and ferric iron all could prompt the growth of sulfur, iron, nitrate and nitrite metabolizing microorganisms. Partial least squares path modeling indicated that AOM in the landfilled waste could be driven by electron acceptors via the changes of environmental variables, while the direct effect of electron acceptors on the AOM activity was weak with an intensity of 0.06. Taken together, this study demonstrated that the AOM process in landfills can be regulated by electron acceptors, especially nitrate and nitrite, to mitigate CH4 emissions from landfills.
Collapse
Affiliation(s)
- Yixuan Chu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xudong Tang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Lanhui Jiang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
3
|
He Q, Feng M, Wang J. Impact of iron-modified fillers on enhancing water purification performance and mitigating greenhouse effect in constructed wetlands. ENVIRONMENTAL TECHNOLOGY 2025; 46:1817-1827. [PMID: 39323087 DOI: 10.1080/09593330.2024.2405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Iron is gradually being introduced into constructed wetlands (CWs) to enhance the removal of pollutants due to its active chemical properties and ability to participate in various reactions, but its effectiveness in greenhouse effect control needs to be studied. In this study, three CWs were established to evaluate the effect of iron scraps and iron-carbon as substrates on pollutants removal and greenhouse gas (GHG) emissions, and the corresponding mechanisms were explored through analysis of microbial characteristics. The results showed that iron scraps and iron - carbon are effective in enhancing the effluent quality of CWs. Iron-carbon exhibited notable efficacy in removing nitrate nitrogen (NO3--N) and chemical oxygen demand (COD), achieving stable removal rates of 98.46% and 84.89%, respectively. Iron scraps had advantages in promoting the removal of ammonia nitrogen (NH4+-N) and total nitrogen (TN), with removal rates of 43.73% and 71.56%, respectively. The emission fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) had temporal variability, always peaking in the early phases of operation. While iron scraps and iron-carbon effectively reduced the average emission flux of N2O and CO2, they simultaneously increased the average emission flux of CH4 (from 0.2349-2.2698 and 1.1956mg/m2/h, respectively). From the perspective of reducing global warming potential (GWP), iron - carbon had superior performance (from 146.2548-86.7447 mg/m2/h). In addition, the greenhouse gas emission flux was closely related to the microbial community structure in CWs, particularly with a more pronounced response observed in N2O emissions.
Collapse
Affiliation(s)
- Qiumei He
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Minquan Feng
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Jiakang Wang
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Xia Q, Qiu Q, Cheng J, Huang W, Yi X, Yang F, Huang W. Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances. BIORESOURCE TECHNOLOGY 2025; 419:132041. [PMID: 39765277 DOI: 10.1016/j.biortech.2025.132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined. This review is expected to give new insights into the development of economic and environmentally friendly iron-based wastewater treatment procedures.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qingzhen Qiu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
5
|
Liu J, Klonicki-Ference E, Krause SJE, Treude T. Iron Oxides Fuel Anaerobic Oxidation of Methane in the Presence of Sulfate in Hypersaline Coastal Wetland Sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:513-522. [PMID: 39741005 PMCID: PMC11741001 DOI: 10.1021/acs.est.4c10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Wetland methane emissions are the primary natural contributor to the global methane budget, accounting for approximately one-third of total emissions from natural and anthropogenic sources. Anaerobic oxidation of methane (AOM) serves as the major sink of methane in anoxic wetland sediments, where electron acceptors are present, thereby effectively mitigating its emissions. Nevertheless, environmental controls on electron acceptors, in particular, the ubiquitous iron oxides, involved in AOM are poorly understood. Here, we explored methane sinks within a hypersaline pool situated in a coastal wetland. The geochemical profiles reveal a tiering, where microbial sulfate reduction dominates in the organic-rich surface sediment, yielding to iron reduction in the deeper organic-poor yet sulfate-rich subsurface sediment. This shift is attributed to the drilling-induced depression and subsequent diagenetic transformation of the surface sediment. Radiotracer incubations demonstrate a strong association of AOM with sulfate in surface sediment and with iron oxides in subsurface sediment. Despite high concentrations of sulfate in coastal wetlands, Fe-dependent AOM may play a significant, yet often under-considered, role as a sink for methane emissions.
Collapse
Affiliation(s)
- Jiarui Liu
- Department
of Earth, Planetary, and Space Sciences, University of California, Los
Angeles, California 90095, United States
| | - Emily Klonicki-Ference
- Department
of Earth, Planetary, and Space Sciences, University of California, Los
Angeles, California 90095, United States
| | - Sebastian J. E. Krause
- Earth
Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Tina Treude
- Department
of Earth, Planetary, and Space Sciences, University of California, Los
Angeles, California 90095, United States
| |
Collapse
|
6
|
Zhao Y, Liu Y, Cao S, Hao Q, Liu C, Li Y. Anaerobic oxidation of methane driven by different electron acceptors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174287. [PMID: 38945238 DOI: 10.1016/j.scitotenv.2024.174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides. The known anaerobic methanotrophic pathways comprise the internal aerobic oxidation pathway found in NC10 bacteria and the reverse methanogenesis pathway utilized by anaerobic methanotrophic archaea (ANME). Diverse anaerobic methanotrophs can perform AOM independently or in cooperation with symbiotic partners through several extracellular electron transfer (EET) pathways. AOM has been documented in various environments, including seafloor methane seepages, coastal wetlands, freshwater lakes, soils, and even extreme environments like hydrothermal vents. The environmental activities of AOM processes, driven by different electron acceptors, primarily depend on the energy yields, availability of electron acceptors, and environmental adaptability of methanotrophs. It has been suggested that different electron acceptors driving AOM may occur across a wider range of habitats than previously recognized. Additionally, it is proposed that methanotrophs have evolved flexible metabolic strategies to adapt to complex environmental conditions. This review primarily focuses on AOM, driven by different electron acceptors, discussing the associated reaction mechanisms and the habitats where these processes are active. Furthermore, it emphasizes the pivotal role of AOM in mitigating methane emissions.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|
7
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
8
|
Zeng M, Liu Y, Li Z, Song G, Liu X, Xia X, Li Z. Maximizing pollutant removal and greenhouse gas emission reduction in vertical flow constructed wetlands: an orthogonal experimental approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44730-44743. [PMID: 38954343 DOI: 10.1007/s11356-024-34086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Owing to the impact of the effluent C/N from the secondary structures of urban domestic wastewater treatment plants, the denitrification efficiency in constructed wetlands (CWs) is not satisfactory, limiting their widespread application in the deep treatment of urban domestic wastewater. To address this issue, we constructed enhanced CWs and conducted orthogonal experiments to investigate the effects of different factors (C/N, fillers, and plants) on the removal of conventional pollutants and the reduction of greenhouse gas (GHG) emission. The experimental results indicated that a C/N of 8, manganese sand, and calamus achieved the best denitrification efficiencies with removal efficiencies of 85.7%, 95.9%, and 88.6% for TN, NH4+-N, and COD, respectively. In terms of GHG emission reduction, this combination resulted in the lowest global warming potential (176.8 mg/m2·day), with N2O and CH4 emissions of 0.53 and 1.25 mg/m2·day, respectively. Characterization of the fillers revealed the formation of small spherical clusters of phosphates on the surfaces of manganese sand and pyrite and iron oxide crystals on the surface of pyrite. Additionally, the surface Mn (II) content of the manganese sand increased by 8.8%, and the Fe (III)/Fe (II) and SO42-/S2- on pyrite increased by 2.05 and 0.26, respectively, compared to pre-experiment levels. High-throughput sequencing indicated the presence of abundant autotrophic denitrifying bacteria (Sulfuriferula, Sulfuritalea, and Thiobacillus) in the CWs, which explains denitrification performance of the enhanced CWs. This study aimed to explore the mechanism of efficient denitrification and GHG emission reduction in the enhanced CWs, providing theoretical guidance for the deep treatment of urban domestic wastewater.
Collapse
Affiliation(s)
- Mingxiao Zeng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Zhanfeng Li
- China Construction Eco-Environmental Group Co., Ltd, Beijing, 100070, China
| | - Guangqing Song
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Xiping Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Xunfeng Xia
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China.
| |
Collapse
|
9
|
Ye W, Yan J, Yan J, Lin JG, Ji Q, Li Z, Ganjidoust H, Huang L, Li M, Zhang H. Potential electron acceptors for ammonium oxidation in wastewater treatment system under anoxic condition: A review. ENVIRONMENTAL RESEARCH 2024; 252:118984. [PMID: 38670211 DOI: 10.1016/j.envres.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.
Collapse
Affiliation(s)
- Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jiaqi Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China.
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Qixing Ji
- The Earth, Ocean and atmospheric sciences thrust (EOAS), Hong Gong University of Science and Technology (Guangzhou), 511442, Guangzhou, China
| | - Zilei Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modarres University, 14115-397, Tehran, Iran
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| |
Collapse
|
10
|
He Z, Shen J, Zhu Y, Gao J, Zhang D, Pan X. Active anaerobic methane oxidation in the groundwater table fluctuation zone of rice paddies. WATER RESEARCH 2024; 258:121802. [PMID: 38796914 DOI: 10.1016/j.watres.2024.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingxun Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
12
|
Liu L, Zheng N, Yu Y, Zheng Z, Yao H. Soil carbon and nitrogen cycles driven by iron redox: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170660. [PMID: 38325492 DOI: 10.1016/j.scitotenv.2024.170660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Soil carbon and nitrogen cycles affect agricultural production, environmental quality, and global climate. Iron (Fe), regarded as the most abundant redox-active metal element in the Earth's crust, is involved in a biogeochemical cycle that includes Fe(III) reduction and Fe(II) oxidation. The redox reactions of Fe can be linked to the carbon and nitrogen cycles in soil in various ways. Investigating the transformation processes and mechanisms of soil carbon and nitrogen species driven by Fe redox can provide theoretical guidance for improving soil fertility, and addressing global environmental pollution as well as climate change. Although the widespread occurrence of these coupling processes in soils has been revealed, explorations of the effects of Fe redox on soil carbon and nitrogen cycles remain in the early stages, particularly when considering the broader context of global climate and environmental changes. The key functional microorganisms, mechanisms, and contributions of these coupling processes to soil carbon and nitrogen cycles have not been fully elucidated. Here, we present a systematic review of the research progress on soil carbon and nitrogen cycles mediated by Fe redox, including the underlying reaction processes, the key microorganisms involved, the influencing factors, and their environmental significance. Finally, some unresolved issues and future perspectives are addressed. This knowledge expands our understanding of the interconnected cycles of Fe, carbon and nitrogen in soils.
Collapse
Affiliation(s)
- Lihu Liu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Zhaozhi Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
13
|
Wang F, Zhang S, Hu X, Lv X, Liu M, Ma Y, Manirakiza B. Floating plants reduced methane fluxes from wetlands by creating a habitat conducive to methane oxidation. J Environ Sci (China) 2024; 135:149-160. [PMID: 37778791 DOI: 10.1016/j.jes.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 10/03/2023]
Abstract
Wetlands are one of the important natural sources of atmospheric methane (CH4), as an important part of wetlands, floating plants can be expected to affect methane release. However, the effects of floating plants on methane release are limited. In this study, methane fluxes, physiochemical properties of the overlying water, methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes, Hydrocharis dubia, and Trapa natans. We found that E. crassipes, H. dubia, and T. natans plants could inhibit 84.31% - 97.31%, 4.98% - 88.91% and 43.62% - 92.51% of methane fluxes at interface of water-atmosphere compared to Control, respectively. Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots, stems, and leaves. At the same biomass, root of E. crassipes (36.44%) had the highest methane oxidation potential, followed by H. dubia (12.99%) and T. natans (11.23%). Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10% - 3.33%) were known methanotrophs. Type I methanotrophs accounted for 95.07% of total methanotrophs. The pmoA gene abundances ranged from 1.90 × 1016 to 2.30 × 1018 copies/g fresh weight of root biofilms. Abundances of pmoA gene was significantly positively correlated with environmental parameters. Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation. This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.
Collapse
Affiliation(s)
- Fuwei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; China Machinery International Engineering Desigh and Research Institute co., Ltd. East China Regional Center, Nanjing 210008, China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | | |
Collapse
|
14
|
Jiang Q, Jing H, Li X, Wan Y, Chou IM, Hou L, Dong H, Niu Y, Gao D. Active pathways of anaerobic methane oxidization in deep-sea cold seeps of the South China Sea. Microbiol Spectr 2023; 11:e0250523. [PMID: 37916811 PMCID: PMC10715046 DOI: 10.1128/spectrum.02505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Cold seeps occur in continental margins worldwide and are deep-sea oases. Anaerobic oxidation of methane is an important microbial process in the cold seeps and plays an important role in regulating methane content. This study elucidates the diversity and potential activities of major microbial groups in dependent anaerobic methane oxidation and sulfate-dependent anaerobic methane oxidation processes and provides direct evidence for the occurrence of nitrate-/nitrite-dependent anaerobic methane oxidation (Nr-/N-DAMO) as a previously overlooked microbial methane sink in the hydrate-bearing sediments of the South China Sea. This study provides direct evidence for occurrence of Nr-/N-DAMO as an important methane sink in the deep-sea cold seeps.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Xuegong Li
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ye Wan
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Zhang X, Xie M, Cai C, Rabiee H, Wang Z, Virdis B, Tyson GW, McIlroy SJ, Yuan Z, Hu S. Pyrogenic Carbon Promotes Anaerobic Oxidation of Methane Coupled with Iron Reduction via the Redox-Cycling Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19793-19804. [PMID: 37947777 DOI: 10.1021/acs.est.3c05907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pyrogenic carbon (PC) can mediate electron transfer and thus catalyze biogeochemical processes to impact greenhouse gas (GHG) emissions. Here, we demonstrate that PC can contribute to mitigating GHG emissions by promoting the Fe(III)-dependent anaerobic oxidation of methane (AOM). It was found that the amendment PCs in microcosms dominated by Methanoperedenaceae performing Fe(III)-dependent AOM simultaneously promoted the rate of AOM and Fe(III) reduction with a consistent ratio close to the theoretical stoichiometry of 1:8. Further correlation analysis showed that the AOM rate was linearly correlated with the electron exchange capacity, but not the conductivity, of added PC materials, indicating the redox-cycling electron transfer mechanism to promote the Fe(III)-dependent AOM. The mass content of the C═O moiety from differentially treated PCs was well correlated with the AOM rate, suggesting that surface redox-active quinone groups on PCs contribute to facilitating Fe(III)-dependent AOM. Further microbial analyses indicate that PC likely shuttles direct electron transfer from Methanoperedenaceae to Fe(III) reduction. This study provides new insight into the climate-cooling impact of PCs, and our evaluation indicates that the PC-facilitated Fe(III)-dependent AOM could have a significant contribution to suppressing methane emissions from the world's reservoirs.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Mengying Xie
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Queensland 4067, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba Queensland 4001, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba Queensland 4001, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Queensland 4067, Australia
| |
Collapse
|
16
|
Yadav S, Sadhotra C, Patil SA. Retracted: The bidirectional extracellular electron transfer process aids iron cycling by Geoalkalibacter halelectricus in a highly saline-alkaline condition. Appl Environ Microbiol 2023:e0060923. [PMID: 37681980 DOI: 10.1128/aem.00609-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023] Open
Abstract
Bidirectional extracellular electron transfer (EET) is crucial to upholding microbial metabolism with insoluble electron acceptors or donors in anoxic environments. Investigating bidirectional EET-capable microorganisms is desired to understand the cell-cell and microbe-mineral interactions and their role in mineral cycling besides leveraging their energy generation and conversion, biosensing, and bio-battery applications. Here, we report on iron cycling by haloalkaliphilic Geoalkalibacter halelectricus via bidirectional EET under haloalkaline conditions. It efficiently reduces Fe3+ oxide (Fe2O3) to Fe0 at a 0.75 ± 0.08 mM/mgprotein/d rate linked to acetate oxidation via outward EET and oxidizes Fe0 to Fe3+ at a 0.24 ± 0.03 mM/mgprotein/d rate via inward EET to reduce fumarate. Bioelectrochemical cultivation confirmed its outward and inward EET capabilities. It produced 895 ± 23 µA/cm2 current by linking acetate oxidation to anode reduction via outward EET and reduced fumarate by drawing electrons from the cathode (‒2.5 ± 0.3 µA/cm2) via inward EET. The cyclic voltammograms of G. halelectricus biofilms revealed redox moieties with different formal potentials, suggesting the involvement of different membrane components in bidirectional EET. The cyclic voltammetry and GC-MS analysis of the cell-free spent medium revealed the lack of soluble redox mediators, suggesting direct electron transfer by G. halelecctricus in achieving bidirectional EET. By reporting on the first haloalkaliphilic bacterium capable of oxidizing and reducing insoluble Fe0 and Fe3+ oxide, respectively, this study advances the limited understanding of the metabolic capabilities of extremophiles to respire on insoluble electron acceptors or donors via bidirectional EET and invokes the possible role of G. halelectricus in iron cycling in barely studied haloalkaline environments. IMPORTANCE Bidirectional extracellular electron transfer (EET) appears to be a key microbial metabolic process in anoxic environments that are depleted in soluble electron donor and acceptor molecules. Though it is an ecologically important and applied microbial phenomenon, it has been reported with a few microorganisms, mostly from nonextreme environments. Moreover, direct electron transfer-based bidirectional EET is studied for very few microorganisms with electrodes in engineered systems and barely with the natural insoluble electron acceptor and donor molecules in anoxic conditions. This study advances the understanding of extremophilic microbial taxa capable of bidirectional EET and its role in barely investigated Fe cycling in highly saline-alkaline environments. It also offers research opportunities for understanding the membrane components involved in the bidirectional EET of G. halelectricus. The high rate of Fe3+ oxide reduction activity by G. halelectricus suggests its possible use as a biocatalyst in the anaerobic iron bioleaching process under neutral-alkaline pH conditions.
Collapse
Affiliation(s)
- Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali) , Knowledge City, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali) , Knowledge City, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali) , Knowledge City, Punjab, India
| |
Collapse
|
17
|
He Z, Shen J, Zhu Y, Feng J, Pan X. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. CHEMOSPHERE 2023; 329:138623. [PMID: 37030346 DOI: 10.1016/j.chemosphere.2023.138623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Iron oxides and sulfate are usually abundant in paddy soil, but their role in reducing methane emissions is little known. In this work, paddy soil was anaerobically cultivated with ferrihydrite and sulfate for 380 days. An activity assay, inhibition experiment, and microbial analysis were conducted to evaluate the microbial activity, possible pathways, and community structure, respectively. The results showed that anaerobic oxidation of methane (AOM) was active in the paddy soil. The AOM activity was much higher with ferrihydrite than sulfate, and an extra 10% of AOM activity was stimulated when ferrihydrite and sulfate coexisted. The microbial community was highly similar to the duplicates but totally different with different electron acceptors. The microbial abundance and diversity decreased due to the oligotrophic condition, but mcrA-carrying archaea increased 2-3 times after 380 days. Both the microbial community and the inhibition experiment implied that there was an intersection between iron and sulfur cycles. A "cryptic sulfur cycle" might link the two cycles, in which sulfate was quickly regenerated by iron oxides, and it might contribute 33% of AOM in the tested paddy soil. Complex links between methane, iron, and sulfur geochemical cycles occur in paddy soil, which may be significant in reducing methane emissions from rice fields.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jieni Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
18
|
Ruff SE, Humez P, de Angelis IH, Diao M, Nightingale M, Cho S, Connors L, Kuloyo OO, Seltzer A, Bowman S, Wankel SD, McClain CN, Mayer B, Strous M. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nat Commun 2023; 14:3194. [PMID: 37311764 DOI: 10.1038/s41467-023-38523-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Around 50% of humankind relies on groundwater as a source of drinking water. Here we investigate the age, geochemistry, and microbiology of 138 groundwater samples from 95 monitoring wells (<250 m depth) located in 14 aquifers in Canada. The geochemistry and microbiology show consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities. Older groundwaters, especially in aquifers with organic carbon-rich strata, contain on average more cells (up to 1.4 × 107 mL-1) than younger groundwaters, challenging current estimates of subsurface cell abundances. We observe substantial concentrations of dissolved oxygen (0.52 ± 0.12 mg L-1 [mean ± SE]; n = 57) in older groundwaters that seem to support aerobic metabolisms in subsurface ecosystems at an unprecedented scale. Metagenomics, oxygen isotope analyses and mixing models indicate that dark oxygen is produced in situ via microbial dismutation. We show that ancient groundwaters sustain productive communities and highlight an overlooked oxygen source in present and past subsurface ecosystems of Earth.
Collapse
Affiliation(s)
- S Emil Ruff
- Department of Geoscience, University of Calgary, Calgary, Canada.
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Pauline Humez
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Isabella Hrabe de Angelis
- Department of Geoscience, University of Calgary, Calgary, Canada
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, Canada
| | | | - Sara Cho
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Liam Connors
- Department of Geoscience, University of Calgary, Calgary, Canada
| | | | - Alan Seltzer
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Samuel Bowman
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Cynthia N McClain
- Department of Geoscience, University of Calgary, Calgary, Canada
- Alberta Environment and Protected Areas, Calgary, Canada
- Alberta Biodiversity Monitoring Institute, Edmonton, Canada
| | - Bernhard Mayer
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Canada
| |
Collapse
|
19
|
Feng J, Li C, Tang L, Wu X, Wang Y, Yang Z, Yuan W, Sun L, Hu W, Zhang S. Tracing the Century-Long Evolution of Microplastics Deposition in a Cold Seep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206120. [PMID: 36737848 PMCID: PMC10074074 DOI: 10.1002/advs.202206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) pollution is one of the greatest threats to marine ecosystems. Cold seeps are characterized by methane-rich fluid seepage fueling one of the richest ecosystems on the seafloor, and there are approximately more than 900 cold seeps globally. While the long-term evolution of MPs in cold seeps remains unclear. Here, how MPs have been deposited in the Haima cold seep since the invention of plastics is demonstrated. It is found that the burial rates of MPs in the non-seepage areas significantly increased since the massive global use of plastics in the 1930s, nevertheless, the burial rates and abundance of MPs in the methane seepage areas are much lower than the non-seepage area of the cold seep, suggesting the degradation potential of MPs in cold seeps. More MP-degrading microorganism populations and functional genes are discovered in methane seepage areas to support this discovery. It is further investigated that the upwelling fluid seepage facilitated the fragmentation and degradation behaviors of MPs. Risk assessment indicated that long-term transport and transformation of MPs in the deeper sediments can reduce the potential environmental and ecological risks. The findings illuminated the need to determine fundamental strategies for sustainable marine plastic pollution mitigation in the natural deep-sea environments.
Collapse
Affiliation(s)
- Jing‐Chun Feng
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Can‐Rong Li
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Li Tang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiao‐Nan Wu
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Yi Wang
- Key Laboratory of Gas HydrateGuangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhou510640P. R. China
- Guangzhou Center for Gas Hydrate ResearchChinese Academy of SciencesGuangzhou510640P. R. China
| | - Zhifeng Yang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Weiyu Yuan
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Liwei Sun
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Weiqiang Hu
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Si Zhang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhou510301P. R. China
| |
Collapse
|
20
|
Genomic Insights into Niche Partitioning across Sediment Depth among Anaerobic Methane-Oxidizing Archaea in Global Methane Seeps. mSystems 2023; 8:e0117922. [PMID: 36927099 PMCID: PMC10134854 DOI: 10.1128/msystems.01179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Marine sediments are important methane reservoirs. Methane efflux from the seabed is significantly restricted by anaerobic methanotrophic (ANME) archaea through a process known as anaerobic oxidation of methane (AOM). Different clades of ANME archaea occupy distinct niches in methane seeps, but their underlying molecular mechanisms still need to be fully understood. To provide genetic explanations for the niche partitioning of ANME archaea, we applied comparative genomic analysis to ANME archaeal genomes retrieved from global methane seeps. Our results showed that ANME-2 archaea are more prevalent than ANME-1 archaea in shallow sediments because they carry genes that encode a significantly higher number of outer membrane multiheme c-type cytochromes and flagellar proteins. These features make ANME-2 archaea perform direct interspecies electron transfer better and benefit more from electron acceptors in AOM. Besides, ANME-2 archaea carry genes that encode extra peroxidase compared to ANME-1 archaea, which may lead to ANME-2 archaea better tolerating oxygen toxicity. In contrast, ANME-1 archaea are more competitive in deep layers than ANME-2 archaea because they carry extra genes (mtb and mtt) for methylotrophic methanogenesis and a significantly higher number of frh and mvh genes for hydrogenotrophic methanogenesis. Additionally, ANME-1 archaea carry exclusive genes (sqr, TST, and mddA) involved in sulfide detoxification compared to ANME-2 archaea, leading to stronger sulfide tolerance. Overall, this study reveals the genomic mechanisms shaping the niche partitioning among ANME archaea in global methane seeps. IMPORTANCE Anaerobic methanotrophic (ANME) archaea are important methanotrophs in marine sediment, controlling the flux of biologically generated methane, which plays an essential role in the marine carbon cycle and climate change. So far, no strain of this lineage has been isolated in pure culture, which makes metagenomics one of the fundamental approaches to reveal their metabolic potential. Although the niche partitioning of ANME archaea was frequently reported in different studies, whether this pattern was consistent in global methane seeps had yet to be verified, and little was known about the genetic mechanisms underlying it. Here, we reviewed and analyzed the community structure of ANME archaea in global methane seeps and indicated that the niche partitioning of ANME archaea was statistically supported. Our comparative genomic analysis indicated that the capabilities of interspecies electron transfer, methanogenesis, and the resistance of oxygen and hydrogen sulfide could be critical in defining the distribution of ANME archaea in methane seep sediment.
Collapse
|
21
|
He Z, Xu Y, Zhu Y, Feng J, Zhang D, Pan X. Long-term effects of soluble and insoluble ferric irons on anaerobic oxidation of methane in paddy soil. CHEMOSPHERE 2023; 317:137901. [PMID: 36669540 DOI: 10.1016/j.chemosphere.2023.137901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Iron-dependent anaerobic oxidation of methane (Fe-AOM) is an important process to reduce methane emissions into the atmosphere. It is well known that iron bioavailability largely influences microbial iron reduction, but the long-term effects of different ferric irons on soil Fe-AOM remain unknown. In this work, paddy soil in the ferruginous zone was collected and inoculated with insoluble ferrihydrite and soluble EDTA-Fe(III) for 420 days. Stable isotope experiments, activity inhibition tests, and molecular biological techniques were performed to reveal the activity, microbial community, and possible mechanism of paddy soil Fe-AOM. The results showed that ferrihydrite was a better electron acceptor for long-term Fe-AOM cultivation. Although EDTA-Fe(III) is highly bioavailable and could stimulate Fe-AOM activity for a short time, it restricted the activity increase in the long term. The abundances of archaea, iron-reducing bacteria (IRB), and gene mcrA largely increased after cultivation, indicating the important roles of mcrA-carrying archaea and IRB. Remarkably, archaeal communities were similar, but bacteria were totally different with different ferric irons. The results of the microbial community and activity inhibition suggested that Fe-AOM was performed likely by the cooperation between archaea (Methanomassiliicoccaceae or pGrfC26) and IRB in the cultures.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jieni Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
22
|
Shen LD, Geng CY, Ren BJ, Jin JH, Huang HC, Liu X, Yang WT, Yang YL, Liu JQ, Tian MH. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. MICROBIAL ECOLOGY 2023; 85:441-453. [PMID: 35098330 DOI: 10.1007/s00248-022-01968-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.
Collapse
Affiliation(s)
- Li-Dong Shen
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Cai-Yu Geng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bing-Jie Ren
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing-Hao Jin
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He-Chen Huang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wang-Ting Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mao-Hui Tian
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
23
|
Zhao X, Xie Z, Liu T, Li P, Pei F, Wang L. Coupling and environmental implications of in situ formed biogenic Fe-Mn minerals induced by indigenous bacteria and oxygen perturbations for As(III) immobilization in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159884. [PMID: 36334665 DOI: 10.1016/j.scitotenv.2022.159884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe)-manganese (Mn) minerals formed in situ can be used for the natural remediation of the primary poor-quality groundwater with coexistence of arsenite [As(III)], Mn(II), and Fe(II) (PGAMF). However, the underlying mechanisms of immobilization and coupling of As, Mn, and Fe during in-situ formation of Fe-Mn minerals in PGAMF remains unclear. The simultaneous immobilization and coupling of arsenic (As), Mn, and Fe in PGAMF during in-situ formation of biogenic Fe-Mn minerals induced by O2 perturbations and indigenous bacteria (Comamonas sp. RM6) were investigated at the different molar ratios of Fe(II):Mn(II) (1:1, 2:1, and 3:1). Compared with systems without Fe(II) in the presence of Mn(II), the coexisted Fe(II) significantly enhanced Mn(II) bio-oxidation and mineral precipitation, resulting in As immobilization increased by 5, 7, and 7 times at initial Fe(II) concentration of 0.3, 0.6, and 0.9 mM, respectively. Moreover, the As(III) immobilization efficiencies in Mn(II) and Fe(II) mixed system at initial Fe(II) concentration of 0.3, 0.6, and 0.9 mM were 73%, 91%, and 92%, respectively, that were significantly higher than those of single Fe(II) system (30%, 59%, and 74%) and those of single Mn(II) system (12%), indicating that Fe(II) and Mn(II) oxidation synergically enhanced As(III) immobilization. This was mainly attributed to the formation and As adsorption capacity of biogenic Fe-Mn minerals (BFMM). The formed BFMM significantly facilitated simultaneous immobilization of Fe, Mn, and As in PGAMF by oxidation, adsorption, and precipitation/coprecipitation, a coupling of biological, physical, and chemical processes. Fe component was mainly responsible for As fixation, and Mn component dominated As(III) oxidation. Based on the results from this work, biostimulation and bioaugmentation techniques can be developed for in-situ purification and remediation of PGAMF. This work provides insights into the simultaneous immobilization of pollutants in PGAMF, as well as promising strategies for in-situ purification and remediation of PGAMF.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi 276000, PR China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fuwen Pei
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Linan Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
24
|
Ma X, Ma Y, Zhang L, Sajjad W, Xu W, Shao Y, Pinti DL, Fan Q, Zheng G. Seasonal variations of geofluids from mud volcano systems in the Southern Junggar Basin, NW China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157164. [PMID: 35798106 DOI: 10.1016/j.scitotenv.2022.157164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Variations in the chemical composition of geofluids and of gas fluxes are significant parameters for understanding mud volcanism and correctly estimate their emissions in carbon species, particularly greenhouse gas, methane. In this study, muddy water and gas samples were collected from the Anjihai, Dushanzi, Aiqigou, and Baiyanggou mud volcanoes in the southern Junggar Basin during the four seasons, around a year. This region hosts the most active mud volcanism throughout China. Gas and water were analyzed for major molecular compositions, carbon and hydrogen isotopes of the gas phase, as well as cations and anions, hydrogen and oxygen isotopes of water. The emitted gases are dominated by CH4 with some C2H6, CO2, and N2. The seasonal changes in the chemical composition and carbon isotopes of emitted gases are not significant, whereas clear variations in the amounts of cations and anions dissolved in the water are reported. These are higher in spring and summer than autumn and winter. The CH4, CO2, and C2H6 fluxes are 157.3-1108 kg/a, 1.8-390.1 kg/a, and 10.2-118.7 kg/a, respectively, and a clear seasonal trend of the gas seepage flux has been observed. In January, the macro-seepage flux of open vents is ≥65 % higher than in April, whereas the micro-seepage flux significantly decreased, probably due to the frozen shallow ground and blockage of soil fractures around the vents by heavy snow and ice during January. This probably causes an extra gas pressure transferred to the major vents, resulting in higher flux of the macro-seepage in the cold season. However, the total flux of the whole mud volcano system is generally consistent around a year.
Collapse
Affiliation(s)
- Xiangxian Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Yong Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wasim Sajjad
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Cryospheric Science, Lanzhou 730000, China
| | - Wang Xu
- College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China
| | - Yuanyuan Shao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniele L Pinti
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; GEOTOP and Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal H3C 3P8, QC, Canada
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Guodong Zheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; School of Environmental Studies, China University of Geosciences at Wuhan, Wuhan 430074, China.
| |
Collapse
|
25
|
Yadav S, Singh R, Sundharam SS, Chaudhary S, Krishnamurthi S, Patil SA. Geoalkalibacter halelectricus SAP-1 sp. nov. possessing extracellular electron transfer and mineral-reducing capabilities from a haloalkaline environment. Environ Microbiol 2022; 24:5066-5081. [PMID: 36066180 DOI: 10.1111/1462-2920.16200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
Abstract
The extracellular electron transfer (EET)-capable electroactive microorganisms (EAMs) play crucial roles in mineral cycling and interspecies electron transfer in different environments and are used as biocatalysts in microbial electrochemical technologies. Studying EAMs from extreme environments is desired to advance the electromicrobiology discipline, understanding their unique metabolic traits with implications to extreme microbiology, and develop specific bioelectrochemical applications. Here, we present a novel haloalkaliphilic bacterium named Geoalkalibacter halelectricus SAP-1, isolated from a microbial electroactive biofilm enriched from the haloalkaline lake sediments. It is a rod-shaped Gram-negative heterotrophic anaerobe that uses various carbon and energy sources and respires on soluble and insoluble terminal electron acceptors. Besides 16S-rRNA and whole-genome-based phylogeny, the GGDC values of 21.7 %, ANI of 78.5, and 2.77 % genomic DNA GC content difference with the closest validly named species Geoalkalibacter ferrihydriticus (DSM 17813T ) confirmed its novelty. When grown with the solid-state electrode as the only electron acceptor, it produced 460±23 μA/cm2 bioelectrocatalytic current, thereby confirming its electroactivity. Further electrochemical analysis revealed the presence of membrane redox components with high formal potentials, putatively involved in the direct mode of EET. These are distinct from EET components reported for any known electroactive microorganisms, including well-studied Geobacter spp., Shewanella spp. and Desulfuromonas acetexigens. Further the capabilities of G. halelectricus SAP-1 to respire soluble as well insoluble electron acceptors including fumarate, SO4 2- , Fe3+ , and Mn4+ suggests its role in cycling these elements in haloalkaline environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Shiva S Sundharam
- Microbial Types Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Srinivasan Krishnamurthi
- Microbial Types Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| |
Collapse
|
26
|
Lalinská-Voleková B, Majerová H, Kautmanová I, Brachtýr O, Szabóová D, Arendt D, Brčeková J, Šottník P. Hydrous ferric oxides (HFO's) precipitated from contaminated waters at several abandoned Sb deposits - Interdisciplinary assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153248. [PMID: 35051450 DOI: 10.1016/j.scitotenv.2022.153248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The presented paper represents a comprehensive analysis of ochre sediments precipitated from Fe rich drainage waters contaminated by arsenic and antimony. Ochre samples from three abandoned Sb deposits were collected in three different seasons and were characterized from the mineralogical, geochemical, and microbiological point of view. They were formed mainly by poorly crystallized 2-line ferrihydrite, with the content of arsenic in samples ranging from 7 g·kg-1 to 130 g·kg-1 and content of antimony ranging from 0.25 g·kg-1 up to 12 g·kg-1. Next-generation sequencing approach with 16S RNA, 18S RNA and ITS markers was used to characterize bacterial, fungal, algal, metazoal and protozoal communities occurring in the HFOs. In the 16S RNA, the analysis dominated bacteria (96.2%) were mainly Proteobacteria (68.8%) and Bacteroidetes (10.2%) and to less extent also Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Nitrosprae and Chloroflexi. Alpha and beta diversity analysis revealed that the bacterial communities of individual sites do not differ significantly, and only subtle seasonal changes were observed. In this As and Sb rich, circumneutral microenvironment, rich in iron, sulfates and carbonates, methylotrophic bacteria (Methylobacter, Methylotenera), metal/reducing bacteria (Geobacter, Rhodoferax), metal-oxidizing and denitrifying bacteria (Gallionella, Azospira, Sphingopyxis, Leptothrix and Dechloromonas), sulfur-oxidizing bacteria (Sulfuricurvum, Desulphobulbaceae) and nitrifying bacteria (Nitrospira, Nitrosospira) accounted for the most dominant ecological groups and their impact over Fe, As, Sb, sulfur and nitrogen geocycles is discussed. This study provides evidence of diverse microbial communities that exist in drainage waters and are highly important in the process of mobilization or immobilization of the potentially toxic elements.
Collapse
Affiliation(s)
| | - Hana Majerová
- Hana Majerová, Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ivona Kautmanová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Ondrej Brachtýr
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Dana Szabóová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Darina Arendt
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Jana Brčeková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Šottník
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
27
|
Gendron A, Allen KD. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression. Front Microbiol 2022; 13:867342. [PMID: 35547147 PMCID: PMC9081873 DOI: 10.3389/fmicb.2022.867342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by mcrABG) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F430. MCR houses a series of unusual post-translational modifications within its active site whose identities vary depending on the organism and whose functions remain unclear. Methanogenic MCRs are encoded in a highly conserved mcrBDCGA gene cluster, which encodes two accessory proteins, McrD and McrC, that are believed to be involved in the assembly and activation of MCR, respectively. The requirement of a unique and complex coenzyme, various unusual post-translational modifications, and many remaining questions surrounding assembly and activation of MCR largely limit in vitro experiments to native enzymes with recombinant methods only recently appearing. Production of MCRs in a heterologous host is an important step toward developing optimized biocatalytic systems for methane production as well as for bioconversion of methane and other alkanes into value-added compounds. This review will first summarize MCR catalysis and structure, followed by a discussion of advances and challenges related to the production of diverse MCRs in a heterologous host.
Collapse
Affiliation(s)
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
28
|
Liu LY, Xie GJ, Ding J, Liu BF, Xing DF, Ren NQ, Wang Q. Microbial methane emissions from the non-methanogenesis processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151362. [PMID: 34740653 DOI: 10.1016/j.scitotenv.2021.151362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Methane, a potent greenhouse gas of global importance, has traditionally been considered as an end product of microbial methanogenesis of organic matter. Paradoxically, growing evidence has shown that some microbes, such as cyanobacteria, algae, fungi, purple non-sulfur bacteria, and cryptogamic covers, produce methane in oxygen-saturated aquatic and terrestrial ecosystems. The non-methanogenesis process could be an important potential contributor to methane emissions. This systematic review summarizes the knowledge of microorganisms involved in the non-methanogenesis process and the possible mechanisms of methane formation. Cyanobacteria-derived methane production may be attributed to either demethylation of methyl phosphonates or linked to light-driven primary productivity, while algae produce methane by utilizing methylated sulfur compounds as possible carbon precursors. In addition, fungi produce methane by utilizing methionine as a possible carbon precursor, and purple non-sulfur bacteria reduce carbon dioxide to methane by nitrogenase. The microbial methane distribution from the non-methanogenesis processes in aquatic and terrestrial environments and its environmental significance to global methane emissions, possible mechanisms of methane production in each open water, water-to-air methane fluxes, and the impact of climate change on microorganisms are also discussed. Finally, future perspectives are highlighted, such as establishing more in-situ experiments, quantifying methane flux through optimizing empirical models, distinguishing individual methane sources, and investigating nitrogenase-like enzyme systems to improve our understanding of microbial methane emission from the non-methanogenesis process.
Collapse
Affiliation(s)
- Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
29
|
Chen L, Li L, Zhang S, Zhang W, Xue K, Wang Y, Dong X. Anaerobic methane oxidation linked to Fe(III) reduction in a Candidatus Methanoperedens-enriched consortium from the cold Zoige wetland at Tibetan Plateau. Environ Microbiol 2021; 24:614-625. [PMID: 34951085 DOI: 10.1111/1462-2920.15848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
Anaerobic oxidation of methane (AOM) is a microbial process degrading ample methane in anoxic environments, and Ca. Methanoperedens mediated nitrate- or metal-reduction linked AOM is believed important in freshwater systems. This work, via 16S rRNA gene diversity survey and 16S rRNA quantification, found abundant Ca. Methanoperedens along with iron in the cold Zoige wetland at Tibetan Plateau. The wetland soil microcosm performed Fe(III) reduction, rather than nitrate- nor sulphate-reduction, coupled methane oxidation (3.87 μmol d-1 ) with 32.33 μmol Fe(II) accumulation per day at 18°C, but not at 30°C. A metagenome-assembled genome (MAG) recovered from the microcosm exhibits ~74% average nucleotide identity with the reported Ca. Methanoperedens spp. that perform Fe(III) reduction linked AOM, thus a novel species Ca. Methanoperedens psychrophilus was proposed. Ca. M. psychrophilus contains the whole suite of CO2 reductive methanogenic genes presumably involving in AOM via a reverse direction, and comparative genome analysis revealed its unique gene categories: the multi-heme clusters (MHCs) cytochromes, the S-layer proteins highly homologous to those recovered from lower temperature environments and type IV pili, those could confer Ca. M. psychrophilus of cold adaptability. Therefore, this work reports the first methanotroph implementing AOM in an alpine wetland.
Collapse
Affiliation(s)
- Lin Chen
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lingyan Li
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengjie Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenting Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Xue
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yanfen Wang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xiuzhu Dong
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
30
|
Zhang X, Yuan Z, Hu S. Anaerobic oxidation of methane mediated by microbial extracellular respiration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:790-804. [PMID: 34523810 DOI: 10.1111/1758-2229.13008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic oxidation of methane (AOM) can be microbially mediated by the reduction of different terminal electron acceptors. AOM coupled to reduction of sulfate, manganese/iron oxides, humic substances, selenate, arsenic and other artificial extracellular electron acceptors are recognized as processes associated with microbial extracellular respiration. In these processes, methane-oxidizing archaea transfer electrons to external electron acceptors or to interdependent microbial species, which are mechanistically dependent on versatile extracellular electron transfer (EET) pathways. This review compiles recent progress in the research of electromicrobiology of AOM based on the catalogue of different electron acceptors. Naturally distributed and artificially constructed EET-mediated AOM is summarized, with the discussion of their environmental importance and application potentials. The diversity of responsible microorganisms involved in EET-mediated AOM is discussed with both methane-oxidizing archaea and their putative bacterial partners. More importantly, the review highlights progress and deficiencies in our understanding of EET pathways in EET-mediated AOM, raising open research questions for future research.
Collapse
Affiliation(s)
- Xueqin Zhang
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
31
|
Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021; 12:e0170821. [PMID: 34544276 PMCID: PMC8546591 DOI: 10.1128/mbio.01708-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 μmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
Collapse
|
32
|
Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake. NITROGEN 2021. [DOI: 10.3390/nitrogen2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements.
Collapse
|
33
|
Zhang K, Wu X, Chen J, Wang W, Luo H, Chen W, Ma D, An X, Wei Z. The role and related microbial processes of Mn-dependent anaerobic methane oxidation in reducing methane emissions from constructed wetland-microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112935. [PMID: 34119986 DOI: 10.1016/j.jenvman.2021.112935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic oxidation of methane (AOM) plays an important role in global carbon cycle and greenhouse gas emission reduction. In this study, an effective green technology to reduce methane emissions was proposed by introducing Mn-dependent anaerobic oxidation of methane (Mn-AOM) and microbial fuel cell (MFC) technology into constructed wetland (CW). The results indicate that the combination of biological methods and bioelectrochemical methods can more effectively control the methane emission from CW than the reported methods. The role of dissimilated metal reduction in methane control in CW and the biochemical process associated with Mn-AOM were also investigated. The results demonstrated that using Mn ore as the matrix and operating MFC effectively reduced methane emissions from CW, and higher COD removal rate was obtained in CW-MFC (Mn) during the 200 days of operation. Methane emission from CW-MFC (Mn) (53.76 mg/m2/h) was 55.61% lower than that of CW (121.12 mg/m2/h). The highest COD removal rate (99.85%) in CW-MFC (Mn) was obtained. As the dissimilative metal-reducing microorganisms, Geobacter (5.10%) was found enriched in CW-MFC (Mn). The results also showed that the presence of Mn ore was beneficial to the biodiversity of CW-MFCs and the growth of electrochemically active bacteria (EAB) including Proteobacteria (35.32%), Actinobacteria (2.38%) and Acidobacteria (2.06%), while the growth of hydrogenotrophic methanogens Methanobacterium was effectively inhibited. This study proposed an effective way to reduce methane from CW. It also provided reference for low carbon technology of wastewater treatment.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, PR China.
| | - Xiangling Wu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Dandan Ma
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Xiaochan An
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Zhaolan Wei
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| |
Collapse
|
34
|
Cheng S, Qin C, Xie H, Wang W, Zhang J, Hu Z, Liang S. Comprehensive evaluation of manganese oxides and iron oxides as metal substrate materials for constructed wetlands from the perspective of water quality and greenhouse effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112451. [PMID: 34174737 DOI: 10.1016/j.ecoenv.2021.112451] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Manganese oxides and iron oxides have been widely introduced in constructed wetlands (CWs) for sewage treatment due to their extensiveness in nature and their ability to participate in various reactions, but their effects on greenhouse gas (GHG) emissions remain unclear. Here, a set of vertical subsurface-flow CWs (Control, Fe-VSSCWs, and Mn-VSSCWs) was established to comprehensively evaluate which are the better metal substrate materials for CWs, iron oxides or manganese oxides, through water quality and the global warming potential (GWP) of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). The results revealed that the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Mn-VSSCWs were all higher than that in Fe-VSSCWs, and manganese oxides could almost completely suppress the CH4 production and reduce GWP (from 8.15 CO2-eq/m2/h to 7.17 mg CO2-eq/m2/h), however, iron oxides promoted GWP (from 8.15 CO2-eq/m2/h to 10.84 mg CO2-eq/m2/h), so manganese oxides are the better CW substrate materials to achieve effective sewage treatment while reducing the greenhouse gas effect.
Collapse
Affiliation(s)
- Shiyi Cheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Jiangsu Ecological Environmental Monitoring Co., Ltd, NanJing 210004, PR China
| | - Congli Qin
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
35
|
Li L, Fuchs A, Ortega SH, Xue B, Casper P. Spatial methane pattern in a deep freshwater lake: Relation to water depth and topography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142829. [PMID: 33143919 DOI: 10.1016/j.scitotenv.2020.142829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Freshwater lakes are regarded as important methane (CH4) sources, accounting for ~20% of natural emission. To improve the assessment of the global greenhouse effect, it is necessary to consider spatial variability within lakes. Here, CH4 concentrations in the water column and sediment layers, as well as the sediment CH4 production potentials and diffusive fluxes, were studied in the littoral, intermediate, and profundal zones of the medium-sized (425 ha), deep (maximum depth 69.5 m) Lake Stechlin (Germany). Sediment CH4 concentrations, production potentials and sediment-water interface diffusive fluxes showed significant spatial heterogeneity and were highest in the profundal zone. CH4 concentrations in the surface water did not differ among the studied locations, indicating a decoupling from the production sites in the sediment. The high amount of CH4 in profundal sediments that might potentially be released to the atmosphere is either trapped or oxidized within the water column, while the surface water dissolved CH4 is more related to the dynamics in the epilimnion. The divergence in sediment physical (water content, grain size) and chemical (organic matter quantity or quality, sulfate) properties across the lake leads to variations in CH4 dynamics which are restricted to deeper habitats in this type of lake.
Collapse
Affiliation(s)
- Lingling Li
- College of Geography Science, Nanjing Normal University, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Andrea Fuchs
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Sonia Herrero Ortega
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Peter Casper
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.
| |
Collapse
|
36
|
Ma K, Ma A, Zheng G, Ren G, Xie F, Zhou H, Yin J, Liang Y, Zhuang X, Zhuang G. Mineralosphere Microbiome Leading to Changed Geochemical Properties of Sedimentary Rocks from Aiqigou Mud Volcano, Northwest China. Microorganisms 2021; 9:560. [PMID: 33803112 PMCID: PMC7998385 DOI: 10.3390/microorganisms9030560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
The properties of rocks can be greatly affected by seepage hydrocarbons in petroleum-related mud volcanoes. Among them, the color of sedimentary rocks can reflect the changes of sedimentary environment and weathering history. However, little is known about the microbial communities and their biogeochemical significance in these environments. In this study, contrasting rock samples were collected from the Aiqigou mud volcano on the southern margin of the Junggar Basin in Northwest China as guided by rock colors indicative of redox conditions. The physicochemical properties and mineral composition are similar under the same redox conditions. For example, the content of chlorite, muscovite, quartz, and total carbon were higher, and the total iron was lower under reduced conditions compared with oxidized environments. High-throughput sequencing of 16S rRNA gene amplicons revealed that different functional microorganisms may exist under different redox conditions; microbes in oxidized conditions have higher diversity. Statistical analysis and incubation experiments indicated that the microbial community structure is closely related to the content of iron which may be an important factor for color stratification of continental sedimentary rocks in the Aiqigou mud volcano. The interactions between organics and iron-bearing minerals mediated by microorganisms have also been hypothesized.
Collapse
Affiliation(s)
- Ke Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
- Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Zheng
- Key Laboratory of Petroleum Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Ge Ren
- National Institute of Metrology, Beijing 100029, China;
| | - Fei Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Dang CC, Xie GJ, Liu BF, Xing DF, Ding J, Ren NQ. Heavy metal reduction coupled to methane oxidation:Mechanisms, recent advances and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124076. [PMID: 33268204 DOI: 10.1016/j.jhazmat.2020.124076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Methane emission has contributed greatly to the global warming and climate change, and the pollution of heavy metals is an important concern due to their toxicity and environmental persistence. Recently, multiple heavy metals have been demonstrated to be electron acceptors for methane oxidation, which offers a potential for simultaneous methane emission mitigation and heavy metal detoxification. This review provides a comprehensive discussion of heavy metals reduction coupled to methane oxidation, and identifies knowledge gaps and opportunities for future research. The functional microorganisms and possible mechanisms are detailed in groups under aerobic, hypoxic and anaerobic conditions. The potential application and major environmental significances for global methane mitigation, the elements cycle and heavy metals detoxification are also discussed. The future research opportunities are also discussed to provide insights for further research and efficient practical application.
Collapse
Affiliation(s)
- Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
38
|
Ding J, Zeng RJ. Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143928. [PMID: 33316511 DOI: 10.1016/j.scitotenv.2020.143928] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Many properties of denitrifying anaerobic methane oxidation (DAMO) bacteria have been explored since their first discovery, while DAMO archaea have attracted less attention. Since nitrate is more abundant than nitrite not only in wastewater but also in the natural environment, in depth investigations of the nitrate-DAMO process should be conducted to determine its environmental significance in the global carbon and nitrogen cycles. This review summarizes the status of research on DAMO archaea and the catalyzed nitrate-dependent anaerobic methane oxidation, including such aspects as laboratory enrichment, environmental distribution, and metabolic mechanism. It is shown that appropriate inocula and enrichment parameters are important for the culture enrichment and thus the subsequent DAMO activity, but there are still relatively few studies on the environmental distribution and physiological metabolism of DAMO archaea. Finally, some hypotheses and directions for future research on DAMO archaea, anaerobic methanotrophic archaea, and even anaerobically metabolizing archaea are also discussed.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
39
|
Talà A, Buccolieri A, Calcagnile M, Ciccarese G, Onorato M, Onorato R, Serra A, Spedicato F, Tredici SM, Alifano P, Belmonte G. Chemotrophic profiling of prokaryotic communities thriving on organic and mineral nutrients in a submerged coastal cave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142514. [PMID: 33038840 DOI: 10.1016/j.scitotenv.2020.142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The geothermal system of the Salento peninsula (Italy) is characterized by the presence of many hydrogen sulfide-rich underground waters and thermal springs. We focused our attention on the submerged section of Zinzulùsa (Castro, Italy), a cave of both naturalistic and archaeological interest. In pioneer studies, some hypotheses about the origin of the sulfurous waters of this area were proposed. The most accredited one is that sulfate-enriched waters of marine origin infiltrate deep along bands with greater permeability, and warm-up going upwards, due to the geothermal gradient. During their route, marine waters interact with organic deposits and generate hydrogen sulfide as a result of sulfate reduction. To date, no studies have been conducted to elucidate the hydrogen sulfide origin in this site. The nature of reducing power and energy sources supporting microbial life in this submerged habitat is currently unknown. Here we present a multidisciplinary experimental approach aimed at defining geochemical features and microbiological diversity of the submerged habitat of Zinzulùsa cave. Our integrated data provide strong evidence that the sulfate content of the marine water and the activity of sulfate-reducing bacteria may account for the hydrogen sulfide content of the thermal springs. Anaerobic, sulfate-reducing, thermophilic Thermodesulfovibrio and hyperthermophilic Fervidobacterium genera show a high percentage contribution in 16S rRNA gene metabarcoding analyses, despite the mesophilic conditions of the sampling site. Besides, supported by PICRUSt functional analysis, we propose a chemotrophic model in which hydrocarbon deposits, entrapped in the stratifications of the seafloor, may be exploited by anaerobic oil-degrading bacteria as carbon and energy sources to sustain efficient hydrogen, sulfur, and nitrogen biogeochemical cycles. The Zinzulùsa hydrothermal site represents an ecosystem useful to obtain new insights into prokaryotic mutual interactions in oligotrophic and aphotic conditions, which constitute the largest environment of the biosphere.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Buccolieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gaetano Ciccarese
- Gruppo Speleologico Salentino "P. De Lorentiis", Piazza C. Colombo, Castro, 73030 Lecce, Italy
| | - Michele Onorato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; Scuba Speleodiving Association APOGON Onlus, 73048 Nardò, Italy
| | | | - Antonio Serra
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Salvatore Maurizio Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Genuario Belmonte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
40
|
Guo Y, Chen Z, Zhang S. Methane-fueled microbial fuel cells with the formate-acclimating electroactive culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142186. [PMID: 33254943 DOI: 10.1016/j.scitotenv.2020.142186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Methane gas is widespread in natural environments and anaerobic wastewater treatment sites, bringing the risk of the greenhouse effect and energy loss if left unmanaged. A methane-fueled microbial fuel cell (MFC) can convert methane to electricity under mild condition, but faced difficulties in startup. In this study, the new startup strategy and operation performance for methane-fueled MFCs were investigated. After the pre-cultivation of formate-acclimating electroactive culture, the methane-fueled MFC was successfully started up in a short time of 53 d. Increasing concentrations of molybdenum and tungsten in medium facilitated both methane consumption and electricity generation. Under the optimal condition (batch duration of 11 h, 30 °C, pH 7 buffered by phosphate buffer solution), the methane-fueled MFC achieved the maximum power density of 166 mW/m3, a coulomb production of 6.58 ± 0.07C/batch, a CE of 27.4 ± 0.4% and a methane consumption of 31.2 ± 0.3 μmol/batch. This work explored a suitable inoculum (formate-acclimating electroactive culture) for methane-fueled MFCs.
Collapse
Affiliation(s)
- Yanli Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhuang Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
41
|
Zhang T, Xiao X, Chen S, Zhao J, Chen Z, Feng J, Liang Q, Phelps TJ, Zhang C. Active Anaerobic Archaeal Methanotrophs in Recently Emerged Cold Seeps of Northern South China Sea. Front Microbiol 2021; 11:612135. [PMID: 33391242 PMCID: PMC7772427 DOI: 10.3389/fmicb.2020.612135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Jing Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongheng Chen
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Junxi Feng
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China
| | - Qianyong Liang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tommy J Phelps
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
42
|
Cheng S, Qin C, Xie H, Wang W, Hu Z, Liang S, Feng K. A new insight on the effects of iron oxides and dissimilated metal-reducing bacteria on CH 4 emissions in constructed wetland matrix systems. BIORESOURCE TECHNOLOGY 2021; 320:124296. [PMID: 33129094 DOI: 10.1016/j.biortech.2020.124296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Iron oxides and dissimilated metal-reducing bacteria (DMRB) have been reported to result in a reduction in methane (CH4) emissions in constructed wetlands (CWs), but their mechanisms on CH4 production and oxidation remains unclear. Here, a set of CW matrix systems (Control, Fe-CWs, and FeB-CWs) was established to analyze the CH4 emission reduction from various angles, including the valencies of iron, microbial community structure and enzyme activity. The results revealed that the addition of iron oxides promoted the electron transfer between methanogens and Geobacter to promote CH4 production, but it was interesting that iron oxides also reduced the enzymes involved in the carbon dioxide (CO2) reduction pathway and promoted the enzymes that participated in anaerobic oxidation of methane (AOM) thereby leading to the overall reduction in CH4 emissions. Moreover, DMRB could promote iron reduction thereby further reducing CH4 emissions by promoting AOM and competing with methanogens for organic substrates.
Collapse
Affiliation(s)
- Shiyi Cheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Congli Qin
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai, 264209, China
| |
Collapse
|
43
|
Valenzuela EI, Cervantes FJ. The role of humic substances in mitigating greenhouse gases emissions: Current knowledge and research gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141677. [PMID: 33182214 DOI: 10.1016/j.scitotenv.2020.141677] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Humic substances (HS) constitute a highly transformed fraction of natural organic matter (NOM) with a heterogeneous structure, which is rich in electron-transferring functional moieties. Because of this feature, HS display a versatile reactivity with a diversity of environmentally relevant organic and inorganic compounds either by abiotic or microbial processes. Consequently, extensive research has been conducted related to the potential of HS to drive relevant processes in bio-engineered systems, as well as in the biogeochemical cycling of key elements in natural environments. Nevertheless, the increase in the number of reports examining the relationship between HS and the microorganisms related to the production and consumption of greenhouse gases (GHG), the main drivers of global warming, has just emerged in the last years. In this paper, we discuss the importance of HS, and their analogous redox-active organic molecules (RAOM), on controlling the emission of three of the most relevant GHG due to their tight relationship with microbial activity, their abundance on the Earth's atmosphere, and their important global warming potentials: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The current knowledge gaps concerning the microbial component, on-site occurrence, and environmental constraints affecting these HS-mediated processes are provided. Furthermore, strategies involving the metabolic traits that GHG-consuming/HS-reducing and -oxidizing microbes display for the development of environmental engineered processes are also discussed.
Collapse
Affiliation(s)
- Edgardo I Valenzuela
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico.
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico.
| |
Collapse
|
44
|
Shen LD, Tian MH, Cheng HX, Liu X, Yang YL, Liu JQ, Xu JB, Kong Y, Li JH, Liu Y. Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114623. [PMID: 33618455 DOI: 10.1016/j.envpol.2020.114623] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/12/2023]
Abstract
Nitrite (NO2-)- and nitrate (NO3-)-dependent anaerobic oxidation of methane (AOM) are two new additions in microbial methane cycle, which potentially act as important methane sinks in freshwater aquatic systems. Here, we investigated spatial variations of community composition, abundance and potential activity of NO2-- and NO3--dependent anaerobic methanotrophs in the sediment of Jiulonghu Reservoir (Zhejiang Province, China), a freshwater reservoir having a gradient of increasing nitrogen loading from upstream to downstream regions. High-throughput sequencing of total bacterial and archaeal 16S rRNA genes showed the cooccurrence of Candidatus Methylomirabilis oxyfera (M. oxyfera)-like and Candidatus Methanoperedens nitroreducens (M. nitroreducens)-like anaerobic methanotrophs in the examined reservoir sediments. The community structures of these methanotrophs differed substantially between the sediments of upstream and downstream regions. Quantitative PCR suggested higher M. oxyfera-like bacterial abundance in the downstream (8.6 × 107 to 2.8 × 108 copies g-1 dry sediment) than upstream sediments (2.4 × 107 to 3.5 × 107 copies g-1 dry sediment), but there was no obvious difference in M. nitroreducens-like archaeal abundance between these sediments (3.7 × 105 to 4.8 × 105 copies g-1 dry sediment). The 13CH4 tracer experiments suggested the occurrence of NO2-- and NO3--dependent AOM activities, and their rates were 4.7-14.1 and 0.8-2.6 nmol CO2 g-1 (dry sediment) d-1, respectively. Further, the rates of NO2--dependent AOM in downstream sediment were significantly higher than those in upstream sediment. The NO3- concentration was the key factor affecting the spatial variations of abundance and activity of NO2--dependent anaerobic methanotrophs. Overall, our results showed different responses of NO2-- and NO3--dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Mao-Hui Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hai-Xiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Xin Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiang-Bing Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yun Kong
- College of Resources and Environment, Yangtze University, Hubei, Wuhan, 430100, China
| | - Jian-Hui Li
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Yan Liu
- Wuxijiang National Wetland Park Service, Quzhou, 324000, China
| |
Collapse
|
45
|
Ferry JG. Methanosarcina acetivorans: A Model for Mechanistic Understanding of Aceticlastic and Reverse Methanogenesis. Front Microbiol 2020; 11:1806. [PMID: 32849414 PMCID: PMC7399021 DOI: 10.3389/fmicb.2020.01806] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Acetate-utilizing methanogens are responsible for approximately two-thirds of the one billion metric tons of methane produced annually in Earth's anaerobic environments. Methanosarcina acetivorans has emerged as a model organism for the mechanistic understanding of aceticlastic methanogenesis and reverse methanogenesis applicable to understanding the methane and carbon cycles in nature. It has the largest genome in the Archaea, supporting a metabolic complexity that enables a remarkable ability for adapting to environmental opportunities and challenges. Biochemical investigations have revealed an aceticlastic pathway capable of fermentative and respiratory energy conservation that explains how Ms. acetivorans is able to grow and compete in the environment. The mechanism of respiratory energy conservation also plays a role in overcoming endothermic reactions that are key to reversing methanogenesis.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
46
|
Li H, Yang Q, Zhou H. Niche Differentiation of Sulfate- and Iron-Dependent Anaerobic Methane Oxidation and Methylotrophic Methanogenesis in Deep Sea Methane Seeps. Front Microbiol 2020; 11:1409. [PMID: 32733397 PMCID: PMC7360803 DOI: 10.3389/fmicb.2020.01409] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Methane seeps are widespread seafloor ecosystems shaped by complex physicochemical-biological interactions over geological timescales, and seep microbiomes play a vital role in global biogeochemical cycling of key elements on Earth. However, the mechanisms underlying the coexistence of methane-cycling microbial communities remain largely elusive. Here, high-resolution sediment incubation experiments revealed a cryptic methane cycle in the South China Sea (SCS) methane seep ecosystem, showing the coexistence of sulfate (SO4 2-)- or iron (Fe)-dependent anaerobic oxidation of methane (AOM) and methylotrophic methanogenesis. This previously unrecognized methane cycling is not discernible from geochemical profiles due to high net methane consumption. High-throughput sequencing and Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) results suggested that anaerobic methane-oxidizing archaea (ANME)-2 and -3 coupled to sulfate-reducing bacteria (SRB) carried out SO4 2--AOM, and alternative ANME-2 and -3 solely or coupled to iron-reducing bacteria (IRB) might participate in Fe-AOM in sulfate-depleted environments. This finding suggested that ANME could alter AOM metabolic pathways according to geochemical changes. Furthermore, the majority of methylotrophic methanogens belonged to Methanimicrococcus, and hydrogenotrophic and acetoclastic methanogens were likely inhibited by sulfate or iron respiration. Fe-AOM and methylotrophic methanogenesis are overlooked potential sources and sinks of methane in methane seep ecosystems, thus influencing methane budgets and even the global carbon budget in the ocean.
Collapse
Affiliation(s)
| | - Qunhui Yang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
47
|
Jia R, Wang K, Li L, Qu Z, Shen W, Qu D. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137633. [PMID: 32146407 DOI: 10.1016/j.scitotenv.2020.137633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In flooded paddy soils, some metal reducers are also capable of nitrogen (N) fixation, which is essential in ensuring a reliable N-supply for rice growth. Microbial iron [Fe(III)] reduction is an important biogeochemical process that can be stimulated by ferrihydrite amendment to paddy soil. Therefore, this study aimed to investigate the abundance and succession of the N2-fixing bacterial community in ferrihydrite enriched paddy soils collected from Hunan (HN) and Sichuan (SC) provinces, China. The relationship between the N2-fixing bacterial community and Fe(III) reduction was also assessed. When compared with the control treatment, ferrihydrite enrichment significantly enhanced nitrogenase (nifH) gene abundance by 8.05 × 105 to 4.45 × 106 copies g-1 soil during the 40-day flooding of HN soil, while nifH gene abundance in SC soil was remarkably increased by 5.90 × 107 to 9.56 × 107 copies g-1 soil during day 1 to 5 in response to ferrihydrite amendment. The relative abundance of N2-fixing bacteria peaked on day 5 (21.5% in HN soil and 5.4% in SC soil) and gradually decreased to a stable abundance after day 20. Remarkable increases in relative abundance of N2-fixing bacteria during the first 10 days of flooding were detected in both soils with ferrihydrite enrichment, whereas little difference was found after day 10 of flooding. During the early stage of flooding, the Shannon and Simpson indexes of N2-fixing bacteria with ferrihydrite enrichment were significantly decreased, and the community structure changed greatly. Most N2-fixing bacteria in ferrihydrite enriched paddy soils were phylogenetically related to the order Clostridiales, with some of those potentially capable of Fe(III) reduction. The community succession of N2-fixing bacteria closely correlated with Fe(III) reduction. Thus, improving N2-fixation via stimulation of Fe(III) reduction might aid in the reduction of N-fertilizer application to paddy field.
Collapse
Affiliation(s)
- Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Kun Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Lina Li
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, PR China
| | - Zhi Qu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi Province 710048, PR China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Dong Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province, PR China.
| |
Collapse
|
48
|
Stein LY. The Long-Term Relationship between Microbial Metabolism and Greenhouse Gases. Trends Microbiol 2020; 28:500-511. [DOI: 10.1016/j.tim.2020.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
|
49
|
Valenzuela EI, Padilla-Loma C, Gómez-Hernández N, López-Lozano NE, Casas-Flores S, Cervantes FJ. Humic Substances Mediate Anaerobic Methane Oxidation Linked to Nitrous Oxide Reduction in Wetland Sediments. Front Microbiol 2020; 11:587. [PMID: 32351467 PMCID: PMC7174564 DOI: 10.3389/fmicb.2020.00587] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
Humic substances are redox-active organic molecules, which play pivotal roles in several biogeochemical cycles due to their electron-transferring capacity involving multiple abiotic and microbial transformations. Based on the redox properties of humic substances, and the metabolic capabilities of microorganisms to reduce and oxidize them, we hypothesized that they could mediate the anaerobic oxidation of methane (AOM) coupled to the reduction of nitrous oxide (N2O) in wetland sediments. This study provides several lines of evidence indicating the coupling between AOM and the reduction of N2O through an extracellular electron transfer mechanism mediated by the redox active functional groups in humic substances (e.g., quinones). We found that the microbiota of a sediment collected from the Sisal wetland (Yucatán Peninsula, southeastern Mexico) was able to reduce N2O (4.6 ± 0.5 μmol N2O g sed.–1 day–1) when reduced humic substances were provided as electron donor in a close stoichiometric relationship. Furthermore, a microbial enrichment derived from the wetland sediment achieved simultaneous 13CH4 oxidation (1.3 ± 0.1 μmol 13CO2 g sed.–1 day–1) and N2O reduction (25.2 ± 0.5 μmol N2O g sed.–1 day–1), which was significantly dependent on the presence of humic substances as an extracellular electron shuttle. Taxonomic characterization based on 16S rRNA gene sequencing revealed Acinetobacter (a ɣ-proteobacterium), the Rice Cluster I from the Methanocellaceae and an uncultured archaeon from the Methanomicrobiaceae family as the microbes potentially involved in AOM linked to N2O reduction mediated by humic substances. The findings reported here suggest that humic substances might play an important role to prevent the emission of greenhouse gases (CH4 and N2O) from wetland sediments. Further efforts to evaluate the feasibility of this novel mechanism under the natural conditions prevailing in ecosystems must be considered in future studies.
Collapse
Affiliation(s)
- Edgardo I Valenzuela
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Claudia Padilla-Loma
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Nicolás Gómez-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Nguyen E López-Lozano
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Sergio Casas-Flores
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
50
|
Kallistova AY, Savvichev AS, Rusanov II, Pimenov NV. Thermokarst Lakes, Ecosystems with Intense Microbial Processes of the Methane Cycle. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|