3
|
Sun L, Liang X, Jin M, Ma B, Zhang X, Song C. Ammonium and nitrate sources and transformation mechanism in the Quaternary sediments of Jianghan Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145131. [PMID: 33610997 DOI: 10.1016/j.scitotenv.2021.145131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Excessive inorganic nitrogen (IN) compound content in groundwater is generally attributed to anthropogenic activities. Here, natural nitrogen sources in Quaternary sediments from aquifers and aquitards of Jianghan Plain (JHP), China were identified. Ammonium and nitrate content in groundwater samples collected from 129 well sites were determined through chemical analysis. Subsequent 4 boreholes were drilled at areas with high nitrogen concentration in the Quaternary aquifer. Indicators from hydrochemistry and soil geochemistry analysis, as well as optically stimulated luminescence dating and various of radioactive isotope δ14C-CO2 and stable isotopes including δ15N-NH4+, δ15N-total organic nitrogen (TON), δ15N-NO3-, δ18O-NO3-, δ18O-H2O, δD-H2O, and δ13C-total organic carbon (TOC) were used to identify high-concentration N compound sources and transformation mechanisms (NO3-: 0.02-770 mg L-1; NH4-N: 0-30.5 mg L-1) in the porous media. The thick clay layer protected the underlying media. Paleo-precipitation characteristics were preserved in the porewater; that is, it had not been affected by anthropogenic activities. The high nitrate concentration in the shallow oxidized aquifer was mostly attributed to manure and sewage (δ15N-NO3- was 14‰). The ammonium-N in the deep strata and part of ammonium-N in the shallow strata (aquifers and aquitards) were from natural sources, mainly from natural TON mineralization. Adsorption was an auxiliary factor for ammonium enrichment in the shallow strata, as were dissimilatory nitrate reduction to ammonium (DNRA) and low ammonia volatilization. Organic matter (OM) involved in mineralization was a mixture of lacustrine algae and terrigenous clastic sediments (from river upstream). The algae were traced to lake formation and frequent evolutionary changes in river environments, as indicated by alterations in sedimentary facies. The present findings may encourage researchers to consider natural IN sources' contribution to N contamination using quantitative models. They also serve as a valuable reference for understanding other pollutants' transformation mechanism in similar environments and provide research ideas for similar areas.
Collapse
Affiliation(s)
- Liqun Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xing Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Menggui Jin
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Bin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xin Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Chen Song
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
4
|
Zhang X, Zhang Y, Shi P, Bi Z, Shan Z, Ren L. The deep challenge of nitrate pollution in river water of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144674. [PMID: 33513508 DOI: 10.1016/j.scitotenv.2020.144674] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Nitrate pollution of surface water has attracted global attention, and the issue is becoming increasingly significant in China. To identify the pollution status, sources, and potential non-carcinogenic health risks of nitrate in China's river water, nitrate data from 71 major rivers from 30 provinces were systematically collected. The spatial distribution of nitrate concentrations in river water was analyzed, and the main nitrate pollution sources were revealed based on the presence of nitrogen and oxygen isotopes of nitrate. The results show that approximately 7.83% of samples in China exceeded the national drinking water standard for nitrate (45 mg/L). The concentrations of nitrate in Mudan River (Linkou County), Haihe (Beijing), and Yangtze River estuary (Shanghai) exceed 90 mg/L, which indicates severe pollution. The characteristic values of δ15N and δ18O of river water in China range from -23.5‰ to 26.99‰ and - 12.7‰ to 83.5‰, indicate many sources including inorganic fertilizer, soil nitrogen, wastewater or manure. The primary sources of nitrate in river water of Northeast, Northwest, Southwest, and South China were manure, septic waste, inorganic fertilizer, and soil organic matter nitrification. Manure and septic waste were the major source of nitrate in Central, East, and North China. Correlation analysis revealed that the nitrate concentrations of surface water has a positive relationship with GDP, nitrogen fertilizer application usage, wastewater discharge, and population in China. Non-carcinogenic risk of nitrate was identified in 80% of the regions in China, and potential moderate non-carcinogenic risk areas are Shanghai, Beijing, and Shaanxi. It is urgent to solve the problem of pollution and prevent the further pollution of China's river water. Though the new "10-point Water Plan" issued by the Chinese government solved previous problems, it will take decades to control and repair polluted surface water.
Collapse
Affiliation(s)
- Xin Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Zhilei Bi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zexuan Shan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Lijiang Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
5
|
Weitere M, Altenburger R, Anlanger C, Baborowski M, Bärlund I, Beckers LM, Borchardt D, Brack W, Brase L, Busch W, Chatzinotas A, Deutschmann B, Eligehausen J, Frank K, Graeber D, Griebler C, Hagemann J, Herzsprung P, Hollert H, Inostroza PA, Jäger CG, Kallies R, Kamjunke N, Karrasch B, Kaschuba S, Kaus A, Klauer B, Knöller K, Koschorreck M, Krauss M, Kunz JV, Kurz MJ, Liess M, Mages M, Müller C, Muschket M, Musolff A, Norf H, Pöhlein F, Reiber L, Risse-Buhl U, Schramm KW, Schmitt-Jansen M, Schmitz M, Strachauer U, von Tümpling W, Weber N, Wild R, Wolf C, Brauns M. Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144324. [PMID: 33482551 DOI: 10.1016/j.scitotenv.2020.144324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.
Collapse
Affiliation(s)
- Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany.
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany
| | - Christine Anlanger
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Martina Baborowski
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Ilona Bärlund
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Liza-Marie Beckers
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Dietrich Borchardt
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI; RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Lisa Brase
- Helmholtz Centre Geesthacht - HZG, Department of Aquatic Nutrient Cycles, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany; Leipzig University, Institute of Biology, Talstrasse 33, 04103 Leipzig, Germany
| | - Björn Deutschmann
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany
| | - Jens Eligehausen
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany; University of Kassel, Department of Landscape Ecology, Gottschalkstr. 26A, 34127 Kassel, Germany
| | - Karin Frank
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany
| | - Daniel Graeber
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Christian Griebler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; University of Vienna, Department for Functional and Evolutionary Ecology, Althanstrasse 14, 1090 Wien, Austria
| | - Jeske Hagemann
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Peter Herzsprung
- Helmholtz Centre for Environmental Research - UFZ, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Pedro A Inostroza
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Christoph G Jäger
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany; Rosenheim Technical University of Applied Sciences, Centre for Research, Development and Technology Transfer, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Norbert Kamjunke
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Bernhard Karrasch
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Sigrid Kaschuba
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Andrew Kaus
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Bernd Klauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Economics, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kay Knöller
- Helmholtz Centre for Environmental Research - UFZ, Department Catchment Hydrology, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Matthias Koschorreck
- Helmholtz Centre for Environmental Research - UFZ, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Julia V Kunz
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Marie J Kurz
- Helmholtz Centre for Environmental Research - UFZ, Department Hydrogeology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Liess
- Helmholtz Centre for Environmental Research -UFZ, Department of System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Margarete Mages
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Christin Müller
- Helmholtz Centre for Environmental Research - UFZ, Department Catchment Hydrology, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Andreas Musolff
- Helmholtz Centre for Environmental Research - UFZ, Department Hydrogeology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Helge Norf
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Florian Pöhlein
- Helmholtz Centre for Environmental Research - UFZ, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Lena Reiber
- Helmholtz Centre for Environmental Research -UFZ, Department of System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - Mechthild Schmitt-Jansen
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Markus Schmitz
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Ulrike Strachauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Wolf von Tümpling
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Nina Weber
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Romy Wild
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Christine Wolf
- Helmholtz Centre for Environmental Research - UFZ, Department of Economics, Permoserstraße 15, 04318 Leipzig, Germany
| | - Mario Brauns
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| |
Collapse
|
6
|
Beckers LM, Brack W, Dann JP, Krauss M, Müller E, Schulze T. Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138388. [PMID: 32335446 DOI: 10.1016/j.scitotenv.2020.138388] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
The pollution of aquatic ecosystems with complex and largely unknown mixtures of organic micropollutants is not sufficiently addressed with current monitoring strategies based on target screening methods. In this study, we implemented an open-source workflow based on non-target screening to unravel longitudinal pollution patterns of organic micropollutants along a river course. The 47 km long Holtemme River, a tributary of the Bode River (both Saxony-Anhalt, Germany), was used as a case study. Sixteen grab samples were taken along the river and analyzed by liquid chromatography coupled to high-resolution mass spectrometry. We applied a cluster analysis specifically designed for longitudinal data sets to identify spatial pollutant patterns and prioritize peaks for compound identification. Three main pollution patterns were identified representing pollutants entering a) from wastewater treatment plants, b) at the confluence with the Bode River and c) from diffuse and random inputs via small point sources and groundwater input. By further sub-clustering of the main patterns, source-related fingerprints were revealed. The main patterns were characterized by specific isotopologue signatures and the abundance of peaks in homologue series representing the major (pollution) sources. Furthermore, we identified 25 out of 38 representative compounds for the patterns by structure elucidation. The workflow represents an important contribution to the ongoing attempts to understand, monitor, prioritize and manage complex environmental mixtures and may be applied to other settings.
Collapse
Affiliation(s)
- Liza-Marie Beckers
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany.
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Janek Paul Dann
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany
| | - Erik Müller
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Li C, Li SL, Yue FJ, Liu J, Zhong J, Yan ZF, Zhang RC, Wang ZJ, Xu S. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:801-810. [PMID: 30064106 DOI: 10.1016/j.scitotenv.2018.07.345] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Coupled nitrogen and oxygen isotopes of nitrate have proven useful in identifying nitrate sources and transformation in rivers. However, isotopic fractionation and low-resolution monitoring limit the accurate estimation of nitrate dynamics. In the present study, the spatio-temporal variations of nitrate isotopes (15N and 18O) and hydrochemical compositions (NO3- and Cl-) of river water were examined to understand nitrate sources in the Xijiang River, China. High-frequency sampling campaigns and isotopic analysis were performed at the mouth of the Xijiang River to capture temporal nitrate variabilities. The overall values of δ15N-NO3- and δ18O-NO3- ranged from +4.4‰ to +14.1‰ and from -0.3‰ to +6.8‰, respectively. The results of nitrate isotopes indicated that NO3- mainly originated from soil organic nitrogen (SON), chemical fertilizer (CF), and manure and sewage wastes (M&S). The negative correlation of nitrate isotopic values with NO3-/Cl- ratios suggested the importance of denitrification in NO3- loss. The results of Bayesian model with incorporation of isotopic fractionation during the denitrification showed that SON and CF contributed to the most (72-73%) nitrate in the wet season; whereas approximately 58% of nitrate was derived from anthropogenic inputs (M&S and CF) in the dry season. The nitrate flux was 2.08 × 105 tons N yr-1 during one hydrologic year between 2013 and 2014, with 86% occurring in the wet season. Long-term fluctuations in nitrate flux indicated that nitrate export increased significantly over the past 35 years, and was significantly correlated with nitrate concentrations. The seasonal pattern of nitrate dynamics indicated the mixing of nitrified NO3- and denitrified NO3- between surface flow and groundwater flow under different hydrological conditions. Overall, the present study quantitatively evaluates the spatio-temporal variations in nitrate sources in a subtropical watershed, and the high-frequency monitoring gives a better estimate of nitrate exports and proportional contributions of nitrate sources.
Collapse
Affiliation(s)
- Cai Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Fu-Jun Yue
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jing Liu
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhi-Feng Yan
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ruo-Chun Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhong-Jun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sen Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|