1
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA. Towards a comprehensive understanding of the muscle proteome in Schizothorax labiatus: Insights from seasonal variations, metabolic responses, and reproductive signatures in the River Jhelum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170840. [PMID: 38340828 DOI: 10.1016/j.scitotenv.2024.170840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Proteomics is a very advanced technique used for defining correlations, compositions and activities of hundreds of proteins from organisms as well as effectively used in identifying particular proteins with varying peptide lengths and amino acid counts. In the present study, an endeavour has been put forth to create muscle proteome expression of snow trout, Schizothorax labiatus. Liquid chromatography-mass spectrometry (LC-MS) using label free quantification (LFQ) technique has extensively been carried out to explore changes in protein metabolism and its composition to discriminate across species, clarify functions and pinpoint protein biomarkers from organisms. In LFQ technique, the abundances of proteins are determined based on the signal intensities of their corresponding peptides in mass spectrometry. The main benefit of using this method is that it doesn't require pre-labelling proteins with isotopic tags, which streamlines the experimental procedure and gets rid of any bias that might have been caused by the labelling process. LFQ techniques frequently offer a wider dynamic range, making it possible to detect and quantify proteins over a broad range of abundances obtained from the complex biological materials including fish muscle. The results of proteomic analysis could provide an insight in understanding about how various proteins are expressed in response to environmental challenges. For proteomic study, two different weight groups of S. labiatus were taken from River Jhelum based on biological, physiological and logistical factors. These groups corresponded to different life stages, such as younger size and adults/brooders in order to capture potential variations in the muscle proteome related to growth and development. The proteomic analysis of S. labiatus depicted that an overall of 220 proteins in male and 228 in female fish of group 1 were noted. However, when male and female S. labiatus were examined based on spectral count and peptide abundance using ProteinLynx Global Software, a total of 10 downregulated and 32 upregulated proteins were found. In group 2 of S. labiatus, a total of 249 proteins in male and 301 in female fish were documented. When the two genders of S. labiatus were likened to one another by LFQ technique, a total of 41 downregulated and 06 upregulated proteins were identified. The variability in the protein numbers between two fish weight groups reflected biological differences, influenced by factors such as age, developmental stages, physiological condition and reproductive activities. During the study, it was observed that S. labiatus exhibited downregulated levels of proteins that were involved in feeding and growth. The contributing factors to this manifestation could be explained by lower feeding and metabolic activity of fish and decreased food availability during winter in River Jhelum. Contrarily, the fish immune response proteins were found to be significantly over-expressed in S. labiatus, indicating that the environment was more likely to undergo increased microbial infection, pollution load and anthropogenic activities. In addition, it was also discovered that there was an upregulated expression of the reproductive proteins in S. labiatus, which could be linked to the fish's pre-spawning time as the fish used in this study was collected in the winter season which is the pre-spawning period of the fish. Therefore, the present study would be useful in obtaining new insights regarding the molecular makeup of species, methods of adaptation and reactions to environmental stresses. This information contributes to our understanding of basic science and may have applications in environmental monitoring, conservation and preservation of fish species.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin Raza Khan
- Departmentof Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, India
| |
Collapse
|
2
|
Trait variation in a successful global invader: a large-scale analysis of morphological variance and integration in the brown trout. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Aulus-Giacosa L, Guéraud F, Gaudin P, Buoro M, Aymes JC, Labonne J, Vignon M. Human influence on brown trout juvenile body size during metapopulation expansion. Biol Lett 2021; 17:20210366. [PMID: 34699739 PMCID: PMC8548077 DOI: 10.1098/rsbl.2021.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Change in body size can be driven by social (density) and non-social (environmental and spatial variation) factors. In expanding metapopulations, spatial sorting by means of dispersal on the expansion front can further drive the evolution of body size. However, human intervention can dramatically affect these founder effects. Using long-term monitoring of the colonization of the remote Kerguelen islands by brown trout, a facultative anadromous salmonid, we analyse body size variation in 32 naturally founded and 10 human-introduced populations over 57 years. In naturally founded populations, we find that spatial sorting promotes slow positive changes in body size on the expansion front, then that body size decreases as populations get older and local density increases. This pattern is, however, completely different in human-introduced populations, where body size remains constant or even increases as populations get older. The present findings confirm that changes in body size can be affected by metapopulation expansion, but that human influence, even in very remote environments, can fully alter this process.
Collapse
Affiliation(s)
- L. Aulus-Giacosa
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - F. Guéraud
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - P. Gaudin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - M. Buoro
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - J. C. Aymes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - J. Labonne
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - M. Vignon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| |
Collapse
|
4
|
Eldøy SH, Davidsen JG, Vignon M, Power M. The biology and feeding ecology of Arctic charr in the Kerguelen Islands. JOURNAL OF FISH BIOLOGY 2021; 98:526-536. [PMID: 33085087 DOI: 10.1111/jfb.14596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Subsequent to their introduction in the 1950s, Arctic charr Salvelinus alpinus have been able to establish a self-sustaining population that has adapted to the unique conditions of the sub-Antarctic Kerguelen Islands. Here, 48 individuals (198-415 mm) were caught with gillnets and their basic biology and feeding ecology were examined using stable isotope analysis. The Lac des Fougères population split use of littoral and pelagic resources evenly, although larger fish relied more heavily on littoral production and appear to follow the size-dependent life history habitat template seen in many Scandinavian lakes where smaller sized individuals occupy the pelagic zone and larger individuals dominate the littoral habitat. In Kerguelen, Arctic charr mature at the same ages (5.6 years) as Arctic charr in both sub-Arctic and Arctic lakes. Although mortality was average in comparison to comparator sub-Arctic lakes, it was high in comparison to Arctic lakes. Maximal age (>7+) was at the lower end of the range typically seen in sub-Arctic lakes. Although they inhabit a resource-poor environment, Kerguelen Arctic charr showed no evidence of cannibalism. Thus, while Arctic charr can survive and reproduce in the relatively unproductive Kerguelen lake environments, survival and growth nevertheless appear to be traded off against survival and longevity. The uniqueness of the population location and the recency of its introduction suggest that further monitoring of the population has the potential to yield valuable insights into both the adaptability of the species and its likely responses to ongoing large-scale environmental change as represented by climate change.
Collapse
Affiliation(s)
- Sindre H Eldøy
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan G Davidsen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Ma D, Fan J, Tian Y, Jiang P, Wang J, Zhu H, Bai J. Selection of reference genes for quantitative real-time PCR normalisation in largemouth bass Micropterus salmoides fed on alternative diets. JOURNAL OF FISH BIOLOGY 2019; 95:393-400. [PMID: 31017661 DOI: 10.1111/jfb.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
The partial cDNA sequences of eight reference genes (actb, tuba1, gapdh58, gapdh59, eef1a1, RNA 18 s, pabpc1, ube2I) were cloned from largemouth bass Micropterus salmoides. The expression levels of these eight genes were compared in the various tissues (eye, spleen, kidney, gill, muscle, brain, liver, heart, gut and gonad) of M. salmoides fed on forage fish. The results showed that the candidate genes exhibited tissue-specific expression to various degrees and the stability ranking order was eef1a1 > tuba1 > RNA 18 s > pabpc1 > ube2I > actb > gapdh58 > gapdh59 among tissue types. Four candidate genes eef1a1, tuba1, RNA 18 s and actb were used to analyse the stability in liver tissues of largemouth bass between the forage-fish group and the formulated-feed group. The candidate genes also showed some changes in expression levels in the livers, while eef1a1 and tuba1 had the most stable expression in livers of fish fed on alternative diets within 10 candidates. So eef1a1 and tuba1 were recommended as optimal reference gene in quantitative real-time PCR analysis to normalise the expression levels of target genes in tissues and lives of the M. salmoides fed on alternative diets. In livers, the expression levels of gck normalised by eef1a1 and tuba1 showed the significant up-regulation in formulated feed group (P < 0.05) than those in forage-fish group. While sex difference has no significant effects on the expression levels of gck in both groups.
Collapse
Affiliation(s)
- Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Peng Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjie Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjie Bai
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
6
|
Viegas I, Trenkner LH, Rito J, Palma M, Tavares LC, Jones JG, Glencross BD, Wade NM. Impact of dietary starch on extrahepatic tissue lipid metabolism in farmed European (Dicentrarchus labrax) and Asian seabass (Lates calcarifer). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:170-176. [PMID: 30818019 DOI: 10.1016/j.cbpa.2019.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
In aquaculture, there is high interest in substituting marine-derived with vegetable-based ingredients as energy source. Farmed carnivorous fish under high carbohydrate diets tend to increase adiposity but it remains unclear if this happens by increased lipid retention/accumulation, promotion of lipogenic pathways, or both. In order to determine the response of extrahepatic tissue to dietary starch, European (Dicentrarchus labrax) and Asian (Lates calcarifer) seabass were fed a control (low starch; LS) or experimental (high starch; HS) diet, for at least 21 days and then transferred for 6 days to saltwater enriched with deuterated water 2H2O. Incorporation of 2H-labelling follows well-defined metabolic steps, and analysis of triacylglycerols (TAG) 2H-enrichment by 2HNMR allowed evaluation of de novo lipogenesis (DNL) in muscle and visceral adipose tissue (VAT). Fractional synthetic rates for TAG-bound fatty acids and glycerol were quantified separately providing a detailed lipogenic profile. The FA profile differed substantially between muscle and VAT in both species, but their lipogenic fluxes revealed even greater differences. In European seabass, HS promoted DNL of TAG-bound FA, in muscle and VAT. High 2H-enrichment also found in muscle TAG-bound glycerol was indicative of its role on lipid cycling. In Asian seabass, HS had no effect on muscle FA composition and lipogenic flux, with no 2H-enriched TAG being detected. VAT on the other hand revealed a strong enhancement of DNL in HS-fed fish along with high TAG-bound glycerol cycling. This study consolidated the use of 2H2O as tracer for fish lipid metabolism in different tissues, under different dietary conditions and suitable to use in different fish models.
Collapse
Affiliation(s)
- Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Lauren H Trenkner
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD 4067, Australia; School of Agricultural and Food Sciences, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - João Rito
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Mariana Palma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ludgero C Tavares
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - John G Jones
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Brett D Glencross
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD 4067, Australia
| |
Collapse
|
7
|
Betancor MB, Olsen RE, Marandel L, Skulstad OF, Madaro A, Tocher DR, Panserat S. Impact of Dietary Carbohydrate/Protein Ratio on Hepatic Metabolism in Land-Locked Atlantic Salmon ( Salmo salar L.). Front Physiol 2018; 9:1751. [PMID: 30574094 PMCID: PMC6291493 DOI: 10.3389/fphys.2018.01751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
A common-garden experiment was carried out to compare two genetically distinct strains of Atlantic salmon (Salmo salar) fed diets with either high (CHO) or low (NoCHO) digestible carbohydrate (starch). Twenty salmon from either a commercial farmed strain (F) or a land-locked population (G) were placed in two tanks (10 fish of each population in each tank) and fed either CHO or NoCHO feeds. At the end of the experiment fish were fasted for 8 h, euthanized and blood and liver collected. Both diet and population had an effect on circulating glucose levels with G showing hypoglycaemia and dietary starch increasing this parameter. In contrast, G showed increased plasma triacylglycerol levels regardless of dietary treatment suggesting faster conversion of glucose to triacylglycerol. This different ability to metabolize dietary starch among strains was also reflected at a molecular (gene) level as most of the metabolic pathways evaluated were mainly affected by the factor population rather than by diet. The data are promising and suggest different regulatory capacities toward starch utilization between land-locked salmon and the farmed stock. Further analyses are necessary in order to fully characterize the capacity of land-locked salmon to utilize dietary carbohydrate.
Collapse
Affiliation(s)
- Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Rolf E Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lucie Marandel
- INRA-UPPA, UMR 1419, Nutrition Metabolism and Aquaculture, Aquapôle, Institut National de la Recherche Agronomique, Paris, France
| | | | | | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Stephane Panserat
- INRA-UPPA, UMR 1419, Nutrition Metabolism and Aquaculture, Aquapôle, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
8
|
Sea trout (Salmo trutta) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol 2018. [DOI: 10.1007/s00300-018-2253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|