1
|
Warren LD, Guyader ME, Kiesling RL, Higgins CP, Schoenfuss HL. Linking Trace Organic Contaminants in On-Site Wastewater-Treatment Discharge with Biological Effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3193-3204. [PMID: 34499771 DOI: 10.1002/etc.5208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Around the globe, on-site wastewater-treatment systems (OWTSs) are critical for rural communities without access to a municipal sewer system. However, their treatment efficiency does not match that of modern wastewater-treatment plants. The impact of OWTS discharge on nearby aquatic ecosystems and their resident fish species is poorly understood. In the present study, larval and adult fathead minnows (Pimephales promelas) and adult sunfish (Lepomis macrochirus) were exposed for 21 days to two trace organic contaminant (TOrC) mixtures replicating water chemistry derived from a previous environmental study. Larval fathead minnows were assessed for survival, growth, predator avoidance, and feeding efficiency. Adult fathead minnows and sunfish were assessed for a suite of physiological endpoints (condition indices, vitellogenin, glucose), histological changes, and fecundity. The only observed effect of TOrC mixture exposure on larval fathead minnows was a decrease in feeding efficiency. Effects were mixed in exposed adult fishes, except for male sunfish which realized a significant induction of vitellogenin (p < 0.05). The consequences of TOrC mixture exposure in the present controlled laboratory study match effects observed in wild-caught sunfish in a corresponding field study. The present study begins to bridge the gap by connecting nonpoint OWTS pollution with biological effects observed in resident lake fish species. Given the effects observed despite the brevity of the laboratory mixture exposure, longer-term studies are warranted to understand the full impacts of OWTS discharge to nearby aquatic ecosystems. Environ Toxicol Chem 2021;40:3193-3204. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Les D Warren
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Meaghan E Guyader
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Christopher P Higgins
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
2
|
Liu S, Wang Z, Chen Y, Cao T, Zhao G. Recognition and Selectivity Analysis Monitoring of Multicomponent Steroid Estrogen Mixtures in Complex Systems Using a Group-Targeting Environmental Sensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14115-14125. [PMID: 34460232 DOI: 10.1021/acs.est.1c03683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The same class of steroid estrogen mixtures, coexisting in the environment of 17β-estradiol, estrone (E1), and ethinyl estradiol (EE2), have strong ability to disrupt the human endocrine system and are seriously prejudicial to the health of the organism and environmental safety. Herein, a highly sensitive and group-targeting environmental monitoring sensor was fabricated for a comprehensive analysis of multicomponent steroid estrogens (multi-SEs) in complex systems. This breakthrough was based on the highly sensitive photoelectrochemical response composite material CdSe NPs-TiO2 nanotube and highly group-specific aptamers. The optimized procedure exhibited not only high sensitivity in a wide range of concentrations from 0.1 to 50 nM, indeed, the minimum detection limit was 33 pM, but also strong resistance to interference. The affinity and consistent action pockets of this sensor enable selective detection of multi-SEs in complex systems. It subsequently was applied for the analysis of multi-SEs from three real samples in the environment including medical wastewater, river water, and tap water to provide a means to clarify the fate of multi-SEs in the process of migration and transformation. This monitoring sensor has a brilliant application prospect for the identification and monitoring of the same class of endocrine-disrupting chemical mixtures in environmental complex systems.
Collapse
Affiliation(s)
- Siyao Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yuqing Chen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Tongcheng Cao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Adriano N, Ahearn C, Black C, Cracchiolo M, Ghere D, Nuñez A, Olivan L, Patel R, Saner S, Smith KR, Watkins B, Hare PM. Solvent- and Wavelength-Dependent Photolysis of Estrone. Photochem Photobiol 2021; 98:783-797. [PMID: 34664279 DOI: 10.1111/php.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
The direct photolysis of estrone in solvents ranging from water to cyclohexane is reported. The photodegradation is dominated by lumiestrone, an epimer of estrone resulting from the inversion of the methyl group at carbon 13, regardless of solvent and photolysis wavelength in the range 254-320 nm. Solvent addition products are also observed in lesser amounts. The photodegradation rate in water is an order of magnitude slower than in nonaqueous solvents. Short wavelength excitation enhances photodegradation. Together, these results suggest complicated photophysics underlie the photochemistry with implications for the remediation of environmental estrogens.
Collapse
Affiliation(s)
- Natalie Adriano
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Ceilidh Ahearn
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Cory Black
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Michael Cracchiolo
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Daniel Ghere
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Alexandra Nuñez
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Lars Olivan
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Raj Patel
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Stephanie Saner
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Krista R Smith
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Barbie Watkins
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Patrick M Hare
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
4
|
Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals (Basel) 2021; 11:ani11072152. [PMID: 34359280 PMCID: PMC8300725 DOI: 10.3390/ani11072152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Estrogens are a group of steroid hormones that recently have gained even more attention in the eyes of scientists. There is an ongoing discussion in the scientific community about their relevance as environmental contaminants and the danger they pose to animal health and welfare. In available literature we can find many examples of their negative effects and mechanisms that are involved with such phenomena. Abstract Nowadays, there is a growing interest in environmental pollution; however, knowledge about this aspect is growing at an insufficient pace. There are many potential sources of environmental contamination, including sex hormones—especially estrogens. The analyzed literature shows that estrone (E1), estradiol (E2), estriol (E3), and synthetic ethinyloestradiol (EE2) are the most significant in terms of environmental impact. Potential sources of contamination are, among others, livestock farms, slaughterhouses, and large urban agglomerations. Estrogens occurring in the environment can negatively affect the organisms, such as animals, through phenomena such as feminization, dysregulation of natural processes related to reproduction, lowering the physiological condition of the organisms, disturbances in the regulation of both proapoptotic and anti-apoptotic processes, and even the occurrence of neoplastic processes thus drastically decreasing animal welfare. Unfortunately, the amount of research conducted on the negative consequences of their impact on animal organisms is many times smaller than that of humans, despite the great richness and diversity of the fauna. Therefore, there is a need for further research to help fill the gaps in our knowledge.
Collapse
|
5
|
Nowosad J, Kucharczyk D, Sikora M, Kupren K. Optimization of barbel (Barbus Barbus L.) fertilization and effects of ovarian fluid when there are controlled conditions for gamete activations. Anim Reprod Sci 2020; 224:106652. [PMID: 33249355 DOI: 10.1016/j.anireprosci.2020.106652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Fertilization is one of the most important procedures in artificial reproduction and it directly affects the reproduction outcome. When there is optimization of fertilization, there can be a positive effect on subsequent reproductive processes and economic aspects of aquaculture. This study was conducted to determine time for which oocytes and sperm of barbel Barbus barbus retain fertilization capacity following placement in freshwater. Furthermore, the amount of ovarian fluid, excreted by fish during spawning with eggs (OFI; %) was determined, along with the chemical composition and effects on fertilization were determined. Gametes, ovarian fluid, and seminal plasma from barbel spawning specimens of the F4 generation were used to conduct the study. Ovarian fluid accounted for 14%-68% of contents of the mass released at spawning and post-spawning composition differed depending on whether hormonal treatments were utilized for control of reproduction. There was an association (R2 = 0.982; P = 0.000) between the pH of ovarian fluid and the barbel embryo survival rate. There was the greatest survival rate (>60 %) when the pH range of 7.9-8.4 and there was a lesser embryo viability when pH values were lesser or greater than values within this range (P < 0.05). The results from the study indicate that barbel eggs retain fertilization capacity longer (as long as 210 s) after activation by placement in fresh water than spermatozoa (about 30 s).
Collapse
Affiliation(s)
- Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland.
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Mateusz Sikora
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Krzysztof Kupren
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
6
|
Nowosad J, Dryl K, Kupren K, Kucharczyk D. Inhibiting the influence of ovarian fluid on spermatozoa activation and spermatozoa kinetic characteristics in the common barbel Barbus barbus. Theriogenology 2020; 158:250-257. [PMID: 32998078 DOI: 10.1016/j.theriogenology.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 12/26/2022]
Abstract
As a result of evolution, various finfish species have developed different breeding strategies. However, there are some similarities, and one of them is the positive effect of ovarian fluid on spermatozoa. The opposite of this phenomenon was found in the common barbel (Barbus barbus). The present study analyzed the effect of ovarian fluid (OF), distilled water (DW) and Woynarovich solution (WS) on the motility, longevity and kinetics of barbel spermatozoa. These spermatozoa parameters were also evaluated with various dilutions of ovarian fluid (OF) in relation to distilled water [0:4 (Group OF 0%), 1:3 (Group OF 25%), 1:1 (Group OF 50%), 3:1 (Group OF 75%), 4:0 (Group OF 100%)] and spermatozoa reactivation after a 30 s (Group OFR30s 100%) treatment in ovarian fluid. The motility analysis was carried out using computer-assisted semen analysis (CASA). The negative interaction of ovarian fluid with spermatozoa motility in the same fish species was recorded for the first time. In pure ovarian fluid, the average spermatozoa motility (MOT) decreased significantly (1.40 ± 0.94%). The negative effect of ovarian fluid-to-spermatozoa motility was reversible, and after a 30 s treatment in ovarian fluid and later dilution with water, spermatozoa motility was reactivated (from 2.25 ± 0.53% vs 69.78 ± 6.02%). The use of Woynarovich solution as an activator of spermatozoa movement had a positive effect (P < 0.05) on spermatozoa movement longevity (motility up to 90 s) and the percentage of motile spermatozoa compared to distilled water (up to 45 s) and ovarian fluid (P < 0.05).
Collapse
Affiliation(s)
- Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland.
| | - Katarzyna Dryl
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Krzysztof Kupren
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
7
|
Korn VR, Ward JL, Edmiston PL, Schoenfuss HL. Temperature-Dependent Biomarkers of Estrogenic Exposure in a Piscivore Freshwater Fish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:156-166. [PMID: 32266455 DOI: 10.1007/s00244-020-00726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The biological effects of endocrine-active compounds and increasing water temperatures as a result of climate change have been studied extensively and independently, but there is a dearth of research to examine the combined effect of these factors on exposed organisms. Recent data suggest that estrogenic exposure and rising ambient temperatures independently impact predator-prey relationships. However, establishing these connections in natural settings is complex. These obstacles can be circumvented if biomarkers of estrogenic exposure in resident fish can predict changes in predator-prey relationships. To test the effects of estrone and temperature, the piscivore bluegill sunfish (Lepomis macrochirus) was exposed for 30 days to estrone at concentrations (90 ± 17.6 ng/L [mean ± standard deviation] and 414 ± 146 ng/L) previously shown to reduce prey-capture success. Exposures were conducted at four temperatures (15 °C, 18 °C, 21 °C, 24 °C) to simulate breeding season ambient temperatures across the natural range of this species. A suite of morphological and physiological biomarkers previously linked to estrogenic exposures were examined. Biomarkers of estrone exposure were more commonly and severely impacted in male fish than in female fish. Notably, the gonadosomatic index was lower and gonads were less mature in exposed males. Additionally, temperature modulated the effects of estrone similarly in males and females with fish exposed at higher temperatures typically exhibiting a decreased morphological index. This study provides evidence that alterations in hepatic function and gonadal function may cause shifts in metabolism and energy allocation that may lead to declining prey capture performance.
Collapse
Affiliation(s)
- V R Korn
- Aquatic Toxicology Laboratory, St. Cloud State University, WSB-273, 720 Fourth Avenue South, St. Cloud, MN, 56301, USA
| | - J L Ward
- Ball State University, Muncie, IN, USA
| | | | - H L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, WSB-273, 720 Fourth Avenue South, St. Cloud, MN, 56301, USA.
| |
Collapse
|
8
|
Ward JL, Korn V, Auxier AN, Schoenfuss HL. Temperature and Estrogen Alter Predator-Prey Interactions between Fish Species. Integr Org Biol 2020; 2:obaa008. [PMID: 33791552 PMCID: PMC7671136 DOI: 10.1093/iob/obaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A variety of environmental estrogens are commonly detected in human-impacted waterways. Although much is known about the effects of these environmental estrogens on the reproductive physiology and behavior of individuals within species, comparatively less is known about how these compounds alter the outcomes of interactions between species. Furthermore, few studies have considered how the effects of contaminants are modulated by natural variation in abiotic factors, such as temperature. To help fill this knowledge gap, we conducted a factorial experiment to examine the independent and combined effects of estrone (E1) and temperature on the outcome of predator-prey interactions between two common North American freshwater fishes, fathead minnows (Pimephales promelas) and bluegill sunfish (Lepomis macrochirus). Larval fathead minnows and adult sunfish were exposed to either a low (mean±standard deviation, 90.1 ± 18 ng/L; n = 16) or high (414 ± 147 ng/L; n = 15) concentration of E1 or to a solvent control for 30 days at one of four natural seasonal temperatures (15°C, 18°C, 21°C, and 24°C) before predation trials were performed. Exposure to E1 was associated with a significant increase in larval predation mortality that was independent of temperature. Across all temperature treatments, approximately 74% of control minnows survived; this survivorship significantly exceeded that of minnows exposed to either concentration of E1 (49% and 53% for minnows exposed to the low and high concentrations, respectively). However, exposure to E1 also impaired the prey-capture success of sunfish, partially mitigating predation pressure on exposed minnows. Overall prey-capture success by sunfish showed an inverted U-shaped distribution with temperature, with maximal prey consumption occurring at 21°C. This study illustrates the vulnerability of organismal interactions to estrogenic pollutants and highlights the need to include food web interactions in assessments of risk.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - V Korn
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| | - A N Auxier
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| |
Collapse
|
9
|
Cox MK, Ward JL, Matsuura M, Aing R, Schoenfuss HL, Kohno S. Estrone exposure interacts with temperature to alter predator evasion performance and systemic mRNA abundances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:519-528. [PMID: 31351294 DOI: 10.1016/j.scitotenv.2019.07.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Environmental estrogens from anthropogenic activities are ubiquitous in aquatic ecosystems. Ambient temperature in these systems also fluctuates in daily, seasonal, and long-term rhythms. While both factors have been studied extensively, their interaction on aquatic life is critical to understand. The objective of this study was, therefore, to examine how behavior and gene expression are impacted by estrogenic exposure across a range of environmental temperatures. Larval fathead minnows (Pimephales promelas) were exposed to estrone (E1) at two concentrations (nominal 625 and 1250 ng/L) or to an ethanol solvent control, at one of four temperatures (15, 18, 21 and 24 °C) from fertilization to 21 days post-hatch. Exposed larvae were assessed for alterations in predator evasion performance and mRNA abundances of two genes for calcium channel receptors found in muscles - dihydropyridine receptor (dhpr) and ryanodine receptor 1, and the gonadal genes anti-Müllerian hormone, cytochrome P450 gonadal aromatase (cyp19a), doublesex and mab-3 related transcription factor 1 (dmrt1) and estrogen receptor 1 (esr1). Larval escape angle, escape latency, as well as systemic esr1 and cyp19a mRNA abundances were altered by an interaction between E1 concentration and temperature. E1-exposed larval exhibited reduced escape performance across all tested temperatures, whereas decreased systemic dhpr mRNA abundance was observed only at 18 °C. E1-exposure reduced systemic mRNA abundances of amh, cyp19a, dhpr, and ryr1, while temperature significantly reduced systemic cyp19a and dhpr mRNA abundances. E1-exposure and temperature significant enhanced systemic mRNA abundances of esr1 and cyp19a, respectively. These complex results illustrate the importance of considering how abiotic factors may moderate the effects of contaminant exposure during the sensitive larval developmental stage, as temperature modulates effects of estrogenic exposure on animal performance and mRNA abundances.
Collapse
Affiliation(s)
- Megan K Cox
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States
| | - Jessica L Ward
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States; Department of Biology, Ball State University, Cooper Life Sciences Building. 2000 West University Avenue, Muncie, IN 47306, United States
| | - Michelle Matsuura
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States
| | - Raingsey Aing
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States
| | - Satomi Kohno
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States.
| |
Collapse
|
10
|
Yu W, Du B, Yang L, Zhang Z, Yang C, Yuan S, Zhang M. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9443-9468. [PMID: 30758794 DOI: 10.1007/s11356-019-04402-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/25/2019] [Indexed: 05/06/2023]
Abstract
Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and scientific community due to their recognized adverse effects on human and wildlife endocrine systems in recent years. In this review, the properties, occurrence, sorption process, and transformation pathways of NSEs are clarified in the environment. The work comprehensively summarizes the occurrence of both free and conjugated estrogens in different natural and built environments (e.g., river, WWTPs, CAFOs, soil, and sediment). The sorption process of NSEs can be impacted by organic compounds, colloids, composition of clay minerals, specific surface area (SSA), cation exchange capacity (CEC), and pH value. The degradation and transformation of free and conjugated estrogens in the environment primarily involves oxidation, reduction, deconjugation, and esterification reactions. Elaboration about the major, subordinate, and minor transformation pathways of both biotic and abiotic processes among NSEs is highlighted. The moiety types and binding sites also would affect deconjugation degree and preferential transformation pathways of CEs. Notably, some intermediate products of NSEs still remain estrogenic potency during transformation process; the elimination of total estrogenic activity needs to be addressed in further studies. The in-depth researches regarding the behavior of both free and conjugated estrogens are further required to tackle their contamination problem in the ecosystem. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China.
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chun Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shaochun Yuan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| |
Collapse
|
11
|
|
12
|
Bulgurcuoğlu AE, Yılmaz B, Chormey DS, Bakırdere S. Simultaneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:252. [PMID: 29589122 DOI: 10.1007/s10661-018-6625-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
A sensitive and accurate analytical method based on dispersive liquid-liquid microextraction was developed for the simultaneous determination of selected pesticides, hormones, and endocrine disruptors by GC-MS. The optimum conditions of the extraction procedure were determined using an experimental design of factors significantly affecting the extraction output. Analysis of variance (ANOVA) was used to evaluate the main effects of experimental factors and their interactions. The limit of detection values determined for the analytes under optimum experimental conditions were found to be between 0.30-2.0 ng/mL. The linear calibration plot of analytes span across a wide concentration range and low %RSD values from replicate measurements indicated good precision of the developed method. Spiked recovery tests were also performed on municipal wastewater, well water, lake water, sea water, and tap water matrices to determine the method's accuracy and applicability to water samples. The recovery results obtained were satisfactory for all water samples.
Collapse
Affiliation(s)
- Ayşe Evrim Bulgurcuoğlu
- Faculty of Art and Science, Physics Department, Yıldız Technical University, 34210, İstanbul, Turkey.
| | - Büşra Yılmaz
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, 34210, İstanbul, Turkey
| | - Dotse Selali Chormey
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, 34210, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, 34210, İstanbul, Turkey.
| |
Collapse
|