1
|
Feng Q, Liu Y, Hu K, Wang G, Liu Z, Han Y, Li W, Zhang H, Wang B. Decoupling of diversity and network complexity of bacterial communities during water quality deterioration. J Environ Sci (China) 2025; 155:86-95. [PMID: 40246515 DOI: 10.1016/j.jes.2024.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 04/19/2025]
Abstract
Numerous studies have examined the impact of water quality degradation on bacterial community structure, yet insights into its effects on the bacterial ecological networks remain scarce. In this study, we investigated the diversity, composition, assembly patterns, ecological networks, and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation. Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples, while sediment samples remain unaffected. Additionally, water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples. These shifts in bacterial communities were primarily governed by deterministic processes, with heterogeneous selection being particularly influential. Through redundancy analysis (RDA), multiple regression on matrices (MRM), and Mantel tests, we identified dissolved oxygen (DO), ammonium nitrogen (NH4+-N), and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment. Overall, this study contributes a novel perspective on the effect of water quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.
Collapse
Affiliation(s)
- Qiuyue Feng
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Yuyan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Kaiming Hu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Guanghui Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Yu Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Zhang X, Li K, Shao Y, Xiao Y, Zhou H, Qu Y, Zhan J. Spatial variation and influencing factors of planktonic and sedimentary bacterial communities in Daliao River estuary, Northeast China. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107209. [PMID: 40367631 DOI: 10.1016/j.marenvres.2025.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Planktonic and sedimentary bacteria play distinct yet vital roles in maintaining the ecological balance of riverine and estuarine ecosystems. Understanding their composition and ecological functions is essential for effective ecosystem management and conservation. In this study, water and sediment samples were collected from the Daliao River, a major tributary of the Liao River basin in Northeast China, to explore the spatial variation of planktonic and sedimentary bacterial communities and identify the factors driving their distribution. The results exhibited significant differences in physicochemical properties of water and sediments along the river, which influenced bacterial diversity and community structure. Beta diversity analysis further revealed clear distinctions between planktonic and sedimentary communities. Proteobacteria and Bacteroidetes were the dominant phyla in both habitats, with Pseudomonas, Acinetobacter, and Woeseia identified as the most prevalent genera. Ecological network analysis indicated that planktonic bacterial communities exhibited a higher proportion of negative correlations and contained more potential keystone taxa compared to sedimentary communities. Functional gene analysis showed a notable presence of genes associated with nitrogen and phosphorus cycles, with nitrogen cycling genes being particularly abundant in planktonic communities. The pH and electrical conductivity emerged as the primary drivers influencing the structure and function of planktonic and sedimentary bacterial communities. Additionally, nutrients such as NO3--N and SO42- played significant roles in shaping planktonic bacterial communities. This study advances the understanding of microbial dynamics in riverine and estuarine ecosystems, providing a scientific basis for mitigating eutrophication, optimizing ecological restoration strategies, and strengthening holistic assessments of aquatic ecosystem health.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Kuimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yating Shao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yang Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
3
|
Tang S, Gong J, Li J, Song B, Cao W, Zhao J. Nitrogen and phosphorus in water-sediment system of eutrophic lake amended with biochar-supported Effective Microorganisms: Temporal variation and remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124732. [PMID: 40138929 DOI: 10.1016/j.jenvman.2025.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Eutrophication has received worldwide attention, and bioremediation is progressive research of lake control. In a five-month cultivation study, we aim to reduce various forms of nitrogen and phosphorus in the water-sediment system of eutrophic lakes amended with biochar/Effective Microorganisms (EMs) combined with different means. Self-organizing maps revealed that in the absence of exogenous contamination, the nitrogen and phosphorus levels in the water-sediment systems were greatly driven by the temporal variation in cultivation, followed by the depth of the water-sediment system and different amendments. The contents of nitrogen and phosphorus, especially NH3-N and SRP, in overlying- and pore-water gradually decreased with cultivated time and increased with depth due to the biological purification and the nutrient deposition. During summer months, the activity of biota promoted the removal of nitrogen and phosphorus, while the decomposition of phytoplankton released the more amounts of DOM (mg/L of DOC) left in water. Based on the temporal and depth variation of nutrients, the amended-groups impacted the overall levels of nitrogen and phosphorus through altering microbial activity and adjusting nutrient redistribution in the water-sediment systems. As an ideal carrier, biochar promoted microbial colonization and biofilm growth, while its-supported EMs improved the microbial activity of amended sediments. Thus, the application of biochar-supported EMs (BE) achieved the most desired repairs in removing nitrogen, phosphorus and DOM in water-sediment system and increasing their immobilization in sediment. The combination of biochar-supported EMs with aeration (BE.A) decreased the overall levels of nitrogen and DOM, but promoted the release of phosphorus in water due to its strong suspended particles' affinity. Additionally, BE.A and BE showed desirable resistance to highly-polluting wastewater inputs. This study provided practical theories for biochar-immobilized microbes to alleviate eutrophication and cycle of nutrients and DOM during summer months.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| |
Collapse
|
4
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
5
|
Deng J, Wang Y, Yu D, Li X, Yue J. Effects of heavy metals on variation in bacterial communities in farmland soil of tailing dam collapse area. Sci Rep 2025; 15:8100. [PMID: 40057547 PMCID: PMC11890580 DOI: 10.1038/s41598-025-93244-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/05/2025] [Indexed: 05/13/2025] Open
Abstract
Heavy metals are commonly present in polluted soil in mining areas. In this study, we investigated 10 sites of farmland soil in the heavy metal tailing dam collapse area (TDCA) with the dominant phyla Acidobacteriota, Proteobacteria, Bacteroidetes, and Planctomycetes. The heavy metal dam collapse area is a composite contamination area of multiple heavy metals, with Cd, Pb and Zn being the most severely contaminated, and the levels of Hg and Cu exceeding the screening values at some of the sites. The Shannon, Chao1 and ACE indices revealed high microbial diversity but low relative abundance of microorganisms at the severely polluted TDCA1 and TDCA3 sites. The results of redundancy analysis (RDA) showed that Hg (Max = 4.31 mg/kg) and Cu (Max = 100 mg/kg) were important factors affecting soil microbial community in the TDCA compared to other heavy metals. Correlation analysis of heavy metals with microbial communities showed that RB41 (Acidobacteria) was more resistant to high concentrations of Cd, Pb, and Zn pollution. The genera of UTCFX1 (Chloroflxi) and norank_TRA3-20 had strong tolerance to the heavy metal Hg. Cu was significantly negatively correlated with norank_WD2101_soil_group (P < 0.05). Therefore these can be used as indicators for monitoring potential heavy metal contamination. The results can be used to predict the changes in the ecosystem of the mining area to maintain its ecological balance and health.
Collapse
Affiliation(s)
- Jinliang Deng
- Key Laboratory of Regional Environment and Eco-Restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yinggang Wang
- Key Laboratory of Regional Environment and Eco-Restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China.
| | - Dan Yu
- Key Laboratory of Regional Environment and Eco-Restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jingpeng Yue
- Key Laboratory of Regional Environment and Eco-Restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
6
|
Cai S, Zhao J, Sheng E, Fan L, Shen Z, Li Y. Similar but different assembly processes of bacterial and micro-eukaryotic communities in an urban river. Sci Rep 2025; 15:6974. [PMID: 40011580 PMCID: PMC11865445 DOI: 10.1038/s41598-025-91664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Bacteria and micro-eukaryotes play important roles in river ecological systems. The processes that govern bacterial and micro-eukaryotic communities in urban rivers are still uncertain. The spatiotemporal characteristics and assembly processes of bacterial and micro-eukaryotic communities in the Xiangjianghe River were explored using 16 S and 18 S rRNA gene amplicon sequencing in the present study. The results indicate that the bacterial and micro-eukaryotic community composition exhibited distinct temporal and spatial variation. The topological characteristics of co-occurrence networks demonstrate that the bacterial and micro-eukaryotic community coexistence patterns vary significantly between the four seasons. Water temperature (WT) and oxidation-reduction potential (ORP) were detected as the most critical factors affecting bacterial and micro-eukaryotic community structure. The stochastic process (dispersal limitation) was the dominant assembly process for bacteria and micro-eukaryotes in all seasons. Deterministic and stochastic processes influenced the bacteria and micro-eukaryotes differently. Compared to bacteria, the values of niche breadth were relatively lower, and the proportion of deterministic processes was relatively higher in micro-eukaryotes. These results expand our understanding of spatiotemporal patterns, assembly mechanisms, and influencing factors of bacterial and micro-eukaryotic communities in urban rivers.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China.
| | - Jun Zhao
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Enguo Sheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Leilei Fan
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Ziwei Shen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yunfeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
7
|
Wang G, Haenelt S, Corrêa FB, da Rocha UN, Musat F, Zhang J, Müller JA, Musat N. Riverine antibiotic resistome along an anthropogenic gradient. Front Microbiol 2025; 16:1516033. [PMID: 40078550 PMCID: PMC11897494 DOI: 10.3389/fmicb.2025.1516033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
The introduction of antibiotic-resistant bacteria into riverine systems through the discharge of wastewater treatment plant (WWTP) effluent and agricultural waste poses significant health risks. Even when not pathogenic, these bacteria can act as reservoirs for antibiotic resistance genes (ARGs), transferring them to pathogens that infect humans and animals. In this study, we used fluorescence in situ hybridization, qPCR, and metagenomics to investigate how anthropogenic activities affect microbial abundance and the resistome along the Holtemme River, a small river in Germany, from near-pristine to human-impacted sites. Our results showed higher bacterial abundance, a greater absolute and relative abundance of ARGs, and a more diverse ARG profile at the impacted sites. Overall, the ARG profiles at these sites reflected antibiotic usage in Germany, with genes conferring resistance to drug classes such as beta-lactams, aminoglycosides, folate biosynthesis inhibitors, and tetracyclines. There were also variations in the ARG profiles of the impacted sites. Notably, there was a high abundance of the oxacillin resistance gene OXA-4 at the downstream site in the river. In the metagenome assembly, this gene was associated with a contig homologous to small plasmids previously identified in members of the Thiotrichaceae. The likely in-situ host of the putative plasmid was a close relative of Thiolinea (also known as Thiothrix) eikelboomii, a prominent member of WWTP microbiomes worldwide. Our results show that the effluent from WWTPs can introduce bacteria into the environment that act as shuttle systems for clinically relevant ARG.
Collapse
Affiliation(s)
- Gangan Wang
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sarah Haenelt
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Felipe Borim Corrêa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florin Musat
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Junya Zhang
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jochen A. Müller
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG 5), Eggenstein-Leopoldshafen, Germany
| | - Niculina Musat
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Nomosatryo S, Lipus D, Bartholomäus A, Henny C, Ridwansyah I, Sujarta P, Yang S, Wagner D, Kallmeyer J. The role of anthropogenic influences on a tropical lake ecosystem and its surrounding catchment: a case study of Lake Sentani. FEMS Microbiol Ecol 2025; 101:fiae162. [PMID: 39689918 PMCID: PMC11707878 DOI: 10.1093/femsec/fiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Lake Sentani is a tropical lake in Indonesia, consisting of four interconnected sub-basins of different water depths. While previous work has highlighted the impact of catchment composition on biogeochemical processes in Lake Sentani, little is currently known about the microbiological characteristics across this unique ecosystem. With recent population growth in this historically rural area, the anthropogenic impact on Lake Sentani and hence its microbial life is also increasing. Therefore, we aimed to explore the influence of environmental and anthropogenic factors on the microbial diversity of Lake Sentani. Here, we present a detailed microbiological evaluation of Lake Sentani, analyzing 49 different sites across the lake, its tributary rivers and their river mouths to assess diversity and community structure using 16S rRNA gene sequencing. Our results reveal distinct communities in lake and river sediments, supporting the observed geochemical differences. Taxonomic assessment showed the potential impact of anthropogenic pressure along the northern, urbanized shore, as river and river mouth samples revealed high abundances of Bacteroidota, Firmicutes, and Cyanobacteria, which could be attributed to pollution and eutrophication. In contrast, lake sediment communities were dominated by Thermodesulfovibrionia, Methanomethylicia, Bathyarchaeia, and Thermoplasmata, suggesting sulfate reducing, thermophilic, acidophilic bacteria and methanogenic archaea to play an important role in tropical lake systems. This study provides novel insights into ecological functions of tropical lakes and contributes to the optimization of management strategies of Lake Sentani, ensuring its holistic preservation in the future.
Collapse
Affiliation(s)
- Sulung Nomosatryo
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Jakarta-Bogor KM 46, Cibinong, Bogor 16911, Indonesia
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, United States
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Jakarta-Bogor KM 46, Cibinong, Bogor 16911, Indonesia
| | - Iwan Ridwansyah
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Jakarta-Bogor KM 46, Cibinong, Bogor 16911, Indonesia
| | - Puguh Sujarta
- Cendrawasih University, Department of Biology, Faculty of Mathematics and Natural Sciences, Jl. Kamp. Wolker, Waena, Jayapura 99358, Indonesia
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, 14476, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| |
Collapse
|
9
|
Zhang Z, Tang J, Wang L, Zhu C, Xun Q, Rosado D. Amplified impacts of human activities: Non-linear responses of riverine microbial communities to distribution of land use. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123937. [PMID: 39756278 DOI: 10.1016/j.jenvman.2024.123937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Rapid global urbanization poses considerable ecological risks to freshwater systems, notably leading to substantial reductions in microbial communities. To assess the impacts of human activities on these communities, we applied the high-throughput amplicon DNA sequencing to examine spatial variations in riverine microbial communities within an urbanized watershed. Coupled with the Geographical Detector Model, the effects of the land use were identified across the watershed. Results show that microbial communities were closely linked to the human-impacted land use patterns. The upstream region, dominated by forest cover (71%), exhibited the highest microbial population (3384 OTUs), whereas the urbanized downstream outlet (91% urban land) showed the lowest microbial population (471 OTUs). Additionally, the spatial distribution of the human-impacted land use appears to abruptly alter microbial pathways along the river. The spatial threshold effect of human-impacted land use is indicated by a Moran's I value exceeding 0.80. Notably, a 300-m buffer zone around different land uses seems to significantly influenced sediment microbial communities. Besides, the influence of land use on microbial communities is intensified by spatial drivers. For instance, agricultural land use was found to impact riverine Parcubacteria communities, with factor detector values increasing by over 30% in 400-500 m buffer zones. These findings provide new insights into the complex relationship between human activity and riverine microbial communities, highlighting important implications for ecosystem management in rapidly urbanization regions.
Collapse
Affiliation(s)
- Zhenyu Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118, Kiel, Germany.
| | - Junhao Tang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Chongchong Zhu
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing, 210023, China.
| | - Qian Xun
- RISE Research Institutes of Sweden, Brinellgatan 4, Borås, 50462, Sweden.
| | - Daniel Rosado
- Department of Chemical and Environmental Engineering, University of Seville, 41092, Sevilla, Spain; Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118, Kiel, Germany.
| |
Collapse
|
10
|
Lam KL, Tam NFY, Xu SJL, Mo WY, Tse YT, Lai KKY, Chan PL, Lee FWF. Habitat variations of sediment microbial community structure and functions and the influential environmental factors in a Ramsar protected wetland in South China. MARINE POLLUTION BULLETIN 2024; 209:117166. [PMID: 39442350 DOI: 10.1016/j.marpolbul.2024.117166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Ecological functions of coastal wetlands are closely linked to microbiome that is affected by anthropogenic pollution, but related systematic research is rare. This study explored microbial community and physicochemical characteristics of sediments in three habitats, mudflat, mangrove and inter-tidal shrimp ponds (gei wai), in a Ramsar using 16S amplicon sequencing. Proteobacteria was the most abundant and Vibrio was detected in all habitats. Microbial diversity in mangrove is higher than mudflat, with gei wai in between. Microbial functions predicted by PICRUSt revealed prevalence of carbohydrate and amino acid metabolism, with enrichment of nitrogen metabolism in mangrove habitat. Gene annotation identified approximately 800 intrinsic antibiotic resistance genes (iARGs) and dominant mechanism was antibiotic inactivation. Variation partitioning analysis indicated sediment characteristics together with antibiotics and heavy metals shaped microbiomes and iARGs composition in sediments. This study offers insights into variations of sediment microbial diversity, function and iARGs among different habitats in protected wetlands.
Collapse
Affiliation(s)
- Kit-Ling Lam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China; Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Wing-Yin Mo
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Yuet-Tung Tse
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Kaze King-Yip Lai
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Ping-Lung Chan
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China.
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China; Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China.
| |
Collapse
|
11
|
Du J, Wang Z, Gao X, Xing Y, Lu Z, Li D, Sanganyado E, Tian J. Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome. Int Microbiol 2024:10.1007/s10123-024-00615-6. [PMID: 39532804 DOI: 10.1007/s10123-024-00615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
It is vital that we monitor the gut microbiota of sentinel species such as spotted seals (Phoca largha) and their association with habitat microbiomes, which can provide critical data for assessing the health of marine mammals and their potential ecological influences. In this study, PacBio technology was used to sequence the full-length bacterial 16S rRNA gene from the feces of captive and wild spotted seals, as well as samples from a wild population and their habitats. Based on the pathogen identification results, the gut microbiota of wild and captive spotted seals showed similar levels of pathogen richness and abundance. In particular, the pathogen profiles in wild spotted seals were more variable, with a high risk of disease in a minority of individuals. Meanwhile, the gut microbiota of spotted seals was significantly less diverse than their habitat microbiomes. Firmicutes and Proteobacteria dominated the gut microbiota of spotted seals and their habitat microbiomes, respectively. Furthermore, network analysis revealed that the gut microbiota of spotted seals was simple and weak. The ratios of microbial turnover between spotted seal gut microbiota and their habitat microbiomes were further analyzed using SourceTracker, and the estimated values were low (< 0.1%). These results provide baseline data on pathogen profiles in spotted seals and their potential interactions with habitat microbiomes.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
12
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
13
|
Anderson KJ, Kominoski JS, Choi CJ, Stingl U. Functional effects of subsidies and stressors on benthic microbial communities along freshwater to marine gradients. Ecology 2024; 105:e4427. [PMID: 39353687 DOI: 10.1002/ecy.4427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
Leaf litter in coastal wetlands lays the foundation for carbon storage, and the creation of coastal wetland soils. As climate change alters the biogeochemical conditions and macrophyte composition of coastal wetlands, a better understanding of the interactions between microbial communities, changing chemistry, and leaf litter is required to understand the dynamics of coastal litter breakdown in changing wetlands. Coastal wetlands are dynamic systems with shifting biogeochemical conditions, with both tidal and seasonal redox fluctuations, and marine subsidies to inland habitats. Here, we investigated gene expression associated with various microbial redox pathways to understand how changing conditions are affecting the benthic microbial communities responsible for litter breakdown in coastal wetlands. We performed a reciprocal transplant of leaf litter from four distinct plant species along freshwater-to-marine gradients in the Florida Coastal Everglades, tracking changes in environmental and litter biogeochemistry, as well as benthic microbial gene expression associated with varying redox conditions, carbon degradation, and phosphorus acquisition. Early litter breakdown varied primarily by species, with highest breakdown in coastal species, regardless of the site they were at during breakdown, while microbial gene expression showed a strong seasonal relationship between sulfate cycling and salinity, and was not correlated with breakdown rates. The effect of salinity is likely a combination of direct effects, and indirect effects from associated marine subsidies. We found a positive correlation between sulfate uptake and salinity during January with higher freshwater inputs to coastal areas. However, we found a peak of dissimilatory sulfate reduction at intermediate salinity during April when freshwater inputs to coastal sites are lower. The combination of these two results suggests that sulfate acquisition is limiting to microbes when freshwater inputs are high, but that when marine influence increases and sulfate becomes more available, dissimilatory sulfate reduction becomes a key microbial process. As marine influence in coastal wetlands increases with climate change, our study suggests that sulfate dynamics will become increasingly important to microbial communities colonizing decomposing leaf litter.
Collapse
Affiliation(s)
- Kenneth J Anderson
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - John S Kominoski
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - Chang Jae Choi
- Fort Lauderdale Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Davie, Florida, USA
| | - Ulrich Stingl
- Fort Lauderdale Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Davie, Florida, USA
| |
Collapse
|
14
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
15
|
Yang J, Zhang X, Xu Z, Wang X. Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:436. [PMID: 39316241 DOI: 10.1007/s10653-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
16
|
Zhu A, Liang Z, Gao L, Xie Z. Dispersal limitation determines the ecological processes that regulate the seasonal assembly of bacterial communities in a subtropical river. Front Microbiol 2024; 15:1430073. [PMID: 39252829 PMCID: PMC11381306 DOI: 10.3389/fmicb.2024.1430073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Bacteria play a crucial role in pollutant degradation, biogeochemical cycling, and energy flow within river ecosystems. However, the underlying mechanisms governing bacterial community assembly and their response to environmental factors at seasonal scales in subtropical rivers remain poorly understood. In this study, we conducted 16S rRNA gene amplicon sequencing on water samples from the Liuxi River to investigate the composition, assembly processes, and co-occurrence relationships of bacterial communities during the wet season and dry season. The results demonstrated that seasonal differences in hydrochemistry significantly influenced the composition of bacterial communities. A more heterogeneous community structure and increased alpha diversity were observed during the dry season. Water temperature emerged as the primary driver for seasonal changes in bacterial communities. Dispersal limitation predominantly governed community assembly, however, during the dry season, its contribution increased due to decreased immigration rates. Co-occurrence network analysis reveals that mutualism played a prevailing role in shaping bacterial community structure. Compared to the wet season, the network of bacterial communities exhibited higher modularity, competition, and keystone species during the dry season, resulting in a more stable community structure. Although keystone species displayed distinct seasonal variations, Proteobacteria and Actinobacteria were consistently abundant keystone species maintaining network structure in both seasons. Our findings provide insights into how bacterial communities respond to seasonal environmental changes, uncovering underlying mechanisms governing community assembly in subtropical rivers, which are crucial for the effective management and conservation of riverine ecosystems.
Collapse
Affiliation(s)
- Aiping Zhu
- School of Geography and Tourism, Anhui Normal University, Wuhu, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zuobing Liang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Gao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenglan Xie
- School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| |
Collapse
|
17
|
Fan Y, Chen K, Dai Z, Peng J, Wang F, Liu H, Xu W, Huang Q, Yang S, Cao W. Land use/cover drive functional patterns of bacterial communities in sediments of a subtropical river, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174564. [PMID: 38972401 DOI: 10.1016/j.scitotenv.2024.174564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The bacterial community in sediment serves as an important indicator for assessing the environmental health of river ecosystems. However, the response of bacterial community structure and function in river basin sediment to different land use/cover changes has not been widely studied. To characterize changes in the structure, composition, and function of bacterial communities under different types of land use/cover, we studied the bacterial communities and physicochemical properties of the surface sediments of rivers. Surface sediment in cropland and built-up areas was moderately polluted with cadmium and had high nitrogen and phosphorus levels, which disrupted the stability of bacterial communities. Significant differences in the α-diversity of bacterial communities were observed among different types of land use/cover. Bacterial α-diversity and energy sources were greater in woodlands than in cropland and built-up areas. The functional patterns of bacterial communities were shown that phosphorus levels and abundances of pathogenic bacteria and parasites were higher in cropland than in the other land use/cover types; Urban activities have resulted in the loss of the denitrification function and the accumulation of nitrogen in built-up areas, and bacteria in forested and agricultural areas play an important role in nitrogen degradation. Differences in heavy metal and nutrient inputs driven by land use/cover result in variation in the composition, structure, and function of bacterial communities.
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Kan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Huibo Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, Fujian 361102, China
| | - Quanjia Huang
- Xiamen Environmental Monitoring Station, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
18
|
Kiki C, Yan X, Elimian EA, Jiang B, Sun Q. Deciphering the Role of Microbial Extracellular and Intracellular Organic Matter in Antibiotic Photodissipation: Molecular and Fluorescent Profiling under Natural Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11661-11674. [PMID: 38874829 DOI: 10.1021/acs.est.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study addresses existing gaps in understanding the specific involvement of dissolved organic matter (DOM) fractions in antibiotic photolysis, particularly under natural conditions and during DOM photobleaching. Employing fluorescent, chemical, and molecular analysis techniques, it explores the impact of extracellular and intracellular organic matter (EOM and IOM) on the photodissipation of multiclass antibiotics, coupled with DOM photobleaching under natural solar radiation. Key findings underscore the selective photobleaching of DOM fractions, propelled by distinct chemical profiles, influencing DOM-mediated antibiotic photolysis. Notably, lipid-like substances dominate in the IOM, while lignin-like substances prevail in the EOM, each uniquely responding to sunlight and exhibiting selective photobleaching. Sunlight primarily targets fulvic acid-like lignin components in EOM, contrasting the initial changes observed in tryptophan-like lipid substances in IOM. The lower photolability of EOM, attributed to its rich unsaturated compounds, contributes to an enhanced rate of indirect antibiotic photolysis (0.339-1.402 h-1) through reactive intermediates. Conversely, the abundance of aliphatic compounds in IOM, despite it being highly photolabile, exhibits a lower mediation of antibiotic photolysis (0.067-1.111 h-1). The triplet state excited 3DOM* plays a pivotal role in the phototransformation and toxicity decrease of antibiotics, highlighting microbial EOM's essential role as a natural aquatic photosensitizer for water self-purification. These findings enhance our understanding of DOM dynamics in aquatic systems, particularly in mitigating antibiotic risks, and introduce innovative strategies in environmental management and water treatment technologies.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- National Institute of Water, University of Abomey-Calavi, 01 BP: 526 Cotonou, Benin
| | - Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
| | - Ehiaghe A Elimian
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H, Canada
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
19
|
Jing Z, Li Q, Lu J, Ma J, Ye F, Tu S, Dong B, Liu X, Gao H. Revealing microbial community assembly patterns and succession process in the blackening process of black-odor water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124129. [PMID: 38729505 DOI: 10.1016/j.envpol.2024.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Human-imported pollutants could induce water black, changing microbial community structure and function. Employed 16S rRNA high-throughput sequencing, field-scale investigations and laboratory-scale experiments were successively conducted to reveal mechanistic insights into microbial community assembly and succession of black-odor waters (BOWs). In the field-scale investigation, livestock breeding wastewater (56.7 ± 3.2%) was the most critical microbial source. Moreover, fermentation (27.1 ± 4.4%) was found to be the dominant function. Combined with laboratory experiments, the critical environmental factors, such as total organic carbon (30-100 mg/L), ammonia nitrogen (2.5-9 mg/L), initial dissolved oxygen (2-8 mg/L) and chlorophyll a (0-90 mg/L), impacted the intensity of blackening. The differentiation of ecological niches within the microbial community played a significant role in driving the blackening speed. In laboratory-scale experiments, the microbial ecological niche determined the blackening timing and dominations of the stochastic processes in the microbial assembly process (88 - 51%). The three stages, including the anaerobic degradation stage, blackening stage and slow recovery stage, were proposed to understand the assembly of the microbial communities. These findings enhance our understanding of microorganisms in BOWs and provide valuable insights for detecting and managing heavily organic polluted waters.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jinxia Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jiwei Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
20
|
Niroula V, Pagsuyoin SA. Stability and Degradation of Opioids in River Water. ACS OMEGA 2024; 9:26355-26362. [PMID: 38911818 PMCID: PMC11191125 DOI: 10.1021/acsomega.4c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
As the level of consumption of opioids continues to rise globally, there is increasing concern over the potential impacts of continuous opioid discharges into aquatic ecosystems. Opioids are psychoactive compounds that are not completely removed during wastewater treatment, and little is known about their stability and fate in the environment. In the present study, we evaluated the stability of four highly used opioids, buprenorphine, codeine, fentanyl, and tramadol, in river water via batch degradation experiments. The opioids were spiked at environmentally relevant concentrations into 150 mL of river microcosms designed to distinguish among hydrolysis, abiotic degradation, biodegradation, and sorption. All opioids exhibited relatively high stability in river water, with removal rates of only 15% (tramadol) to 26% (buprenorphine) after 6 days. Biodegradation was the most important attenuation pathway for all four opioids, with first-order biodegradation constants ranging from 0.011 d-1 (tramadol) to 0.018 d-1(buprenorphine). Overall, degradation rates were 1-4 orders of magnitude lower compared to the reported rates for wastewater systems. These results offer insights into the stability of opioids in freshwater systems and raise questions about the potential effects of their pseudopresence in surface waters on aquatic organisms.
Collapse
Affiliation(s)
- Varsha Niroula
- Department of Civil and Environmental
Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Sheree A. Pagsuyoin
- Department of Civil and Environmental
Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
21
|
Zhang T, Wang W, Leng Y, Huang Y, Xiong W, Chang F. Bacterial Diversity and Vertical Distribution Patterns in Sandy Sediments: A Study on the Bacterial Community Structure Based on Environmental Factors in Tributaries of the Yangtze River. Microorganisms 2024; 12:1178. [PMID: 38930560 PMCID: PMC11205631 DOI: 10.3390/microorganisms12061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial diversity and its distribution characteristics in sediments are critical to understanding and revealing biogeochemical cycles in sediments. However, little is known about the relationship between biogeochemistry processes and vertical spatial distribution of bacterial communities in sandy sediments. In this study, we used fluorescence quantitative PCR, high-throughput sequencing technology and statistical analysis to explore the vertical distribution pattern of bacterial community diversity and its influencing factors in sandy sediments of the Yangtze River Basin. The aim is to enrich the understanding of the ecological characteristics and functions of bacteria in river ecosystems. The results showed that both sediment bacterial abundance and diversity showed a gradual decrease from surface to bottom in the vertical distribution. The main environmental factors that influenced the bacterial distribution pattern were pore water dissolved oxygen (DO), total nitrogen (TN) concentration and sediment nitrogen (N) content. The dominant bacterial species, Massilia and Flavobacterium, are suitable for growth and reproduction in high oxygen and nutrient-richer environments, while Limnobacter prefers low oxygen or anaerobic conditions. The vertical distribution pattern of bacteria and its influencing factors in river sandy sediment found in this study differ from the results in mud sediment, which may be related to the larger granular gap between sandy sediment and the lower content of organic matter. The findings of this study further our understanding of the distribution patterns and ecological preferences of microbial communities in river sediments, providing insights into how these communities may adapt to varying environmental conditions.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; (T.Z.); (Y.L.); (Y.H.); (W.X.)
- Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China;
| | - Weibo Wang
- Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China;
| | - Yifei Leng
- Department of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; (T.Z.); (Y.L.); (Y.H.); (W.X.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Yu Huang
- Department of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; (T.Z.); (Y.L.); (Y.H.); (W.X.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Wen Xiong
- Department of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; (T.Z.); (Y.L.); (Y.H.); (W.X.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Fengyi Chang
- Department of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; (T.Z.); (Y.L.); (Y.H.); (W.X.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
22
|
Starevich VA, Madueño L, Festa S, Agnello AC, Cecotti M, Layún MF, Oneto ME, Del Panno MT, Morelli IS. Microbial community structure and metabolic profile of anthropized freshwater tributary channels from La Plata River, Argentina, to develop sustainable remediation strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:566. [PMID: 38775858 DOI: 10.1007/s10661-024-12713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024]
Abstract
Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.
Collapse
Affiliation(s)
| | - L Madueño
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina.
| | - S Festa
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | - A C Agnello
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | | | - M F Layún
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | | | | | - I S Morelli
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
- CIC-PBA, Bs. As., La Plata, Argentina
| |
Collapse
|
23
|
Bagagnan S, Guérin-Rechdaoui S, Rocher V, Alphonse V, Moilleron R, Jusselme MD. Spatial and temporal characteristics of microbial communities in the Seine river in the greater Paris area under anthropogenic perturbation. Heliyon 2024; 10:e30614. [PMID: 38726162 PMCID: PMC11079399 DOI: 10.1016/j.heliyon.2024.e30614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Microorganisms play an important role in maintaining the proper functioning of river ecosystems and are promising candidates for environmental indicators. They are also highly sensitive to environmental changes. It is necessary to have basic knowledge about them in order to know the ecological status of river ecosystem. To our knowglege, there is very little information on the status of microorganisms in surface water of the Seine River, although the Seine River is one of the rivers that suffers the greatest impact from humain activities in the world due to a weak dilution effect. It is therefore necessary to carry out a microbial analysis to assess the ecological status of the Seine River and to use it as a reference to compare with the future state when, for instance, new disinfection technologies of wastewater are implemented. To this end, the microbial communities of the Seine surface water were analyzed, taking into account the spatial effect, including the tributaries, and from upstream to downstream of the Paris conurbation and the temporal aspect, with a monitoring over 4 seasons. The results showed that the microbiome of the water is highly diverse and involved a variety of functions. The main phyla making up the surface water microbiome were Proteobacteria, Actinobacteriota, Firmicutes, Bacteroidota, while other minor phyla were Deinococcota, Patescibacteria, Gemmatimonadota, Cyanobacteria, Bdellovibrionota, Acidobacteriota, Campilobacterota, Myxococcota, and Desulfobacterota. Overall, the microbial community did not change spatially (with the exception of some minor differences between upstream and downstream), but did vary seasonally. The main factors influencing this microbiome were temperature, nitrate and orthophosphate concentrations. The main predicted functions were related to cell metabolism, in particular carbohydrates, amino acids, lipids, energy, vitamins and cofactors, and cell mobility. The microbial compositions showed a strong balance between microbial groups and were involved in the degradation of recalcitrant compounds.
Collapse
Affiliation(s)
| | | | - Vincent Rocher
- SIAAP, Direction de l’Innovation, F-92700, Colombes, France
| | | | | | | |
Collapse
|
24
|
Cohen Y, Johnke J, Abed-Rabbo A, Pasternak Z, Chatzinotas A, Jurkevitch E. Unbalanced predatory communities and a lack of microbial degraders characterize the microbiota of a highly sewage-polluted Eastern-Mediterranean stream. FEMS Microbiol Ecol 2024; 100:fiae069. [PMID: 38684474 PMCID: PMC11099661 DOI: 10.1093/femsec/fiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Wastewater pollution of water resources takes a heavy toll on humans and on the environment. In highly polluted water bodies, self-purification is impaired, as the capacity of the riverine microbes to regenerate the ecosystem is overwhelmed. To date, information on the composition, dynamics and functions of the microbial communities in highly sewage-impacted rivers is limited, in particular in arid and semi-arid environments. In this year-long study of the highly sewage-impacted Al-Nar/Kidron stream in the Barr al-Khalil/Judean Desert east of Jerusalem, we show, using 16S and 18S rRNA gene-based community analysis and targeted qPCR, that both the bacterial and micro-eukaryotic communities, while abundant, exhibited low stability and diversity. Hydrolyzers of organics compounds, as well as nitrogen and phosphorus recyclers were lacking, pointing at reduced potential for regeneration. Furthermore, facultative bacterial predators were almost absent, and the obligate predators Bdellovibrio and like organisms were found at very low abundance. Finally, the micro-eukaryotic predatory community differed from those of other freshwater environments. The lack of essential biochemical functions may explain the stream's inability to self-purify, while the very low levels of bacterial predators and the disturbed assemblages of micro-eukaryote predators present in Al-Nar/Kidron may contribute to community instability and disfunction.
Collapse
Affiliation(s)
- Yossi Cohen
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Presently at DayTwo, Rehovot, Israel
| | - Julia Johnke
- Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, Kiel, Germany
| | | | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Presently at the Division of Identification and Forensic Science, Israel Police, National Headquarters
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstrasse 33, 04103 Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
25
|
Wang A, Zhang S, Liang Z, Zeng Z, Ma Y, Zhang Z, Yang Y, He Z, Yu G, Liang Y. Response of microbial communities to exogenous nitrate nitrogen input in black and odorous sediment. ENVIRONMENTAL RESEARCH 2024; 248:118137. [PMID: 38295972 DOI: 10.1016/j.envres.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Since nitrate nitrogen (NO3--N) input has proved an effective approach for the treatment of black and odorous river waterbody, it was controversial whether the total nitrogen concentration standard should be raised when the effluent from the sewage treatment plant is discharged into the polluted river. To reveal the effect of exogenous nitrate (NO3--N) on black odorous waterbody, sediments with different features from contaminated rivers were collected, and the changes of physical and chemical characteristics and microbial community structure in sediments before and after the addition of exogenous NO3--N were investigated. The results showed that after the input of NO3--N, reducing substances such as acid volatile sulfide (AVS) in the sediment decreased by 80 % on average, ferrous (Fe2+) decreased by 50 %, yet the changing trend of ammonia nitrogen (NH4+-N) in some sediment samples increased while others decreased. High-throughput sequencing results showed that the abundance of Thiobacillus at most sites increased significantly, becoming the dominant genus in the sediment, and the abundance of functional genes in the metabolome increased, such as soxA, soxX, soxY, soxZ. Network analysis showed that sediment microorganisms evolved from a single sulfur oxidation ecological function to diverse ecological functions, such as nitrogen cycle nirB, nirD, nirK, nosZ, and aerobic decomposition. In summary, inputting an appropriate amount of exogenous NO3--N is beneficial for restoring and maintaining the oxidation states of river sediment ecosystems.
Collapse
Affiliation(s)
- Ao Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengrui Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ziyang Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Zeng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingshi Ma
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiang Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zihao He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
26
|
Wang H, Wang Z, Yu J, Ma C, Liu L, Xu D, Zhang J. The function and keystone microbiota in typical habitats under the influence of anthropogenic activities in Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2024; 247:118196. [PMID: 38253195 DOI: 10.1016/j.envres.2024.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Microbe is an essential driver in regulating the biochemical cycles of carbon, nitrogen, and sulfur. In freshwater lake, microbial communities and functions are influenced by multiple factors, especially anthropogenic activities. Baiyangdian Lake consisted of various habitats, and was frequently interfered with human activities. In this study, 16 S rRNA sequencing and metagenomic sequencing were performed to characterize the microbial communities, determine keystone taxa and reveal dominated metabolic functions in typical habitats in Baiyangdian Lake. The results showed that the diversity of microbial community was significantly higher in sediment compared with corresponding water sample. Microbial community showed strong spatial heterogeneity in sediment, and temporal heterogeneity in water. As for different habitats, significantly higher alpha diversity was observed in ecotone, where the interference of human activities was relatively weak. The shared OTUs were distinguished from the keystone taxa, which indicated the uniqueness of microbiota in different ecological habitat. Moreover, the interactions of microbial in ecological restoration area (abandoned fish pond) were relatively simple, suggesting that this ecosystem was relatively fragile compared with others. Based on the metagenomic sequencing, we recognized that the canal, open water, and abandoned fish pond were beneficial for methanogenic and the ecotone might be a hot zone for the oxidation of methane. Notably, most of the microbes that participated in these predominant metabolisms were unclassified, which indicated the hug potential for exploring functional microorganisms in Baiyangdian Lake. This study provided a comprehensive understanding of the ecology characteristics of microbiota in habitats undergoing various human interference in Baiyangdian Lake.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Zhixin Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Dong Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
27
|
Yang S, Zhou H, Pang Z, Wang Y, Chao J. Microbial community structure and diversity attached to the periphyton in different urban aquatic habitats. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:445. [PMID: 38607460 DOI: 10.1007/s10661-024-12599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content (NO 2 - - N ,NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.
Collapse
Affiliation(s)
- Songnan Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Huiping Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Zhongzheng Pang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yiqun Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jianying Chao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China.
| |
Collapse
|
28
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
29
|
Patel V, Patil K, Patel D, Kikani B, Madamwar D, Desai C. Distribution of bacterial community structures and spread of antibiotic resistome at industrially polluted sites of Mini River, Vadodara, Gujarat, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:208. [PMID: 38279971 DOI: 10.1007/s10661-024-12380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The influence of anthropogenic pollution on the distribution of bacterial diversity, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) was mapped at various geo-tagged sites of Mini River, Vadodara, Gujarat, India. The high-throughput 16S rRNA gene amplicon sequencing analysis revealed a higher relative abundance of Planctomycetota at the polluted sites, compared to the pristine site. Moreover, the relative abundance of Actinobacteriota increased, whereas Chloroflexi decreased in the water samples of polluted sites than the pristine site. The annotation of functional genes in the metagenome samples of Mini River sites indicated the presence of genes involved in the defence mechanisms against bacitracin, aminoglycosides, cephalosporins, chloramphenicol, streptogramin, streptomycin, methicillin, and colicin. The analysis of antibiotic resistome at the polluted sites of Mini River revealed the abundance of sulfonamide, beta-lactam, and aminoglycoside resistance. The presence of pathogens and ARB was significantly higher in water and sediment samples of polluted sites compared to the pristine site. The highest resistance of bacterial populations in the Mini River was recorded against sulfonamide (≥ 7.943 × 103 CFU/mL) and ampicillin (≥ 8.128 × 103 CFU/mL). The real-time PCR-based quantification of ARGs revealed the highest abundance of sulfonamide resistance genes sul1 and sul2 at the polluted sites of the Mini River. Additionally, the antimicrobial resistance genes aac(6')-Ib-Cr and blaTEM were also found abundantly at polluted sites of the Mini River. The findings provide insights into how anthropogenic pollution drives the ARG and ARB distribution in the riverine ecosystem, which may help with the development of antimicrobial resistance mitigation strategies.
Collapse
Affiliation(s)
- Vandan Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Kishor Patil
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Dishant Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Bhavtosh Kikani
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India.
| | - Chirayu Desai
- Department of Environmental Biotechnology, Gujarat Biotechnology University (GBU), Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
30
|
Batantou Mabandza D, Colletin E, Dagot C, Quétel I, Breurec S, Guyomard-Rabenirina S. Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes? Antibiotics (Basel) 2024; 13:87. [PMID: 38247646 PMCID: PMC10812525 DOI: 10.3390/antibiotics13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Waterborne faecal contamination is a major public health concern. The main objectives of this study were to investigate faecal contamination and Escherichia coli (E. coli) antibiotic resistance in recreational fresh water from Guadeloupe and to characterise the microbiome and resistome composition in biofilms from submerged rocks. Significant faecal contamination was observed at 14 freshwater sites. E. coli predominated (62%), followed by Enterobacter cloacae (11%) and Acinetobacter spp. (11%). Of 152 E. coli isolated, none produced extended-spectrum beta-lactamases (ESBLs), but 7% showed resistance to streptomycin and 4% to tetracycline. Biofilm resistome analysis revealed clinically significant antibiotic-resistance genes (ARGs), including those coding for resistance to sulfonamides (sul1), carbapenems (blaKPC), and third-generation cephalosporins (blaCTX-M). Mobile genetic elements (MGEs) (intI1, intI2, intI3) linked to resistance to aminoglycosides, beta-lactams, tetracycline, as well as heavy metal resistance determinants (copA, cusF, czcA, merA) conferring resistance to copper, silver, cadmium, and mercury were also detected. Diverse bacterial phyla were found in biofilm samples, of which Proteobacteria, Bacteroidetes, Planctonomycetes, and Cyanobacteria were predominant. Despite the frequent presence of E. coli exceeding regulatory standards, the low levels of antibiotic-resistant bacteria in freshwater and of ARGs and MGEs in associated biofilms suggest limited antibiotic resistance in Guadeloupean recreational waters.
Collapse
Affiliation(s)
- Degrâce Batantou Mabandza
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| | - Edlyne Colletin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| | - Christophe Dagot
- University of Limoges, INSERM, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France
| | - Isaure Quétel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97110 Pointe-à-Pitre, France
- INSERM, Centre for Clinical Investigation 1424, 97110 Pointe-à-Pitre, France
- Department of Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34394 Montpellier, France
- Laboratory of Clinical Microbiology, University Hospital Centre of Guadeloupe, 971110 Pointe-à-Pitre, France
| | - Stéphanie Guyomard-Rabenirina
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97110 Pointe-à-Pitre, France
| |
Collapse
|
31
|
Pozzi ACM, Petit S, Marjolet L, Youenou B, Lagouy M, Namour P, Schmitt L, Navratil O, Breil P, Branger F, Cournoyer B. Ecological assessment of combined sewer overflow management practices through the analysis of benthic and hyporheic sediment bacterial assemblages from an intermittent stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167854. [PMID: 37848137 DOI: 10.1016/j.scitotenv.2023.167854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Combined sewer overflows (CSO) are used to avoid overloading unitary sewers and wastewater treatment plants. Following the European Council Directive on Urban Wastewater Treatment (UWT), CSO discharges are regulated using guidelines that aim to reduce their ecological impact on aquatic systems. A model CSO, which is part of a long-term experimental field observatory, was modified according to these guidelines and used to evaluate the benefits of compliance through analyses of the bacteriological and chemical states of the receiving intermittent stream. The benthic and hyporheic sediments of similar geomorphic units located upstream and downstream of a monitored CSO outlet were compared before and after changes in CSO regimes. Hydrological, pollutants (Metal Trace Elements, MTE; Polycyclic Aromatic Hydrocarbons, PAH; fecal indicator bacteria, FIB), and tpm-based DNA meta-barcoding datasets resolving the occurrences of >700 bacterial species of nearly 200 genera were studied. The frequency of overflow was confirmed to have significantly decreased following the application of the UWT guidelines. Overflows became almost limited to periods of heavy summer thunderstorm events. These changes were not associated with a significant decrease in most of the surveyed MTE, PAH, and FIB among stream sediments, except for chromium. Ecological benefits were highlighted by significant changes in tpm-based meta-barcoding community patterns between the UWT compliant sampling period and the previous one. Bacterial community change point analyses confirmed this segregation in the meta-barcoding dataset according to hydrological indices such as the number of CSO events and discharged volumes. A significant decline in CSO bacterial taxa in the benthic and hyporheic sediments was observed. Thirty-four CSO indicator species were identified, including Aeromonas caviae, Aeromonas media, and Pseudomonas oleovorans. These indicators, often documented as opportunistic pathogens (to humans, animals or plants) and/or pollutant degraders, were proposed as ecological sentinels for the assessment of CSO impacts.
Collapse
Affiliation(s)
- Adrien C M Pozzi
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France.
| | - Stéphanie Petit
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Laurence Marjolet
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Benjamin Youenou
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Mickaël Lagouy
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Philippe Namour
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Laurent Schmitt
- Université de Strasbourg, UMR 7362 Unistra-CNRS-ENGEES, Faculté de Géographie et d'Aménagement, 67000 Strasbourg, France
| | - Oldrich Navratil
- UMR 5600 Environnement Ville Société, Université Lyon 2, CNRS, Lyon, France
| | - Pascal Breil
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Flora Branger
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Benoit Cournoyer
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France.
| |
Collapse
|
32
|
Hu S, Zheng M, Mu Y, Liu A, Jiang Y, Li Y, Ning K, Wang L. Occurrence of polyhalogenated carbazoles and the combined effects with heavy metals on variation in bacterial communities in estuarine sediments. MARINE POLLUTION BULLETIN 2024; 198:115873. [PMID: 38056295 DOI: 10.1016/j.marpolbul.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Carbazole (CZ) and eight polyhalogenated carbazoles (PHCZs) were quantified by GC-MS in sediments of 12 estuaries, the interface linking large industrial and living areas to the Bohai Sea, China. These pollutants, heavy metals, and environmental factors caused integrated exposure to sediment bacteria. Four PHCZ congeners were detectable, with ΣPHCZs ranging from 0.56 to 15.94 ng/g dw. The dominant congeners were 3,6-dichlorocarbazole (36-CCZ) and 3-chlorocarbazole (3-CCZ), with a mean contribution of 72.6 % and 20.2 %. Significant positive correlations were found between 36-CCZ and both total organic carbon and heavy metals. Redundancy analysis of microbial variation implicated no impacts from PHCZs. Correlation analysis demonstrated an increase in abundance of Rhodocyclaceae but a decrease in Bacteroides-acidifaciens-JCM-10556 with presence of PHCZs, suggesting that these bacteria can be used as potential contamination indicators. The combined exposure of heavy metals, nutrients, and PHCZs may also increase toxicity and biological availability, adversely affecting the ecosystem and human health.
Collapse
Affiliation(s)
- Shanmin Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yingdi Mu
- Jinan Food and Drug Inspection and Testing Center, Jinan 250101, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuqing Jiang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ke Ning
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ling Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
33
|
Liang J, Ding J, Zhu Z, Gao X, Li S, Li X, Yan M, Zhou Q, Tang N, Lu L, Li X. Decoupling the heterogeneity of sediment microbial communities along the urbanization gradients: A Bayesian-based approach. ENVIRONMENTAL RESEARCH 2023; 238:117255. [PMID: 37775011 DOI: 10.1016/j.envres.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Comprehending the response of microbial communities in rivers along urbanization gradients to hydrologic characteristics and pollution sources is critical for effective watershed management. However, the effects of complex factors on riverine microbial communities remain poorly understood. Thus, we established a bacteria-based index of biotic integrity (Ba-IBI) to evaluate the microbial community heterogeneity of rivers along an urbanization gradient. To examine the response of Ba-IBI to multiple stressors, we employed a Bayesian network based on structural equation modeling (SEM-BN) and revealed the key control factors influencing Ba-IBI at different levels of urbanization. Our findings highlight that waterborne nutrients have the most significant direct impact on Ba-IBI (r = -0.563), with a particular emphasis on ammonia nitrogen, which emerged as the primary driver of microbial community heterogeneity in the Liuyang River basin. In addition, our study confirmed the substantial adverse effects of urbanization on river ecology, as urban land use had the greatest indirect effect on Ba-IBI (r = -0.460). Specifically, the discharge load from wastewater treatment plants (WWTP) was found to significantly negatively affect the Ba-IBI of the entire watershed. In the low urbanized watersheds, rice cultivation (RC) and concentrated animal feeding operations (CAFO) are key control factors, and an increase in their emissions can lead to a sharp decrease in Ba-IBI. In moderately urbanized watersheds, the Ba-IBI tended to decrease as the level of RC emissions increased, while in those with moderate RC emissions, an increase in point source emissions mitigated the negative impact of RC on Ba-IBI. In highly urbanized watersheds, Ba-IBI was not sensitive to changes in stressors. Overall, our study presents a novel approach by integrating Ba-IBI with multi-scenario analysis tools to assess the effects of multiple stressors on microbial communities in river sediments, providing valuable insights for more refined environmental decision-making.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China.
| | - Junjie Ding
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Min Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Qinxue Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| |
Collapse
|
34
|
Chen X, Xu G, Xiong P, Peng J, Fang K, Wan S, Wang B, Gu F, Li J, Xiong H. Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123694-123709. [PMID: 37993647 DOI: 10.1007/s11356-023-31042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there has been a lack of research on the seasonal variation of sediment microorganisms in the sediments of small river basins in typical semi-arid region. In this study, high-throughput DNA sequencing was used to investigate the fungal community and its influencing factors in the sediment of the Dali River in the dry and wet seasons. The results showed that there were obvious seasonal differences in fungal alpha diversity. The diversity and richness of fungi in the dry season were greater than that in the wet season, but the evenness of fungi in the dry season was lower than that in the wet season. In addition, Ascomycota and Basidiomycota were the most important phyla in the Dali River fungal community, but their distributions showed clear seasonal differences. In the dry season, the relative abundance of Ascomycota and Basidiomycota were 12.34-46.42% and 17.59-27.20%, respectively. In the wet season, the relative abundances of these two phyla were 24.33-36.56% and 5.75-12.26%, respectively. PICRUSt2 was used to predict the metabolic function of fungal community in the sediment, and it was found that at the first level, the proportion of biosynthesis in the dry season was higher than that in the wet season. The ecological network structure showed that the fungal community in the wet season was more complex and stable than that in the dry season. The characteristic fungi in the dry season sediment were chytrid fungi in the family Rhizophydiaceae and the order Rhizophydiales, whereas those in the wet season sediment were in the orders Eurotiales and Saccharomycetales. Canonical correspondence analysis (CCA) showed that the physicochemical properties of water and sediment together explained a greater proportion of the dry-season fungal community changes than of the wet-season changes. In the dry season, temperature and ammonia nitrogen in the water were the main factors affecting the change of fungal community, whereas in the wet season, total nitrogen concentration of the water, electrical conductivity, total organic carbon and available phosphorus of the sediment, pH, and temperature were the main factors affecting the changes in fungal community composition. The results of this study enhanced our understanding of microbial communities in semi-arid river ecosystems, and highlight the importance of the management and protection in river ecosystems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Guoce Xu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Jianbo Peng
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Kang Fang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Shun Wan
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Bin Wang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Fengyou Gu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Jing Li
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Haijing Xiong
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
35
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Wan T, Gao K. Effects of water environmental factors and antibiotics on bacterial community in urban landscape lakes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106740. [PMID: 37925787 DOI: 10.1016/j.aquatox.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The presence of antibiotics can affect the natural microbial community and exert selective pressure on the environment's microorganisms. This study focused on three types of urban landscape lakes in Xi'an that were closely related to human activities. By combining basic water quality indicators, antibiotic occurrence status, bacterial communities and their potential metabolic functions, Spearman correlation coefficient and redundancy analysis were used to explore the relationship between them, and further explore the impact mechanism of environmental factors and antibiotics on bacterial community structure. The results showed that ofloxacin, erythromycin, and roxithromycin were the main types of antibiotics in the three landscape lakes, with low ecological risks, and there was a clear clustering of antibiotic occurrence. Proteobacteria was the most abundant bacterial phylum, and each lake had its own unique dominant bacteria, which indicates that they are influenced by varying water sources, pollution, and other nearby environments. Statistical analysis showed that pH and nitrogen nutrients were the most critical environmental factors affecting bacterial communities (P<0.01), while tetracyclines and lincomycins were the antibiotics that had a significant impact on bacterial communities (P<0.05). Antibiotics mainly promote defense- and signal transduction-related functions, and inhibit the metabolic activity of bacterial communities. However, the impact of antibiotics on bacterial diversity, community structure, and potential metabolic function in the three urban lakes was less than that of environmental factors. These results help to clarify the mechanism and degree of impact of different interference factors (environmental factors, conventional pollutants, and antibiotics) on bacterial communities in the water environment and are important for the management of urban landscape lake water environments.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Tian Wan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Kangyi Gao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
36
|
Choix FJ, Palacios OA, Nevarez-Moorillón GV. Traditional and new proposals for environmental microbial indicators-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1521. [PMID: 37995003 DOI: 10.1007/s10661-023-12150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The continuous increment in world population coupled with the greatest natural resource consumption and waste generation has an enormous impact on the environment. To date, using biological indicators (bioindicators) to evaluate the biological quality of natural environments is very common. Nonetheless, selecting those suitable for each ecosystem or contaminant is one of the most important issues for environmental sciences. Bacteria and helminths are mainly related to fecal contamination, while antibiotic-resistant bacteria, fungi, viruses, and microalgae are organisms used to determine deteriorated ecosystems by diverse contaminants. Nowadays, each bioindicator is used as a specific agent of different contaminant types, but detecting and quantifying these bioindicator microorganisms can be performed from simple microscopy and culture methods up to a complex procedure based on omic sciences. Developing new techniques based on the metabolism and physiological responses of traditional bioindicators is shown in a fast environmental sensitivity analysis. Therefore, the present review focuses on analyzing different bioindicators to facilitate developing suitable monitoring environmental systems according to different pollutant agents. The traditional and new methods proposed to detect and quantify different bioindicators are also discussed. Their vital role is considered in implementing efficient ecosystem bioprospection, restoration, and conservation strategies directed to natural resource management.
Collapse
Affiliation(s)
- Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
| | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | | |
Collapse
|
37
|
Hu H, Hao M, Wang H, Hao H, Lu Z, Shi B. Occurrence of metals, phthalate esters, and perfluoroalkyl substances in cellar water and their relationship with bacterial community in rural areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165876. [PMID: 37517737 DOI: 10.1016/j.scitotenv.2023.165876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Water cellars are traditional rainwater harvesting facilities that have been widely used in rural areas of northwest China. However, there are few reports about the water quality and health risk caused by the cellar water, especially phthalate esters (PAEs) and perfluoroalkyl substances (PFASs). This study investigated and assessed the health risks caused by the metals, PAEs, PFASs and bacterial communities in cellar water. The results showed that the turbidity and total number of bacterial colonies ranged from 4.7 to 58.5 NTU and 5-557 CFU/mL, respectively. The turbidity and total number of bacterial colonies were the main water quality problems. Due to high concentration of Tl (0.005-0.171 μg/L), the samples reached a high level of metal pollution. PAEs showed no non-carcinogenic and carcinogenic risk. The perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) were the main components of PFASs. PFOA and PFOS reached a moderate risk level in many cellar water samples. Moreover, Tl, Pb, As, PFBA and PFBS could change the bacterial community composition and induce the enrichment of bacterial functions related to human diseases. Besides these parameters, dissolved oxygen (DO) also affected the bacterial functions related to human diseases. Therefore, more attention should be paid to turbidity, DO, Tl, Pb, As, PFOA, PFOS, PFBA and PFBS in the cellar water. These results are meaningful for the water quality guarantee and health protection in rural areas of China.
Collapse
Affiliation(s)
- Haotian Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingming Hao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Haotian Hao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhili Lu
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Liu B, Tian Z, Xie P, Guo F, Zhang W, Zhang J, Wu J, Zhu X, Song Z, Hu H, Zhu Y. Temporal and spatial dynamic changes of planktonic bacteria community structure in Li River, China: a seasonal survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111244-111255. [PMID: 37814045 DOI: 10.1007/s11356-023-30166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A combined temporal and spatial research approach helps us to evaluate the ecological status of a river scientifically and comprehensively. To understand the response mechanisms of bacteria in the Li River to different environments, we conducted a 1-year study (2020-2021) and collected water samples from 18 sections of the river in October, January, April, and August. 16S sequencing was used to study the composition and structure of bacterial communities in Li River at different temporal and spatial scales. The results showed that NO3--N, TP, T, pH, and DO were significantly different on spatial and temporal scales. Alpha diversity of planktonic bacteria in Li River fluctuated significantly with the season, reaching its highest in summer. Proteobacteria remained the most dominant phylum in all seasons, but the differential microorganisms varied between seasons. Although the abundance of metabolic functions of planktonic bacteria did not show significant differences between seasons, we found that DO, TP, T, and COD were the key environmental factors affecting bacterial metabolism. In addition, the co-occurrence network analysis showed that the autumn network had a higher number of nodes and edges and exhibited a high degree of complexity, while the summer network had the highest degree of modularity and exhibited greater stability. These results deepen our knowledge of the response mechanisms of river microorganisms to temporal and spatial changes and provide a scientific reference for the study of river ecosystems.
Collapse
Affiliation(s)
- Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Zeyuan Tian
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Penghao Xie
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wenjun Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junxia Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhongxian Song
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yichun Zhu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
39
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Zhai H, Niu L. Temporal and Spatial Variation Characteristics and Influencing Factors of Bacterial Community in Urban Landscape Lakes. MICROBIAL ECOLOGY 2023; 86:2424-2435. [PMID: 37272971 DOI: 10.1007/s00248-023-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Urban landscape lakes are closely related to human activity, but there are limited studies on their bacterial community characteristics and risks to human health. In this study, four different types of urban landscape lakes in Xi'an were selected, and the bacterial community structures in different seasons were analyzed by Illumina Nova high-throughput sequencing technology. Seasonal variations in bacterial communities were analyzed by linear discriminant analysis, STAMP difference analysis, and nonmetric multidimensional scaling. Redundancy analysis was used to investigate the influencing factors. Furthermore, the metabolic functions of bacterial communities were predicted by Tax4Fun. There were clear seasonal differences in the α-diversity of bacteria, with bacterial diversity being higher in winter than in summer in the four urban landscape lakes, and the diversity of different water sources was different; the distributions of Proteobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia had significant seasonal differences; and the dominant bacteria at the genus level had obvious temporal and spatial differences. Furthermore, a variety of environmental factors had an impact on bacterial communities, and temperature, DO, and nitrogen were the primary factors affecting the seasonal variation in bacteria. There are also significant seasonal differences in the metabolic functions of bacterial communities. These results are helpful for understanding the current status of bacteria in the aquatic environments of such urban landscape lakes.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Hongqin Zhai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Li Niu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
40
|
Alegría-Gómez J, Castañón-González JH, Hernández-García JA, González-Terreros E, Velázquez-Ríos IO, Ruíz-Valdiviezo VM. Changes in the abundance and diversity of bacterial and archaeal communities at different depths in a eutrophic freshwater lake in southwestern Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98362-98376. [PMID: 37606782 DOI: 10.1007/s11356-023-29380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Bacteria and archaea play a fundamental role in the biogeochemical cycles of organic matter, pollutants, and nutrients to maintain the trophic state of aquatic ecosystems. However, very little is known about the composition patterns of microbial communities in vertical distribution (water column) in freshwater lakes and their relationship with the physicochemical properties of water. "La Encantada" lake in the Lagunas de Montebello National Park (LMNP) is a site of interest due to the anthropogenic impact received and the little information about it. In this study, 3 sites were evaluated; samples were collected using 0-15 m deep water columns and analyzed using Illumina MiSeq sequencing technology based on the 16S rRNA gene. The physical parameters of pH, temperature, dissolved oxygen, electrolytic conductivity, and PO-4 were determined. The results revealed clear differences in the microbial composition of the water throughout the column; the most abundant phyla in bacterial communities were Proteobacteria (23.2%), Cyanobacteria (17.3%), and Bacteroidetes (17.2%), and for archaea were Crenarchaeota (35.9%) and Euryarchaeota (33.2%). PICRUSt metabolic inference analysis revealed that the main functional genes were related to cellular processes and biodegradation of xenobiotics, indicating an increasing trend of contaminants and residual discharges that may act as a precursor to alter microbial communities and stability of the lakes. At depths of 10 and 15 m, the microbial diversity was greater; likewise, the correlation between the physicochemical parameters and the microbial communities at the genus level showed that Chlorobaculum, Desulfomonile, and Candidatus Xiphinematobacter were favored by an increase in dissolved phosphates and by the decrease in pH and temperature. These results highlight that the microbial communities exhibit variation in their composition due to the effect of depth and physicochemical parameters, which could play a role as biological factors in the trophic states of a lake.
Collapse
Affiliation(s)
- Josué Alegría-Gómez
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Juan Alfredo Hernández-García
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, IPN, Mexico
| | - Elizabeth González-Terreros
- Laboratorio de Instrumentación, Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez, Oaxaca, Mexico
| | - Irving Oswaldo Velázquez-Ríos
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico.
| |
Collapse
|
41
|
Pavić D, Grbin D, Blagajac A, Ćurko J, Fiket Ž, Bielen A. Impact of nutrients and trace elements on freshwater microbial communities in Croatia: identifying bacterial bioindicator taxa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82601-82612. [PMID: 37328727 DOI: 10.1007/s11356-023-28179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Since aquatic microbial communities promptly respond to environmental changes, it is now evident that they can complement traditional taxa such as fish, macroinvertebrates and algae as bioindicators of water quality. The aim of this study was to correlate the physico-chemical parameters of water with the microbial community structure and the occurrence of putative bioindicator taxa. Thirty-five water samples were collected throughout Croatia and their physico-chemical parameters, including the concentration of trace elements using the high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and the composition of the microbial communities by high-throughput sequencing of the 16S rRNA marker gene, were analysed in parallel. Partial least squares regression (PLS-R) modelling revealed that a number of microbial taxa were positively correlated with some of the water parameters. For example, some taxa from the phylum Proteobacteria were positively correlated with the ion content of the water (e.g. Erythrobacter, Rhodobacteraceae, Alteromonadaceae), while some Firmicutes taxa, such as the well-known faecal indicators Enterococcus and Clostridium, were correlated with nutrient content (ammonium and total phosphorus). Among the trace elements, uranium was positively correlated with a highest number of microbial taxa. The results obtained will aid in development of protocols for eDNA-based biological assessment of water quality.
Collapse
Affiliation(s)
- Dora Pavić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dorotea Grbin
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Amalija Blagajac
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Željka Fiket
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
42
|
Wang X, Wang X, Wu F, Zhang J, Ai S, Liu Z. Microbial community composition and degradation potential of petroleum-contaminated sites under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131814. [PMID: 37307728 DOI: 10.1016/j.jhazmat.2023.131814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Total petroleum hydrocarbons (n-alkanes), semi-volatile organic compounds, and heavy metals pose major ecological risks at petrochemical-contaminated sites. The efficiency of natural remediation in situ is often unsatisfactory, particularly under heavy metal pollution stress. This study aimed to verify the hypothesis that after long-term contamination and restoration, microbial communities in situ exhibit significantly different biodegradation efficiencies under different concentrations of heavy metals. Moreover, they determine the appropriate microbial community to restore the contaminated soil. Therefore, we investigated the heavy metals in petroleum-contaminated soils and observed that heavy metals effects on distinct ecological clusters varied significantly. Finally, alterations in the native microbial community degradation ability were demonstrated through the occurrence of petroleum pollutant degradation function genes in different communities at the tested sites. Furthermore, structural equation modeling (SEM) was used to explain the influence of all factors on the degradation function of petroleum pollution. These results suggest that heavy metal contamination from petroleum-contaminated sites reduces the efficiency of natural remediation. In addition, it infers that MOD1 microorganisms have greater degradation potential under heavy metal stress. Utilizing appropriate microorganisms in situ may effectively help resist the stress of heavy metals and continuously degrade petroleum pollutants.
Collapse
Affiliation(s)
- Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shunhao Ai
- The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
43
|
Hou X, Zhu Y, Wu L, Wang J, Yan W, Gao S, Wang Y, Ma Y, Wang Y, Peng Z, Tao Y, Tang Q, Yang J, Xiao L. The investigation of the physiochemical factors and bacterial communities indicates a low-toxic infectious risk of the Qiujiang River in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69135-69149. [PMID: 37131005 DOI: 10.1007/s11356-023-27144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The overall water quality of urban rivers is closely related to the community structure and the physiochemical factors in them. In this study, the bacterial communities and physiochemical factors of the Qiujiang River, an important urban river in Shanghai, were explored. Water samples were collected from nine sites of the Qiujiang River on November 16, 2020. The water quality and bacterial diversity were studied through physicochemical detection, microbial culture and identification, luminescence bacteria method, and 16S rRNA Illumina MiSeq high-throughput sequencing technology. The water pollution of the Qiujiang River was quite serious with three water quality evaluation indexes, including Cd2+, Pb2+, and NH4+-N, exceeding the Class V standard set by the Environmental Quality Standards for Surface Water (China, GB3838-2002), while the luminescent bacteria test indicated low toxicity of nine sampling sites. Through 16S rRNA sequencing, a total of 45 phyla, 124 classes, and 963 genera were identified, in which Proteobacteria, Gammaproteobacteria, and Limnohabitans were the most abundant phylum, class, and genus, respectively. The Spearman correlation heatmap and redundancy analysis showed that the bacterial communities in the Qiujiang River were correlated with pH; the concentrations of K+, and NH4+-N, and the Limnohabitans were significantly correlated with the concentrations of K+, and NH4+-N in the Zhongyuan Road bridge segment. In addition, opportunistic pathogens Enterobacter cloacae complex and Klebsiella pneumoniae in the samples collected in the Zhongyuan Road bridge segment and Huangpu River segment, respectively, were successfully cultured. The Qiujiang River was a heavily polluted urban river. The bacterial community structure and diversity were greatly affected by the physiochemical factors of the Qiujiang River, and it displayed low toxicity while a relatively high infectious risk of intestinal and lung infectious diseases.
Collapse
Affiliation(s)
- Xiaochuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ling Wu
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Jie Wang
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Wei Yan
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Songyu Gao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yushi Ma
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhaoyun Peng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ye Tao
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Qinglong Tang
- Central Medical District of Chinese, PLA General Hospital, Beijing, 100120, China
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
44
|
Yang C, Zeng Z, Wang Y, He G, Hu Y, Gao D, Dai Y, Li Q, Zhang H. Ecological risk assessment and identification of the distinct microbial groups in heavy metal-polluted river sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1311-1329. [PMID: 35939250 DOI: 10.1007/s10653-022-01343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
To assess the health of river ecosystems, it is essential to quantify the ecological risk of heavy metals in river sediments and the structure of microbial communities. As important tributaries of the Tuo River in the upper reaches of the Yangtze River, the Mianyuan River and the Shiting River, are closely related to the economic development and human daily life in the region. This study assessed the ecological risks of heavy-metal-polluted river sediments, the heavy-metal-driven bacterial communities were revealed, and the relationships between the ecological risks and the identical bacterial communities were discussed. The Cd content was significantly greater than the environmental background value, leading to a serious pollution and very high ecological risk at the confluence of the two rivers and the upper reaches of the Mianyuan River. Microbial community analysis showed that Rhodobacter, Nocardioides, Sphingomonas, and Pseudarthrobacter were the dominant bacterial genera in the sediments of the Shiting River. However, the dominant bacterial genera in the Mianyuan River were Kouleothrix, Dechloromonas, Gaiella, Pedomicrobium, and Hyphomicrobium. Mantel test results showed (r = 0.5977, P = 0.005) that the Cd, As, Zn, Pb, Cr, and Cu were important factors that influenced differences in the distribution of sediment bacterial communities Mianyuan and Shiting rivers. A correlation heatmap showed that heavy metals were negatively correlated for most bacterial communities, but some bacterial communities were tolerant and showed a positive correlation. Overall, the microbial structure of the river sediments showed a diverse spatial distribution due to the influence of heavy metals. The results will improve the understanding of rivers contaminated by heavy metals and provide theoretical support for conservation and in situ ecological restoration of river ecosystems.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guangyi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, 610000, China
| | - Yonghong Dai
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qingyu Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
45
|
He X, Zhang S, Lv X, Liu M, Ma Y, Guo S. Eichhornia crassipes-rhizospheric biofilms contribute to nutrients removal and methane oxidization in wastewater stabilization ponds receiving simulative sewage treatment plants effluents. CHEMOSPHERE 2023; 322:138100. [PMID: 36764618 DOI: 10.1016/j.chemosphere.2023.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Wastewater stabilization ponds (WSPs) have been used in treating sewage treatment plants (STPs) effluents. However, little is known about the role of rhizospheric biofilms on methane release in WSPs with floating plants. In the present study, the nutrient removal, CH4 fluxes, CH4 oxidization potential and rhizospheric bacterial community were investigated in WSPs with Eichhornia crassipes under simulate STPs effluents for 31 days. At the end of the experiment, E. crassipes biomass was 5.60-8.81 times of initial weight and increased with increasing nutrients concentration. E. crassipes effectively reduced methane release and nutrients. Compared to control, E. crassipes reduced 52.30%-83.21% of CH4 fluxes at water-atmosphere interface and had better inhibition effect on CH4 fluxes in treatments with high nutrients. However, methane oxidization rates of E. crassipes roots were higher in low nutrients (0.83 ± 0.046 mg CH4 (kg fresh plant)-1 day-1) than high nutrients (0.12 ± 0.04 mg CH4 (kg fresh plant)-1 day-1). Structural equation modeling revealed that biomass of E. crassipes has negative effect on CH4 fluxes (-0.453, p = 0.000). Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi and Actinobacteria were the predominant phyla in the rhizospheric biofilm of E. crassipes and contributed to nutrients removal. Aerobic methanotrophs and pomA abundances were higher in rhizospheric biofilm exposed to high nutrients than low nutrients and aerobic methanotrophs had close interactions with other microorganisms and participated in the carbon and nitrogen cycle, demonstrating that many bacteria harboring pmoA gene did not fully involve in methane oxidization. These data highlight plants E. crassipes have an important role in both reducing methane release and nutrients removal.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Min Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Shaozhuang Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
46
|
Huang Y, Feng JC, Kong J, Sun L, Zhang M, Huang Y, Tang L, Zhang S, Yang Z. Community assemblages and species coexistence of prokaryotes controlled by local environmental heterogeneity in a cold seep water column. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161725. [PMID: 36669671 DOI: 10.1016/j.scitotenv.2023.161725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The distribution and heterogeneity characteristics of microbial communities in cold seep water columns are significant factors governing the efficiency of methane filtering and carbon turnover. However, this process is poorly understood. The diversity of vertically stratified microbial communities and the factors controlling the community assemblage process in the water column above the Haima cold seep were investigated in this study. The prokaryotic community diversities varied distinctly with vertical changes in hydrochemistry. Cyanobacteria dominated the light-transmitting layers and Proteobacteria dominated the deeper layers. With respect to microbial community assemblages and co-occurrence networks, stochastic processes were particularly important in shaping prokaryotic communities. In the shallow (≥85 m) and mesopelagic water columns (600-800 m), microbial community characteristics were affected by deterministic processes, reduced network connectivity, and modularity. Microbial community diversities and assemblage processes along a vertical profile were influenced by the vertical variations in pH, temperature, DIC, and nutrients. Stochastic processes may have facilitated the formation of complex co-occurrence networks. Briefly, the distribution of local environmental heterogeneity along the vertical dimension could drive unique microbial community assemblage and species coexistence patterns. This study provides new perspectives on how microorganisms adapt to the environment and build communities, and how species coexist in shared habitats.
Collapse
Affiliation(s)
- Yongji Huang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jing-Chun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| | - Jie Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Liwei Sun
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Mingrui Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Yanyan Huang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Li Tang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Si Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| |
Collapse
|
47
|
Rodríguez-Ramos J, Oliverio A, Borton MA, Danczak R, Mueller BM, Schulz H, Ellenbogen J, Flynn RM, Daly RA, Schopflin L, Shaffer M, Goldman A, Lewandowski J, Stegen JC, Wrighton KC. Spatial and temporal metagenomics of river compartments reveals viral community dynamics in an urban impacted stream. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535500. [PMID: 37066413 PMCID: PMC10104031 DOI: 10.1101/2023.04.04.535500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.
Collapse
|
48
|
Chung T, Yan R, Weller DL, Kovac J. Conditional Forest Models Built Using Metagenomic Data Accurately Predicted Salmonella Contamination in Northeastern Streams. Microbiol Spectr 2023; 11:e0038123. [PMID: 36946722 PMCID: PMC10100987 DOI: 10.1128/spectrum.00381-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
The use of water contaminated with Salmonella for produce production contributes to foodborne disease burden. To reduce human health risks, there is a need for novel, targeted approaches for assessing the pathogen status of agricultural water. We investigated the utility of water microbiome data for predicting Salmonella contamination of streams used to source water for produce production. Grab samples were collected from 60 New York streams in 2018 and tested for Salmonella. Separately, DNA was extracted from the samples and used for Illumina shotgun metagenomic sequencing. Reads were trimmed and used to assign taxonomy with Kraken2. Conditional forest (CF), regularized random forest (RRF), and support vector machine (SVM) models were implemented to predict Salmonella contamination. Model performance was assessed using 10-fold cross-validation repeated 10 times to quantify area under the curve (AUC) and Kappa score. CF models outperformed the other two algorithms based on AUC (0.86, CF; 0.81, RRF; 0.65, SVM) and Kappa score (0.53, CF; 0.41, RRF; 0.12, SVM). The taxa that were most informative for accurately predicting Salmonella contamination based on CF were compared to taxa identified by ALDEx2 as being differentially abundant between Salmonella-positive and -negative samples. CF and differential abundance tests both identified Aeromonas salmonicida (variable importance [VI] = 0.012) and Aeromonas sp. strain CA23 (VI = 0.025) as the two most informative taxa for predicting Salmonella contamination. Our findings suggest that microbiome-based models may provide an alternative to or complement existing water monitoring strategies. Similarly, the informative taxa identified in this study warrant further investigation as potential indicators of Salmonella contamination of agricultural water. IMPORTANCE Understanding the associations between surface water microbiome composition and the presence of foodborne pathogens, such as Salmonella, can facilitate the identification of novel indicators of Salmonella contamination. This study assessed the utility of microbiome data and three machine learning algorithms for predicting Salmonella contamination of Northeastern streams. The research reported here both expanded the knowledge on the microbiome composition of surface waters and identified putative novel indicators (i.e., Aeromonas species) for Salmonella in Northeastern streams. These putative indicators warrant further research to assess whether they are consistent indicators of Salmonella contamination across regions, waterways, and years not represented in the data set used in this study. Validated indicators identified using microbiome data may be used as targets in the development of rapid (e.g., PCR-based) detection assays for the assessment of microbial safety of agricultural surface waters.
Collapse
Affiliation(s)
- Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel L. Weller
- Department of Statistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
49
|
Yu Y, Song J, Liu X, Chen B, Zhang C, Zhang S. Tea polyphenols and catechins postpone evolution of antibiotic resistance genes and alter microbial community under stress of tetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114675. [PMID: 36822060 DOI: 10.1016/j.ecoenv.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Relying on the high mobility of water flow, the dissemination of antibiotic resistance genes (ARGs) in the water tends to be exacerbated and enlarged. It caused negative impacts on a wider scope of the environment. The ARGs dissemination monitoring and the methods efficiently reducing their concentration in water became the focus of interest. Green chemicals with antibacterial effects such as tea polyphenols (TPs) and catechins (CA) have been considered as auxiliary disinfectants for ARGs removal in the water environment. However, the antibacterial performance of TPs and CA under the stress of external antibiotics still lacks sufficient research. The results show that more operational taxonomic units can be observed in water samples with TPs and CA than in those without the ingredients under pressure of tetracycline. An unexpected increase along with the increase of ARGs concentrations and the diversity of microbial communities under the low-concentration TPs or CA (1 mg/L). Besides, under the stress of tetracycline, the inhibition of TPs was detected to be strengthened for increase of inti1 and tetC but weakened towards for the increase of tetA. Whilst CA substantially diminished abundances of tetC and tetA under tetracycline pressure. This research demonstrated that TPs and CA are able to assuage development of ARGs under the pressure of antibiotic in water system.
Collapse
Affiliation(s)
- Yaqin Yu
- Dept. of Civil Engineering, Yancheng Institute of Technology, Xiwangdadao 1#, Yancheng 224003, China
| | - Jiajun Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingxiang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
50
|
Succession Patterns of Microbial Composition and Activity following the Diesel Spill in an Urban River. Microorganisms 2023; 11:microorganisms11030698. [PMID: 36985271 PMCID: PMC10058704 DOI: 10.3390/microorganisms11030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Diesel spills in freshwater systems have adverse impacts on the water quality and the shore wetland. Microbial degradation is the major and ultimate natural mechanism that can clean the diesel from the environment. However, which, and how fast, diesel-degrading microorganisms could degrade spilled diesel has not been well-documented in river water. Using a combination of 14C-/3H--based radiotracer assays, analytical chemistry, MiSeq sequencing, and simulation-based microcosm incubation approaches, we demonstrated succession patterns of microbial diesel-degrading activities, and bacterial and fungal community compositions. The biodegradation activities of alkanes and polycyclic aromatic hydrocarbons (PAHs) were induced within 24 h after diesel addition, and reached their maximum after incubation for 7 days. Potential diesel-degrading bacteria Perlucidibaca, Acinetobacter, Pseudomonas, Acidovorax, and Aquabacterium dominated the community initially (day 3 and day 7), but later community structure (day 21) was dominated by bacteria Ralstonia and Planctomyces. The key early fungi responders were Aspergillus, Mortierella, and Phaeoacremonium by day 7, whereas Bullera and Basidiobolus dominated the fungal community at day 21. These results directly characterize the rapid response of microbial community to diesel spills, and suggest that the progression of diesel microbial degradation is performed by the cooperative system of the versatile obligate diesel-degrading and some general heterotrophic microorganisms in river diesel spills.
Collapse
|