1
|
Dragun Z, Kiralj Z, Ivanković D, Bilić B, Kazazić S, Kazazić S. Iron-binding biomolecules in the soluble hepatic fraction of the northern pike (Esox lucius): two-dimensional chromatographic separation with mass spectrometry detection. Anal Bioanal Chem 2024; 416:5097-5109. [PMID: 39046506 DOI: 10.1007/s00216-024-05446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Iron plays vital roles in important biological processes in fish, but can be toxic in high concentrations. The information on metalloproteins that participate in maintenance of Fe homeostasis in an esocid fish, the northern pike, as an important freshwater bioindicator species, are rather scarce. The aim of this study was to identify main cytosolic constituents that sequester Fe in the northern pike liver. The method applied consisted of two-dimensional HPLC separation of Fe-binding biomolecules, based on anion-exchange followed by size-exclusion fractionation. Apparent molecular masses of two main Fe-metalloproteins isolated by this procedure were ~360 kDa and ~50 kDa, with the former having more acidic pI, and indicated presence of ferritin and hemoglobin, respectively. MALDI-TOF-MS provided confirmation of ferritin subunit with a m/z peak at 20.65 kDa, and hemoglobin with spectra containing main m/z peak at 16.1 kDa, and smaller peaks at 32.1, 48.2, and 7.95 kDa (single-charged Hb-monomer, dimer, and trimer, and double-charged monomer, respectively). LC-MS/MS with subsequent MASCOT database search confirmed the presence of Hb-β subunits and pointed to close relation between esocid and salmonid fishes. Further efforts should be directed towards optimization of the conditions for metalloprotein analysis by mass spectrometry, to extend the knowledge on intracellular metal-handling mechanisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Zoran Kiralj
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Dušica Ivanković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Branka Bilić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Saša Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Snježana Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
2
|
Zhang C, Du S, Ma Q, Zhang L. Cytosolic distribution of copper in the gills of field-collected oysters with different copper bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165631. [PMID: 37467977 DOI: 10.1016/j.scitotenv.2023.165631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Oysters can hyper-accumulate copper (Cu) without apparent toxicity, but the mechanism of sequestering excessive cytosolic Cu in oysters remains unclear. We here investigated the Cu distribution in the cytosolic proteins (CPs) in the gills of oysters (Crassostrea hongkongensis) through size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Oysters collected from the southern coast of China contained a gradient of gill Cu concentrations ranging from 132 to 3540 μg g-1 (dry weight), with 7-41 % of Cu distributed in the CPs fraction. The CPs-Cu concentrations were 8.6 times higher in oysters with high Cu concentrations compared to low concentrations. In the CPs, Cu was dispersed with a broad range of molecular weight, suggesting the involvement of various cytosolic proteins in Cu binding. Among the 10 major Cu peaks, peaks 2 (>600 kDa) and peak 8 (18 kDa) contained substantial Cu and showed obvious differences in response to the variation of CPs-Cu levels. Peak 8 contained metallothionein-like proteins that decreased their role in Cu binding as CPs-Cu concentrations increased. LC-MS/MS analysis revealed that peak 2 contained macromolecular protein complexes (MPCs), which played a critical role in binding excess Cu. The comparison with other bivalve species further suggested that sequestering excess CPs-Cu in MPCs was a special strategy employed by oysters in response to high Cu accumulation. This study provides valuable insights into the mechanism of hyper-accumulation and sequestration of Cu in oysters and helps to better understand Cu biomonitoring by oysters.
Collapse
Affiliation(s)
- Canchuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Sen Du
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qunhuan Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China.
| |
Collapse
|
3
|
Li H, Zeng Y, Wang C, Chen W, Zou M. Variation in the burden and chemical forms of thallium in non-detoxified tissues of tilapia fish (Oreochromis niloticus) from waterborne exposure. CHEMOSPHERE 2023; 333:138884. [PMID: 37187377 DOI: 10.1016/j.chemosphere.2023.138884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Thallium (Tl) is highly toxic to aquatic ecosystems, but information about its concentration and distribution characteristics in different fish tissues is limited. In this study, juvenile tilapia (Oreochromis niloticus) were exposed to Tl solutions with different sub-lethal concentrations for 28 days, and the Tl concentrations and distribution patterns in the fish non-detoxified tissues (gills, muscle, and bone) were analyzed. The Tl chemical form fractions, Tl-ethanol, Tl-HCl, and Tl-residual, corresponding to easy, moderate, and difficult migration fraction, respectively, in the fish tissues were obtained by sequential extractant approach. The Tl concentrations of different fractions and total burden were determined using graphite furnace atomic absorption spectrophotometry. Exposure-concentration effect determined the Tl burden in the fish tissues. The average Tl-total concentration factors were 360, 447, and 593 in the bone, gills, and muscle, respectively, and the limited variation during the exposure period indicates that tilapia have a strong ability to self-regulate and achieve Tl homeostasis. However, Tl fractions varied in tissues, and the Tl-HCl fraction dominated in the gills (60.1%) and bone (59.0%), switchover Tl-ethanol fraction dominated in the muscle (68.3%). This study has shown that Tl can be easily taken up by fish during 28-days-period and largely distributed in non-detoxified tissues especially muscle, in which concurrent risks of high Tl-total burden and high levels of Tl in the form of easy migration fraction, posing possible risks to public health.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Yanyi Zeng
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Chao Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
4
|
Dragun Z, Ivanković D, Krasnići N, Kiralj Z, Cvitanović M, Karamatić I, Valić D, Barac F, Filipović Marijić V, Mijošek T, Gjurčević E, Matanović K, Kužir S. Metal-binding biomolecules in the liver of northern pike (Esox lucius Linnaeus, 1758): The first data for the family Esocidae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109327. [PMID: 35276358 DOI: 10.1016/j.cbpc.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Metal-handling strategies of various fish species are known to vary significantly in association with their intracellular metal behaviour. Thus, to better understand the possible consequences of increased metal exposure in fish it is important to perform comparative studies on metal-binding biomolecules in organs of different species. This study was the first of this kind on a liver of an esocid fish (northern pike, Esox lucius), and the gathered information were compared to fish belonging to three other families, Leuciscidae, Cyprinidae and Salmonidae. Distributions of ten elements among cytosolic biomolecules of different molecular masses were studied by size exclusion HPLC combined offline with high resolution ICP-MS. The results indicated predominant association of Co, Fe and Mo to high molecular mass biomolecules (>100 kDa), of Zn and Bi to both high and medium molecular mass biomolecules (>30 kDa), of Mn and Se to medium molecular mass biomolecules (30-100 kDa), and Ag, Cd and Cu to low molecular mass biomolecules (10-30 kDa), presumably metallothioneins. Evident binding to metallothioneins was also detected for Zn and Bi. For several metals, distinct differences were observed when cytosolic metal distributions of northern pike were compared to leuciscids, salmonids and cyprinids. More pronounced Zn binding to metallothioneins was recorded in leuciscids and cyprinids than both esocids and salmonids, whereas cytosolic Mn and Se distributions clearly differed between all studied fish families. Accordingly, in assessment of metal pollution it is vital to consider the exposed species, which requires prior comprehensive comparative research on numerous aquatic organisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Marita Cvitanović
- Faculty of Science, Department of Biology, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Ivana Karamatić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Fran Barac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Emil Gjurčević
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Krešimir Matanović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Snježana Kužir
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| |
Collapse
|
5
|
Mijošek T, Filipović Marijić V, Dragun Z, Krasnići N, Ivanković D, Redžović Z, Erk M. First insight in trace element distribution in the intestinal cytosol of two freshwater fish species challenged with moderate environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149274. [PMID: 34375239 DOI: 10.1016/j.scitotenv.2021.149274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Cytosolic distribution of six essential elements and nonessential Cd among biomolecules of different molecular masses was investigated in the intestine of brown trout (Salmo trutta) from the karst Krka River and Prussian carp (Carassius gibelio) from the lowland Ilova River. Fish were sampled at two locations (reference and contaminated) and in two seasons (autumn and spring). Analyses were conducted by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Although studied salmonid and cyprinid fish have different biological characteristics, obtained profiles often showed mostly similar patterns in both species. Specifically, Cd and Cu were dominantly bound to metallothioneins in both species, but the same association was not observed for Zn, whereas Mo distribution was similar in the intestine of both fish species with two well shaped and clear peaks in HMM (100-400 kDa) and VLMM (2-8 kDa) range. In brown trout, Se was mostly associated with biomolecules of very low molecular masses (VLMM, <10 kDa), whereas significant additional elution in HMM region (30-303 kDa) was observed only in Prussian carp. Iron binding to VLMM biomolecules (1.8-14 kDa) was observed only in brown trouts, and of Zn in Prussian carps. Cobalt was mostly bound to HMM biomolecules (85-235 kDa) in brown trout and to VLMM biomolecules (0.7-18 kDa) in Prussian carp. Comparison of intestinal profiles with previously published data on liver and gills revealed some similarities in distribution, but also organ-specific differences due to the different function and composition of each organ. As so far there is no published data on intestinal trace metal distribution, the obtained results represent the novel findings, and the key point for the exact identification of specific metal-binding biomolecules which could eventually be used as biomarkers of metal exposure or effects.
Collapse
Affiliation(s)
- Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zuzana Redžović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
6
|
Dragun Z, Krasnići N, Ivanković D, Filipović Marijić V, Mijošek T, Redžović Z, Erk M. Comparison of intracellular trace element distributions in the liver and gills of the invasive freshwater fish species, Prussian carp (Carassius gibelio Bloch, 1782). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138923. [PMID: 32388370 DOI: 10.1016/j.scitotenv.2020.138923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Prussian carp (Carassius gibelio) is an invasive freshwater fish known for its high tolerance to aquatic pollution. Our aim was to try to clarify its tolerance to increased exposure to metals/nonmetals, by determining their cytosolic distributions among peptides/proteins of different molecular masses (MM), which form a part of the fish protective mechanisms. The applied approach consisted of fractionation of gill and hepatic cytosols of Prussian carp from the Croatian river Ilova by size-exclusion high performance liquid chromatography, whereas Cd, Cu, Zn, Fe, Mo, and Se analyses were done by high resolution inductively coupled plasma mass spectrometry. The results indicated high detoxification of Cd by its binding to metallothioneins (MTs) in both fish organs. In addition, binding to MTs was observed for Cu in both organs and for Zn in the liver, whereas clear Zn binding to MTs in the gills was not recorded. Zinc in the gills was predominantly bound to proteins of higher MM (50-250 kDa) and to biomolecules of MM below 2 kDa. Predominant Fe binding to proteins of MM of ~400 kDa (presumably storage protein ferritin) was observed in the liver, whereas in the gills Fe was mainly associated to proteins of MM of ~15-65 kDa (presumably hemoglobin oligomers). Maximum Mo and Se elutions in the liver were noted at 235 kDa and 141 kDa, respectively, and in the gills below 10 kDa. The striking difference was observed between two organs of Prussian carp, with predominant metal/nonmetal binding to high MM proteins (e.g., enzymes, storage proteins) in the liver, and to very low MM biomolecules (<10 kDa) in the gills (e.g., antioxidants, metallochaperones, nonprotein cofactors). Such metal/nonmetal distributions within the gills, as the first site of defense, as well as association of several metals to MTs, indicated highly developed defense mechanisms in some organs of Prussian carp.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Zuzana Redžović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| |
Collapse
|
7
|
Wang D, Yang B, Ye Y, Zhang W, Wei Z. Nickel speciation of spent electroless nickel plating effluent along the typical sequential treatment scheme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:35-42. [PMID: 30439692 DOI: 10.1016/j.scitotenv.2018.10.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
The electroless nickel (EN) industry has suffered from the reduction in Ni concentration to lower than 0.1 mg/L. Hence, Ni speciation along a typical sequential treatment scheme has important implications to optimize the design of advanced treatment. For the first time, we revealed the Ni speciation in segmented EN outfall effluents by virtue of multiple analytical methods. After ensuring all the Ni-bearing complexes were completely dissolved by size-fractioned ultrafiltration trials, customized mass spectra analysis was conducted. In a series of ICP-MS assays, the potential polyatomic interfering species was primarily excluded. The chromatography hyphenated IC-ICP-MS and SEC-ICP-MS results demonstrated that the dominant Ni species in the EN effluents was similar to EDTA-Ni but with a smaller size. The LC-MS experiment further distinguished several typical Ni-bearing complexes. Although Ni concentration declined continuously along the treatment scheme, the number of detected Ni-bearing complexes gradually increased but with lower molecular weights. Most of the detected mononuclear complexes had higher indexes of hydrogen deficiency (IHD) than EDTA-Ni, whereas it was believed that the similar stereo ring shape was widespread in the EN effluent. Considering the efficient Ni decrease after the Fenton unit, further post-treatment approaches featuring higher active radical yields were suggested.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bowen Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Krasnići N, Dragun Z, Kazazić S, Muharemović H, Erk M, Jordanova M, Rebok K, Kostov V. Characterization and identification of selected metal-binding biomolecules from hepatic and gill cytosols of Vardar chub (Squalius vardarensis Karaman, 1928) using various techniques of liquid chromatography and mass spectrometry. Metallomics 2019; 11:1060-1078. [DOI: 10.1039/c9mt00036d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metals play crucial physiological roles, but they can also cause irreparable toxic effects through binding to important cellular biomolecules in aquatic organisms.
Collapse
Affiliation(s)
- Nesrete Krasnići
- Ruđer Bošković Institute
- Division for Marine and Environmental Research
- Laboratory for Biological Effects of Metals
- 10002 Zagreb
- Croatia
| | - Zrinka Dragun
- Ruđer Bošković Institute
- Division for Marine and Environmental Research
- Laboratory for Biological Effects of Metals
- 10002 Zagreb
- Croatia
| | - Snježana Kazazić
- Ruđer Bošković Institute
- Division of Physical Chemistry
- Laboratory for Mass Spectrometry and Functional Proteomics
- 10002 Zagreb
- Croatia
| | - Hasan Muharemović
- Ruđer Bošković Institute
- Division of Physical Chemistry
- Laboratory for Mass Spectrometry and Functional Proteomics
- 10002 Zagreb
- Croatia
| | - Marijana Erk
- Ruđer Bošković Institute
- Division for Marine and Environmental Research
- Laboratory for Biological Effects of Metals
- 10002 Zagreb
- Croatia
| | - Maja Jordanova
- Faculty of Natural Sciences and Mathematics
- Ss. Cyril and Methodius University in Skopje
- 1000 Skopje
- Macedonia
| | - Katerina Rebok
- Faculty of Natural Sciences and Mathematics
- Ss. Cyril and Methodius University in Skopje
- 1000 Skopje
- Macedonia
| | - Vasil Kostov
- Institute of Animal Sciences
- 1000 Skopje
- Macedonia
| |
Collapse
|
9
|
Cytosolic Distribution of Metals (Cd, Cu) and Metalloids (As, Se) in Livers and Gonads of Field-Collected Fish Exposed to an Environmental Contamination Gradient: An SEC-ICP-MS Analysis. ENVIRONMENTS 2018. [DOI: 10.3390/environments5090102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The distribution of As, Cd, Cu and Se among biomolecules of different molecular weight (MW) in the heat-treated cytosolic fraction of livers and gonads of white suckers (WS; Catostomus commersonii) collected in a reference lake and in a lake subject to multi-metal contamination was investigated. Distribution profiles were obtained by separation of the heat-stable protein and peptide (HSP) fractions using size-exclusion high performance-liquid chromatography, coupled online to an inductively coupled plasma mass spectrometer, to quantify the associated metals. Metal-handling strategies did not vary between the reference and exposed fish, with the exception of As. Cadmium and Cu appeared associated with the heat-stable peptides metallothioneins (MTs), indicating their reasonable detoxification and regulation in WS. In contrast, Se and As were not bound to MTs, but rather, to biomolecules of lower MW (<2 kDa). Arsenic was found associated with the same biomolecules in fish from both lakes, but their proportions changed between reference and exposed fish. For future work, the identification of the Se and As binding biomolecules would be of great interest to determine if these metalloids are detoxified or if, conversely, the biomolecules are metal-sensitive and their binding to Se or As represents a threat for the health of these fish.
Collapse
|
10
|
Dragun Z, Krasnići N, Kolar N, Filipović Marijić V, Ivanković D, Erk M. Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. CHEMOSPHERE 2018; 207:162-173. [PMID: 29793028 DOI: 10.1016/j.chemosphere.2018.05.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička C. 54, 10002, Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička C. 54, 10002, Zagreb, Croatia
| | - Nicol Kolar
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička C. 54, 10002, Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička C. 54, 10002, Zagreb, Croatia
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička C. 54, 10002, Zagreb, Croatia
| |
Collapse
|