1
|
Kirman CR, Boysen G, DiNovi MJ, Roy R, Sonawane BR, Hays SM. Human health risk assessment for exposures to 1,3-butadiene in the United States with input from an independent science advisory panel. Regul Toxicol Pharmacol 2025; 160:105819. [PMID: 40204065 DOI: 10.1016/j.yrtph.2025.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
A human health risk assessment was conducted for potential cancer and noncancer effects of 1,3-butadiene (BD) using best available science, data, and methodologies. An independent panel of experts was engaged to provide input and guidance on key decisions made in the quantitative assessment. BD biomarker data played an important role in quantifying species differences, human variation, and quantifying smoking exposures. The assessment included consideration of nineteen scenarios for potential worker exposures, each of which include characterization of the impact of respirator use, and seven scenarios for aggregate exposures to BD across pathways. Monte Carlo methods were used to characterize uncertainty and variation risks and hazards from exposures to BD. The results of this assessment support three general conclusions: (1) ambient air is generally not an important source of BD exposure to the U.S. population when compared to other sources; (2) exposures to BD in the US are not expected to pose an unreasonable risk of cancer or noncancer effects; and (3) the existing OSHA PEL of 1 ppm is considered to be protective of the potential cancer risks and noncancer hazards from BD exposures.
Collapse
Affiliation(s)
| | - G Boysen
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M J DiNovi
- DiNovi Regulatory Associates, Baltimore, MD, USA
| | - R Roy
- Northland Toxicology Consultants, Chanhassen, MN, USA
| | - B R Sonawane
- Toxicology and Risk Assessment Consulting Services, Newberry, FL, USA
| | | |
Collapse
|
2
|
Warburton T, Hamilton JF, Carslaw N, McEachan RRC, Yang TC, Hopkins JR, Andrews SJ, Lewis AC. Yearlong study of indoor VOC variability: insights into spatial, temporal, and contextual dynamics of indoor VOC exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1025-1040. [PMID: 40105203 PMCID: PMC11921335 DOI: 10.1039/d4em00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Volatile organic compounds (VOCs) are released from many sources indoors, with ingress of outdoor air being an additional source of these species indoors. We report indoor VOC concentrations for 124 homes in Bradford in the UK, collected between March 2023 and April 2024. Whole air samples were collected over 72 hours in the main living area of the home. Total VOC (TVOC) concentrations in the homes were highly variable, ranging from 100 μg m-3 to >8000 μg m-3 (median concentration ∼1000 μg m-3). Acetaldehyde and 1,3-butadiene concentrations in >75% of homes were found to be in exceedance of the 1 in 1 000 000 lifetime cancer risk threshold. Higher concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) as well as trimethylbenzenes were found in urban houses (summed xylene median 2.35 μg m-3) compared to rural homes (summed xylene median 1.22 μg m-3, p-value = 0.02), driven by ingress of elevated outdoor BTEX and trimethylbenzenes (outdoor urban BTEX median 1.69 μg m-3, outdoor rural BTEX median 0.78 μg m-3). Inferred air change rate (ACR) exhibited a degree of seasonality, with average ACR varying between median values of 1.2 h-1 in the summer and 0.70 h-1 in winter. Time-averaged emission rate data provided additional insight compared to measured concentrations, such as seasonal variability, with highest total VOC time-averaged emission rates occurring in summer months (median 51 953 μg h-1), potentially a product of both increased occupancy times during school holidays as well as off-gassing of VOCs from surfaces. This comprehensive analysis underscores the critical role of seasonal, spatial, and contextual factors in shaping indoor VOC exposure, as well as potential health risks associated with consistently elevated concentrations of specific VOCs.
Collapse
Affiliation(s)
- Thomas Warburton
- Wolfson Atmospheric Chemistry Laboratories, University of York, UK.
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, University of York, UK.
- National Centre for Atmospheric Science, UK
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching, Hospitals NHS Foundation Trust, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching, Hospitals NHS Foundation Trust, UK
| | - James R Hopkins
- Wolfson Atmospheric Chemistry Laboratories, University of York, UK.
- National Centre for Atmospheric Science, UK
| | - Stephen J Andrews
- Wolfson Atmospheric Chemistry Laboratories, University of York, UK.
- National Centre for Atmospheric Science, UK
| | - Alastair C Lewis
- Wolfson Atmospheric Chemistry Laboratories, University of York, UK.
- National Centre for Atmospheric Science, UK
| |
Collapse
|
3
|
Wang X, Wang L, Zhao X, Zhang C, Wang X, Ma T, Zhao Z, Wang Y, Liu M, Yue X, Lu X, Zhang M, Ji L, Liu Z, Li D. Association between exposure to volatile organic compounds and allergic symptoms: Emphasis on the cocktail effect and potential mechanisms of toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118002. [PMID: 40055125 DOI: 10.1016/j.ecoenv.2025.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
Assessment of the influence of volatile organic compounds (VOCs) on allergic symptoms is usually limited to the effect of individual VOC exposure, with fewer substances being considered. Furthermore, the impact of mixed VOC exposure on allergic symptoms has rarely been addressed. This study aimed to investigate the association between mixed VOC exposure and allergic symptoms while identifying key risk factors. A total of 1901 participants from the 2005-2006 National Health and Nutrition Examination Survey (NHANES) were included. Four statistical models were employed to assess the effect of VOC exposure on allergic symptoms. The potential pathways and key targets were identified using the network pharmacology analysis methods. Positive correlations were observed between mixed VOC exposure and wheezing and eczema. N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-s-(3-hydroxypropyl-1-methyl)-L-cysteine (HPMM) were recognized as significant risk factors for wheezing and eczema. The network pharmacology analysis revealed significant enrichments of the PI3K-Akt and MAPK signaling pathways between AAMA and wheezing, as well as significant enrichments of the interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways between HPMM and eczema. Consequently, our study suggested that VOC exposure in human results in oxidative stress and inflammatory responses, increasing the risk of allergic symptoms.
Collapse
Affiliation(s)
- Xianhao Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Liangao Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xuezhen Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chi Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xinyue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tianqi Ma
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zihui Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yiqian Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Meng Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xianfeng Yue
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; School of Public Health, Jining Medical University, Jining 272067, China
| | - Xinxia Lu
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining 272011, China
| | - Mengyao Zhang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Long Ji
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; School of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhong Liu
- Jinan Center for Disease Prevention and Control, Jinan Research Center for Preventive Medicine, Jinan 250021, China.
| | - Dong Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; School of Public Health, Jining Medical University, Jining 272067, China.
| |
Collapse
|
4
|
Yang F, Cao YY, Xi J, Luan Y, Li N, Dong X, Zhang XY. Synthesis and characterization of the trans- and cis-isomers of N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine and their attempted detection in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1246:124294. [PMID: 39244958 DOI: 10.1016/j.jchromb.2024.124294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
1,3-Butadiene (BD) is a carcinogenic air pollutant. N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (MHBMA3 or 4HBeMA), an urinary BD metabolite with unspecified configuration, is considered the most sensitive BD biomarker and has been used in routine biomonitoring since 2012. However, two issues remain unaddressed: why its concentrations are unusually high relative to other urinary BD biomarkers and why some authors reported no detection of the biomarker whereas other authors readily quantitated it. To address the issues, we synthesized and structurally characterized the authentic trans- and cis-isomers of MHBMA3 (designated NE and NZ, respectively), developed an isotope-dilution LC-MS/MS method for their quantification, and examined 67 urine samples from barbecue restaurant personnel (n = 47) and hotel administrative staff (n = 20). The restaurant personnel were exposed to barbecue fumes, which contain relatively high concentrations of BD. The results showed that NE and NZ had highly similar NMR spectra, and were difficult to be well separated chromatographically. The NMR data showed that the MHBMA3 isomer investigated in most previous studies was NE. We did not detect NE and NZ in any samples; however, an interfering peak with varying heights was observed in most samples. Notably, under the chromatographic conditions used in the literature, the peak exhibited indistinguishable retention time from that of NE. Thus, it is highly likely that the interfering peak has been mis-identified as NE in previous studies, providing a reasonable explanation for the high MHBMA3 concentration in urine. The contradiction in the presence of MHBMA3 in urine was also caused by the mis-identification, because the researchers who reported the absence of MHBMA3 were actually detecting NZ. Thus, we clarified the confusion on MHBMA3 in previous studies through correctly identifying the two MHBMA3 isomers. The presence of NE and NZ in human urine warrants further investigations.
Collapse
Affiliation(s)
- Fei Yang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Yi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Foroughi P, Golbabaei F, Sadeghi-Yarandi M, Yaseri M, Fooladi M, Kalantary S. Occupational exposure, carcinogenic and non-carcinogenic risk assessment of formaldehyde in the pathology labs of hospitals in Iran. Sci Rep 2024; 14:12006. [PMID: 38796506 PMCID: PMC11127932 DOI: 10.1038/s41598-024-62133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
Formaldehyde, a known carcinogenic compound, is commonly used in various medical settings. The objective of this study was to assess the carcinogenic and non-carcinogenic risks associated with occupational exposure to formaldehyde. This study was conducted in the pathology labs of four hospitals in Tehran. Cancer and non-cancer risks were evaluated using the quantitative risk assessment method proposed by the United States environmental protection agency (USEPA), along with its provided database known as the integrated risk information system (IRIS). Respiratory symptoms were assessed using the American thoracic society (ATS) questionnaire. The results indicated that 91.23% of exposure levels in occupational groups exceed the NIOSH standard of 0.016 ppm. Regarding carcinogenic risk, 41.03% of all the studied subjects were in the definite carcinogenic risk range (LCR > 10-4), 23.08% were in the possible carcinogenic risk range (10-5 < LCR < 10-4), and 35.90% were in the negligible risk range (LCR < 10-6). The highest index of occupational carcinogenesis was observed in the group of lab technicians with a risk number of 3.7 × 10-4, followed by pathologists with a risk number of 1.7 × 10-4. Furthermore, 23.08% of the studied subjects were within the permitted health risk range (HQ < 1.0), while 76.92% were within the unhealthy risk range (HQ > 1.0). Overall, the findings revealed significantly higher carcinogenic and non-carcinogenic risks among lab technicians and pathologists. Therefore, it is imperative to implement control measures across various hospital departments to mitigate occupational formaldehyde exposure levels proactively. These findings can be valuable for policymakers in the health sector, aiding in the elimination or reduction of airborne formaldehyde exposure in work environments.
Collapse
Affiliation(s)
- Parvin Foroughi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi-Yarandi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Fooladi
- Department of Occupational Health and Environment, Iran Mineral Processing Research Center, Tehran, Iran
| | - Saba Kalantary
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
7
|
Khoshakhlagh AH, Chuang KJ, Kumar P. Health risk assessment of exposure to ambient formaldehyde in carpet manufacturing industries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16386-16397. [PMID: 36181598 DOI: 10.1007/s11356-022-23353-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Formaldehyde is categorized as a definitive carcinogen by the International Agency for Research on Cancer. To the best of our knowledge, no study has assessed the health risks of occupational exposure of workers in carpet manufacturing plants to formaldehyde. Therefore, this study assesses the health risks of the occupational exposure to formaldehyde of 67 male workers in carpet manufacturing plants in Iran in 2022. Exposure to formaldehyde was quantitatively determined after collecting personal exposure samples from the workers' respiratory zone and spectrophotometric analysis based on method number 3500 of the National Institute of Occupational Safety and Health. In the next step, the carcinogenic and noncarcinogenic risks based on personal exposure to formaldehyde were evaluated. Sensitivity analyses were employed using the Monte Carlo simulation method. The mean inhalation exposure of workers to formaldehyde was 0.636 mg m-3. The inhalation cancer risk value based on the integrated risk information system for formaldehyde was 4.06×10-4 ± 3.17×10-5 (mean ± standard deviation), which exceeded the value reported by the US Environmental Protection Agency. An unacceptable carcinogenic risk level was found in 75.6% of workers. The highest mean inhalation cancer risk was 6.74×10-4 (i.e., 6.74 additional cases per 10,000 employees exposed) was found in sizing post employees. The hazard quotient of formaldehyde was 0.311±0.024. The formaldehyde concentration had a considerable effect on the health risk. The findings of this study provide valuable scientific information that supports the development of future policies to enhance the health status of employees in carpet manufacturing plants.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
8
|
Khoshakhlagh AH, Gruszecka-Kosowska A, Adeniji AO, Tran L. Probabilistic human health risk assessment of 1,3-butadiene and styrene exposure using Monte Carlo simulation technique in the carpet production industry. Sci Rep 2022; 12:22103. [PMID: 36543865 PMCID: PMC9772311 DOI: 10.1038/s41598-022-26537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals containing Volatile Organic Compounds (VOCs) are commonly used in the machine carpet production. 1,3-butadiene and styrene are main components of the carpenter's glue used in carpet factories. Exposition to these chemicals can lead to a number of adverse health effects. This is the first study of the human health risk assessment due to inhalational exposure to 1,3-butadiene (BD) and styrene (ST) performed among workers in the carpet factories in Kashan city, Iran. The importance of the study was related with the fact of high popularity of carpet production in the South Asia countries. Inhalation exposure to BD and ST were measured based on the National Institute for Occupational Safety and Health (NIOSH) 1024 and 1501 methods, respectively. The cancerogenic risk (CR) and non-cancerogenic risk described as Hazard Quotient (HQ) values were calculated based on the United States Environmental Protection Agency (USEPA) method. The sensitivity and uncertainty analysis were performed by the Monte Carlo simulation (MCS) technique. The average concentration measured of BD and ST during work shifts of employees were 0.039 mg m-3 (0.017 ppm) and 12.108 mg m-3 (2.84 ppm), respectively. The mean ± SD value of estimated cancerogenic risk in inhalation exposure to BD and ST were equal to 5.13 × 10-3 ± 3.85 × 10-4 and 1.44 × 10-3 ± 2.36 × 10-4, respectively exceeding the acceptable risk level of 10-6 defined by USEPA. The average non-carcinogenic risk (HQ) values of BD and ST were equal to 8.50 × 100 and 5.13 × 100, respectively exceeding the acceptable risk level of 1. As the results of our studies exceeded both cancerogenic and non-carcinogenic risk values it indicates that adverse health effects due to inhalational exposure to BD and ST for workers in the machine carpet industry are very likely. To avoid negative health effects protective measures for employees in the factories should be introduced immediately and furher detailed research are recommended.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Abiodun Olagoke Adeniji
- Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma 180, Lesotho, South Africa
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, EH14 4AP, UK
| |
Collapse
|
9
|
Ahmadi-Moshiran V, Sajedian AA, Soltanzadeh A, Seifi F, Koobasi R, Nikbakht N, Sadeghi-Yarandi M. Carcinogenic and health risk assessment of respiratory exposure to Acrylonitrile, 1,3-Butadiene and Styrene (ABS) in a Petrochemical Industry Using the United States Environmental Protection Agency (EPA) Method. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2022; 28:i-ix. [PMID: 35363589 DOI: 10.1080/10803548.2022.2059171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aimed to carcinogenic and health risk assessment of respiratory exposure to acrylonitrile, 1,3-butadiene, and styrene in the petrochemical industry. MATERIALS AND METHODS This cross-sectional study was conducted in a petrochemical plant producing acrylonitrile, butadiene, and styrene (ABS) copolymers. Respiratory exposure with acrylonitrile, 1,3-butadiene and styrene was measured using methods No. 1604, 1024, and 1501 of the National Institute of Occupational Safety and Health, respectively. The US Environmental Protection Agency method was used to assess carcinogenic and health risks. RESULTS The average occupational exposure to acrylonitrile, 1,3-butadiene, and styrene was 560.82 μg. m-3 for 1,3-butadiene, 122.8 μg. m-3 for acrylonitrile and 1.92 μg. m-3 for styrene. The average lifetime cancer risk (LCR) in the present study was 2.71 ×10-3 for 1,3-butadiene, 2.1 ×10-3 for acrylonitrile, and 6.6 for styrene. Also, the mean non-cancer risk (HQ) among all participants for 1,3-butadiene, acrylonitrile, and styrene was 4.04 ± 6.93, 10.82 ± 14.76, and 0.19 ± 0.11, respectively. CONCLUSION The values of carcinogenic and health risks in the majority of the subjects were within the unacceptable risk levels due to exposure to 1,3-butadiene, acrylonitrile, and styrene vapors. Hence, corrective actions are required to protect the workers from non-cancer and cancer risks.
Collapse
Affiliation(s)
- Vahid Ahmadi-Moshiran
- Department of Occupational Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. Email address: , Tel
| | - Ali Asghar Sajedian
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Email address: , Tel
| | - Ahmad Soltanzadeh
- Department of Occupational Health and Safety Engineering, Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Sciences, Qom, Iran. , Tel
| | - Fatemeh Seifi
- Department of HSE, Faculty of Environment and Energy, Islamic Azad University, Science and Research Branch, Tehran, Iran. Email address: , Tel
| | - Rozhin Koobasi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Email address: , Tel
| | - Neda Nikbakht
- Department of Chemical Engineering Health, Safety and Environment and Human and Sustainable Development Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran. Email address: , Tel
| | - Mohsen Sadeghi-Yarandi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Email address: , Tel
| |
Collapse
|
10
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Conti I, Simioni C, Varano G, Brenna C, Costanzi E, Neri LM. Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117708. [PMID: 34256282 DOI: 10.1016/j.envpol.2021.117708] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
Plastic pollution is an emerging problem and is a consequence of the post-consumer plastic waste accumulation in the environment coupled to mismanaged waste programmes. Countries are counteracting the continuous growth of plastic litter with different strategies: introducing bans and limits on both plastic items and materials, promoting plastic recycling and recovery strategies and encouraging voluntary clean up actions, as well as raising public awareness. However, the toxicity of plastics to the environment and organisms is not only related to their polymer chains, but also to the fact that plastic materials contain hazardous additives and can adsorb environmental pollutants (i.e. heavy metals and persistent organic contaminants, respectively). The plastic/additives/pollutants combination may be ingested by marine organisms and then enter in the food chain. Therefore, legislation for additives and contaminants is crucial both to reduce environmental pollution and their toxic effects on organisms, which of course includes humans. In this review, the current policies on plastics and related contaminants are described focusing on current laws. Moreover, recommendations for seafood consumption are suggested, since each fish or mollusc eaten may potentially result in plastic particles, additives or contaminants ingestion.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy; LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy; LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
12
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
13
|
Mo Z, Lu S, Shao M. Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115740. [PMID: 33307399 DOI: 10.1016/j.envpol.2020.115740] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Solvent use and paint consumption are significant source sectors of volatile organic compounds (VOCs) emissions in China. The occupational painters have high risk of health effect due to exposure to high VOCs concentration. However, the toxic components in coating environment have not been carefully identified, and the health risks of VOCs exposure have not been sufficiently assessed. This study collected air samples from nine workshops of three major coating sectors in the Yangtze River Delta of China, namely cargo container coating, ship equipment coating, and furniture coating, to evaluate the non-cancer and cancer risk of toxic VOCs exposure to occupational painters under a normal working condition. The results show that the container coating had highest cancer risk (2.29 × 10-6-5.53 × 10-6) exceeding the safe limit of 1.0 × 10-6, while non-cancer risk of all workshops was lower than acceptable level of 1. Ethylbenzene and 1,2-dichloropropane should be targeted for priority removal during the container coating process in attempt to reduce adverse health effect on the occupational painters. This study helps better understand the health risk of VOCs exposure in coating workshops in China and provides information for policy-makers to formulate possible control of specific toxic compounds during coating process.
Collapse
Affiliation(s)
- Ziwei Mo
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 51143, China
| | - Sihua Lu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Min Shao
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 51143, China; State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Sadeghi-Yarandi M, Karimi A, Ahmadi V, Sajedian AA, Soltanzadeh A, Golbabaei F. Cancer and non-cancer health risk assessment of occupational exposure to 1,3-butadiene in a petrochemical plant in Iran. Toxicol Ind Health 2020; 36:960-970. [PMID: 33108261 DOI: 10.1177/0748233720962238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1,3-Butadiene is classified as carcinogenic to humans by inhalation. This study aimed to assess cancer and non-cancer risk following occupational exposure to 1,3-butadiene. This cross-sectional study was conducted in a petrochemical plant producing acrylonitrile butadiene styrene copolymer in Iran. Occupational exposure to 1,3-butadiene was measured according to the National Institute for Occupational Safety and Health 1024 method. Cancer and non-cancer risk assessment were performed according to the United States Environmental Protection Agency method. The average occupational exposure to 1,3-butadiene during work shifts among all participants was 560.82 ± 811.36 µg m-3. The average lifetime cancer risk (LCR) in the present study was 2.71 × 10-3; 82.2% of all exposed workers were within the definite carcinogenic risk level. Also, the mean non-cancer risk (hazard quotient (HQ)) among all participants was 10.82 ± 14.76. The highest LCR and HQ were observed in the safety and fire-fighting station workers with values of 7.75 × 10-3 and 36.57, respectively. The findings revealed that values of carcinogenic and noncarcinogenic risk in the majority of participants were within the definitive and unacceptable risk levels. Therefore, corrective measures are necessary to protect these workers from non-cancer and cancer risks from 1,3-butadiene exposure.
Collapse
Affiliation(s)
- Mohsen Sadeghi-Yarandi
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ahmadi
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Sajedian
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Soltanzadeh
- Department of Occupational Safety and Health Engineering, Health Faculty, 154202Qom University of Medical Sciences, Qom, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ewunkem AJ, Deve M, Harrison SH, Muganda PM. Diepoxybutane induces the expression of a novel p53-target gene XCL1 that mediates apoptosis in exposed human lymphoblasts. J Biochem Mol Toxicol 2020; 34:e22446. [PMID: 31953984 DOI: 10.1002/jbt.22446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Diepoxybutane (DEB) is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD). BD is a human carcinogen that exhibits multiorgan systems toxicity. Our previous studies demonstrated that the X-C motif chemokine ligand 1 (XCL1) gene expression was upregulated 3.3-fold in a p53-dependent manner in TK6 lymphoblasts undergoing DEB-induced apoptosis. The tumor-suppressor p53 protein is a transcription factor that regulates a wide variety of cellular processes, including apoptosis, through its various target genes. Thus, the objective of this study was to determine whether XCL1 is a novel direct p53 transcriptional target gene and deduce its role in DEB-induced toxicity in human lymphoblasts. We utilized the bioinformatics tool p53scan to search for known p53 consensus sequences within the XCL1 promoter region. The XCL1 gene promoter region was found to contain the p53 consensus sequences 5'-AGACATGCCTAGACATGCCT-3' at three positions relative to the transcription start site (TSS). Furthermore, the XCL1 promoter region was found, through reporter gene assays, to be transactivated at least threefold by wild-type p53 promoter in DEB-exposed human lymphoblasts. Inactivation of the XCL1 promoter p53-binding motif located at -2.579 kb relative to TSS reduced the transactivation function of p53 on this promoter in DEB-exposed cells by 97%. Finally, knockdown of XCL1 messenger RNA with specific small interfering RNA inhibited DEB-induced apoptosis in human lymphoblasts by 50%. These observations demonstrate, for the first time, that XCL1 is a novel DEB-induced direct p53 transcriptional target gene that mediates apoptosis in DEB-exposed human lymphoblasts.
Collapse
Affiliation(s)
- Akamu J Ewunkem
- Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
| | - Maya Deve
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Scott H Harrison
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Perpetua M Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
16
|
Sahbi F, Rezgui Y, Guemini M. Effect of Hydrogen Addition on the Sooting Tendency of 1,3-Butadiene Premixed Flames. KINETICS AND CATALYSIS 2019. [DOI: 10.1134/s0023158419040153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|