1
|
Jha AN. Eco-genotoxicology: A personal reflection. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025:108535. [PMID: 40210508 DOI: 10.1016/j.mrrev.2025.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2025] [Indexed: 04/12/2025]
Abstract
This reflective commentary provides a personal viewpoint of developments, over the last 3 decades, in the relatively new, multidisciplinary field of 'eco-genotoxicology,' also called 'genetic ecotoxicology'. It aims to outline the scope of the subject area in relation to the historical development of the discipline, critically categorising accomplishments made, taking into account the available information. It also recognises limitations of the existing information and difficulties encountered in this challenging field. Where appropriate, the article makes comparisons to the advances made in human genetic toxicology and radiation biology. The article critically covers the applications of prevailing and emerging tools being used in the field, such as omics, in vitro methodologies, modelling approaches, and artificial intelligence (AI). It also identifies potential areas of development and attempts to credit some of the important personal contributions made in this exciting and challenging subject in relation to human and environmental health.
Collapse
Affiliation(s)
- Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
2
|
Disasters with oil spills in the oceans: Impacts on food safety and analytical control methods. Food Res Int 2022; 157:111366. [DOI: 10.1016/j.foodres.2022.111366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
3
|
Bandini F, Hchaichi I, Zitouni N, Missawi O, Cocconcelli PS, Puglisi E, Banni M. Bacterial community profiling of floating plastics from South Mediterranean sites: First evidence of effects on mussels as possible vehicles of transmission. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125079. [PMID: 33476909 DOI: 10.1016/j.jhazmat.2021.125079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Plastic wastes accumulation in marine environments is becoming a crucial issue; while the toxicity to biota is quite well explored, a gap of knowledge still exists on the role that plastics play in shaping bacterial community structures in marine conditions and their possible transmission to humans. The present study intended first to profile bacterial community structure in floating plastic particles (FP) biofilms and seawater from four Tunisian coastal areas using high-throughput sequencing (HTS) of 16S rDNA. Subsequently, mussels (Mytilus galloprovincialis) as filter feeding organisms were exposed to the FP to broaden the knowledge on the potential role played by environmental plastic particles in shaping bacterial community structures and on their possibility to act as vehicles of bacteria through the food web. The mussels' microbiota was microbiologically analyzed through HTS, and the Histidine Rich Glycoprotein (HRG) gene expression level was investigated as the main immune response. Our results clearly showed a great variation in the composition of bacterial communities of FP and seawater from different geographical areas. Moreover, the gills of mussels exposed to sterilized seawater and native FP from each site exhibited a wider bacterial biodiversity. The gene expression level of HRG was found to be significantly higher in animals exposed to native FP when compared to sterilized FP. Our results should be carefully considered in view of the Trojan horse effects of FP toward bacteria and its potential toxicity.
Collapse
Affiliation(s)
- Francesca Bandini
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Ilef Hchaichi
- Laboratory of Biochemistry and Environmental Toxicology, ISA Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Nesrin Zitouni
- Laboratory of Biochemistry and Environmental Toxicology, ISA Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Oumayma Missawi
- Laboratory of Biochemistry and Environmental Toxicology, ISA Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA Chott-Mariem, Sousse University, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|
4
|
Oxidative Damage of Mussels Living in Seawater Enriched with Trace Metals, from the Viewpoint of Proteins Expression and Modification. TOXICS 2020; 8:toxics8040089. [PMID: 33081042 PMCID: PMC7711521 DOI: 10.3390/toxics8040089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The impact of metals bioaccumulation in marine organisms is a subject of intense investigation. This study was designed to determine the association between oxidative stress induced by seawater enriched with trace metals and protein synthesis using as a model the mussels Mytilus galloprovincialis. Mussels were exposed to 40 μg/L Cu, 30 μg/L Hg, or 100 μg/L Cd for 5 and 15 days, and the pollution effect was evaluated by measuring established oxidative biomarkers. The results showed damage on the protein synthesis machine integrity and specifically on translation factors and ribosomal proteins expression and modifications. The exposure of mussels to all metals caused oxidative damage that was milder in the cases of Cu and Hg and more pronounced for Cd. However, after prolonged exposure of mussels to Cd (15 days), the effects receded. These changes that perturb protein biosynthesis can serve as a great tool for elucidating the mechanisms of toxicity and could be integrated in biomonitoring programs.
Collapse
|
5
|
Sforzini S, Banni M, Oliveri C, Moore MN, Viarengo A. New insights into the possible multiple roles of histidine-rich glycoprotein in blue mussels. Comp Biochem Physiol B Biochem Mol Biol 2020; 245:110440. [DOI: 10.1016/j.cbpb.2020.110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
|
6
|
Sforzini S, Oliveri C, Barranger A, Jha AN, Banni M, Moore MN, Viarengo A. Effects of fullerene C 60 in blue mussels: Role of mTOR in autophagy related cellular/tissue alterations. CHEMOSPHERE 2020; 246:125707. [PMID: 31891845 DOI: 10.1016/j.chemosphere.2019.125707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The effects of C60 on mTOR (mechanistic Target of Rapamycin) activity in mussel digestive gland were investigated. mTOR is a kinase that senses physiological and environmental signals to control eukaryotic cell growth. mTOR is present in two complexes: the phosphorylated mTORC1 regulates cell growth by activating anabolic processes, and by inhibiting catabolic processes (i.e. autophagy); mTORC2 also modulates actin cytoskeleton organization. Mussels were exposed to C60 (0.01, 0.1 and 1 mg/L) for 72 h. Immunocytochemical analysis using a specific antibody revealed the cellular distribution of C60 in mussel digestive gland, already at the lowest concentration. In exposed mussels, the dephosphorylation of mTORC1 and mTORC2 may explain the C60 effects, i.e. the reduction of lysosomal membrane stability, the enhancement of LC3B protein, and the increase of lysosomal/cytoplasmic volume ratio; as well the cytoskeletal alterations. No oxidative stress was observed. Multivariate analysis was used to facilitate the interpretation of the biomarker data. Finally, a low density oligo-microarray was used to understand the cellular responses to fullerene. Transcriptomics identified a number of differentially expressed genes (DEGs) showing a maximum in animals exposed to 0.1 mg/L C60. The most affected processes are associated with energy metabolism, lysosomal activity and cytoskeleton organization. In this study, we report the first data on the subcellular distribution of C60 in mussel's cells; and on the involvement of mTOR inhibition in the alterations due to nanoparticle accumulation. Overall, mTOR deregulation, by affecting protein synthesis, energy metabolism and autophagy, may reduce the capacity of the organisms to effectively grow and reproduce.
Collapse
Affiliation(s)
- Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Truro, TR1 3HD, UK; Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
| | - Aldo Viarengo
- Institute for the study of Anthropic impacts and Sustainability in marine environment, National research Council (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| |
Collapse
|
7
|
Bowen L, Counihan KL, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Monitoring nearshore ecosystem health using Pacific razor clams (Siliqua patula) as an indicator species. PeerJ 2020; 8:e8761. [PMID: 32185117 PMCID: PMC7060925 DOI: 10.7717/peerj.8761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 12/05/2022] Open
Abstract
An emerging approach to ecosystem monitoring involves the use of physiological biomarker analyses in combination with gene transcription assays. For the first time, we employed these tools to evaluate the Pacific razor clam (Siliqua patula), which is important both economically and ecologically, as a bioindicator species in the northeast Pacific. Our objectives were to (1) develop biomarker and gene transcription assays with which to monitor the health of the Pacific razor clam, (2) acquire baseline biomarker and gene transcription reference ranges for razor clams, (3) assess the relationship between physiological and gene transcription assays and (4) determine if site-level differences were present. Pacific razor clams were collected in July 2015 and 2016 at three sites within each of two national parks in southcentral Alaska. In addition to determining reference ranges, we found differences in biomarker assay and gene transcription results between parks and sites which indicate variation in both large-scale and local environmental conditions. Our intent is to employ these methods to evaluate Pacific razor clams as a bioindicator of nearshore ecosystem health. Links between the results of the biomarker and gene transcription assays were observed that support the applicability of both assays in ecosystem monitoring. However, we recognize the need for controlled studies to examine the range of responses in physiology and gene transcripts to different stressors.
Collapse
Affiliation(s)
- Lizabeth Bowen
- Western Ecological Research Center, U.S. Geological Survey, Davis, CA, USA
| | | | - Brenda Ballachey
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK, USA
| | - Heather Coletti
- Inventory & Monitoring Program, Southwest Alaska Network, National Park Service, Fairbanks, AK, USA
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, Alaska SeaLife Center and University of Alaska Fairbanks, Seward, AK, USA
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Seward, AK, USA
| | - Tammy L Wilson
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
8
|
Mlouka R, Cachot J, Sforzini S, Oliveri C, Boukadida K, Clerandeau C, Pacchioni B, Millino C, Viarengo A, Banni M. Molecular mechanisms underlying the effects of temperature increase on Mytilus sp. and their hybrids at early larval stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135200. [PMID: 31806331 DOI: 10.1016/j.scitotenv.2019.135200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
The present work aims to investigate the effects of water temperature increase on Mytilus galloprovincilis and Mytilus edulis pure larvae (PG, PE) and their hybrids (HFG, HFE). D-larvae were maintained at 18 °C or exposed to a higher temperature of 22 °C for 48 h. Initially, Embryotoxicity test was evaluated. Second, a transcriptomic analysis using a recently developed microarray platform was applied to determine the main biological processes involved in early life stages responses to temperature increase. Finally, an immunofluorescence investigation was performed to bridge the gap between transcriptomic regulation and the real changes at cellular/tissue levels. Embryotoxicity test revealed a higher sensitivity of M. edulis (PE) D-larvae as well as hybrids from females M. edulis (HFE) to temperature increase, with the highest rate of larval malformations. Transcriptomic results indicated a lack of an adequate heat shock protein (Hsp) response in PE and HFE larvae (the high expression was observed in PG larvae); the differential expression of gene involved in translation, energy metabolism and oxidative stress response may contribute to explain the observed complex alterations in the studied conditions. As revealed by immunohistochemistry, cytoskeleton proteins changes associated with a drastic decrease of Histidine-Rich Glycoprotein (HRG) may elucidate the larval abnormalities in shell development observed for PE and HFE larvae. Overall, the results indicate that each type of pure larva (PG and PE) and their respective female hybrid (HFG and HFE) react similarly to the temperature increase. Our data should be carefully considered in view of the water temperature increase in marine ecosystems and especially for the mussel's species in confluence zones.
Collapse
Affiliation(s)
- Rania Mlouka
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France; Laboratory of Biochemistry and Environmental , ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology of Monastir.5000, Monastir University, Tunisia
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milano, Italy
| | - Caterina Oliveri
- Dipartimento di Scienze della terra, dell'ambiente e della vita (DISTAV), Università degli Studi di Genova,Via Balbi 5, 16126 Genova, Italy
| | - Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France; Laboratory of Biochemistry and Environmental , ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | | | - Caterina Millino
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milano, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental , ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology of Monastir.5000, Monastir University, Tunisia.
| |
Collapse
|
9
|
Vernon EL, Bean TP, Jha AN. Assessing relative biomarker responses in marine and freshwater bivalve molluscs following exposure to phosphorus 32 ( 32P): Application of genotoxicological and molecular biomarkers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 213:106120. [PMID: 31783294 DOI: 10.1016/j.jenvrad.2019.106120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic radionuclides can enter water bodies through accidental or controlled discharges. In order to assess their potential impact, understanding the link between exposure, tissue specific bioaccumulation and radiation dose rate, to biological or biomarker responses in aquatic biota is required. Adopting an integrated, multi-biomarker, multi-species approach, we have investigated potential biological responses induced by short-lived radionuclide, phosphorus-32 (32P, radiophosphorus) in two ecologically important mussel species, the freshwater Dreissena polymorpha (DP) and marine Mytilus galloprovincialis (MG). Adult individuals were exposed to 32P for 10 days, to acquire nominal whole-body average dose rates of 0.10, 1 and 10 mGy d-1, which encompass a screening value of 10 μGy h-1 (0.24 mGy d-1), in accordance with the ERICA tool. Following exposure, a suite of genotoxic biomarkers (DNA damage, γ-H2AX induction and micronucleus [MN] formation) were measured in gill and digestive gland tissues, along with transcriptional expression of selected stress-related genes in both the species (i.e. hsp70/90, sod, cat and gst). Our results demonstrate the relationship between tissue specific dosimetry, where 32P induced a dose-dependent increase, and biological responses independent of species. Gene expression analysis revealed little significant variation across species or tissues. Overall, MG appeared to be more sensitive to short-term damage (i.e. high DNA damage and γ-H2AX induction), particularly in digestive gland. This study contributes to limited knowledge on the transfer and biological impact of radionuclides within differing aquatic systems on a tissue specific level, aiding the development of adequate management and protective strategies.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tim P Bean
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
10
|
Counihan KL, Bowen L, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Physiological and gene transcription assays to assess responses of mussels to environmental changes. PeerJ 2019; 7:e7800. [PMID: 31592166 PMCID: PMC6779115 DOI: 10.7717/peerj.7800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
Coastal regions worldwide face increasing management concerns due to natural and anthropogenic forces that have the potential to significantly degrade nearshore marine resources. The goal of our study was to develop and test a monitoring strategy for nearshore marine ecosystems in remote areas that are not readily accessible for sampling. Mussel species have been used extensively to assess ecosystem vulnerability to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015 and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and Preserves, in south-central Alaska. Reference ranges for physiological assays and gene transcription were determined for use in future assessment efforts. Both techniques identified differences among sites, suggesting influences of both large-scale and local environmental factors and underscoring the value of this combined approach to ecosystem health monitoring.
Collapse
Affiliation(s)
| | - Lizabeth Bowen
- US Geological Survey, Western Ecological Research Center, Davis, CA, United States of America
| | - Brenda Ballachey
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States of America
| | - Heather Coletti
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, University of Alaska-Fairbanks and Alaska SeaLife Center, Seward, AK, United States of America
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Anchorage, AK, United States of America
| | - Tammy L Wilson
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America.,Department of Natural Resource Management, South Dakota State University, Brookings, SD, United States of America
| |
Collapse
|
11
|
Barranger A, Rance GA, Aminot Y, Dallas LJ, Sforzini S, Weston NJ, Lodge RW, Banni M, Arlt VM, Moore MN, Readman JW, Viarengo A, Khlobystov AN, Jha AN. An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects. Nanotoxicology 2019; 13:1324-1343. [DOI: 10.1080/17435390.2019.1654003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Graham A. Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Susanna Sforzini
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicola J. Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Rhys W. Lodge
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Mohamed Banni
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chottMariem, Sousse University, Sousse, Tunisia
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, MRC-PHE Centre for Environmental & Health, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Aldo Viarengo
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrei N. Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Bolognesi C. Micronucleus Experiments with Bivalve Molluscs. THE MICRONUCLEUS ASSAY IN TOXICOLOGY 2019. [DOI: 10.1039/9781788013604-00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micronucleus (MN) test, as an index of accumulated DNA damage during the lifespan of cells, is the most applied assay in aquatic animals to assess the exposure to a complex mixture of genotoxic pollutants. An increase in MN frequency was reported on mussels exposed to the most common environmental pollutants under laboratory conditions, such as heavy metals, polycyclic aromatic hydrocarbons, and ionizing radiation. The test was applied in a large number of biomonitoring studies in different geographic areas to identify the exposure to different classes of pollutants with good discrimination power and to evaluate the recovery effects after accidental pollution events. A standardized MN assay protocol in hemocytes and gill cells for use in bivalve species, including scoring of different cell types, necrotic and apoptotic cells and nuclear anomalies, was established following the “cytome approach”. The mussel MNcytome (MUMNcyt) assay, using the proposed detailed criteria for the identification of cell types, is suitable for application in experimental studies under controlled conditions and in biomonitoring programs in aquatic environments.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Unit of Environmental Carcinogenesis Ospedale Policlinico San Martino L.go Rosanna Benzi 10, 16132 Genova Italy
| |
Collapse
|
13
|
do Amaral QDF, Da Rosa E, Wronski JG, Zuravski L, Querol MVM, Dos Anjos B, de Andrade CFF, Machado MM, de Oliveira LFS. Golden mussel (Limnoperna fortunei) as a bioindicator in aquatic environments contaminated with mercury: Cytotoxic and genotoxic aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:343-353. [PMID: 31030141 DOI: 10.1016/j.scitotenv.2019.04.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the Limnoperna fortunei (golden mussel) as a bioindicator of cytotoxicity and genotoxicity in aquatic environments contaminated by heavy metals. Five groups of 50 subjects each were exposed to different concentration of mercuric chloride (HgCl2) (0.001 mg/L, group I; 0.005 mg/L, group II; 0.01 mg/L, group II; 0.02 mg/L, group IV; and 0.1 mg/L, group V). The control group for both chronic and acute treatment did not receive HgCl2. For chronic exposure, the respective groups were placed in aquaria with water contaminated with the above concentrations of HgCl2. For acute exposure, the different concentrations of HgCl2 were injected into the posterior adductor muscle of the individuals belonging to the aforementioned groups. The biological matrix used in the tests was the whole body muscle. Tests (cell viability assay, alkaline comet test; enumeration of micronuclei and necrotic cells, quantification of Hg content in tissues and water, and histopathological analysis of tissues), were carried out on the 7th, 15th, and 30th treatment days or 2 h after injection. Our results demonstrated that L. fortunei showed cell damage in both chronic and acute exposure groups. Significant DNA damage was observed at both the 15th (0.1 mg/L) and 30th (0.01-0.1 mg/L) days of chronic exposure. However, in acute treatment all concentrations induced DNA breaks. The presence of necrosis increased at all concentrations tested for both acute and chronic exposure. Tissue mercury retention on the 15th day was higher than on the 30th day of exposure, while in the same period, there was a decrease in the mercury content of aquarium water. Taking the data together, it is concluded that L. fortunei as a possible bioindicator of the quality of aquatic environments.
Collapse
Affiliation(s)
| | - Emanoeli Da Rosa
- Graduate Program in Pharmaceutical Sciences, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | - Júlia Gabriela Wronski
- Veterinary Pathology Laboratory, HUVET, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | - Luísa Zuravski
- Graduate Program in Biochemistry, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | | - Bruno Dos Anjos
- Veterinary Pathology Laboratory, HUVET, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | | - Michel Mansur Machado
- Graduate Program in Pharmaceutical Sciences, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | |
Collapse
|
14
|
Mkhinini M, Boughattas I, Bousserhine N, Banni M. Biochemical and transcriptomic response of earthworms Eisenia andrei exposed to soils irrigated with treated wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2851-2863. [PMID: 30499083 DOI: 10.1007/s11356-018-3794-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In order to ensure better use of treated wastewater (TWW), we investigated the effect of three increasing doses of TWW, 10%, 50%, and 100%, on biochemical and transcriptomic statuses of earthworms Eisenia andrei exposed during 7 and 14 days. The effect of TWW on the oxidative status of E. andrei was observed, but this effect was widely dependent on the dilution degree of TWW. Results showed a significant decrease in the catalase (CAT) activity and an increase in the glutathione-S-transferase (GST) activity, and considerable acetylcholinesterase (AChE) inhibition was recorded after 14 days of exposure. Moreover, malondialdehyde (MDA) accumulation was found to be higher in exposed animals compared to control worms. The gene expression level revealed a significant upregulation of target genes (CAT and GST) during experimentation. These data provided new information about the reuse of TWW and its potential toxicity on soil organisms.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia.
| | - Noureddine Bousserhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, 94010, Créteil cedex, France
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| |
Collapse
|
15
|
Medas D, Carlomagno I, Meneghini C, Aquilanti G, Araki T, Bedolla DE, Buosi C, Casu MA, Gianoncelli A, Kuncser AC, Adrian Maraloiu V, De Giudici G. Zinc incorporation in marine bivalve shells grown in mine-polluted seabed sediments: a case study in the Malfidano mining area (SW Sardinia, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36645-36660. [PMID: 30377963 DOI: 10.1007/s11356-018-3504-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0-80 mg/kg of Zn, 5.4-60 mg/kg of Fe and 0.5-4.5 mg/kg of Mn. X-ray absorption near edge structure (XANES) analysis revealed that for all the investigated genera, Zn occurred as independent Zn mineral phases, i.e., it was not incorporated or adsorbed into the aragonitic lattice. Overall, our results indicated that Zn coordination environment depends on the amount of incorporated Zn. Zn phosphate was the most abundant species in Donax and Lentidium genera, whereas, Chamelea shells, characterized by the highest Zn concentrations, showed the prevalence of Zn-cysteine species (up to 56% of total speciation). Other Zn coordination species found in the investigated samples were Zn hydrate carbonate (hydrozincite) and Zn phosphate. On the basis of the coordination environments, it was deduced that bivalves have developed different biogeochemical mechanisms to regulate Zn content and its chemical speciation and that cysteine plays an important role as an active part of detoxification mechanism. This work represents a step forward for understanding bivalve biomineralization and its significance for environmental monitoring and paleoreconstruction.
Collapse
Affiliation(s)
- Daniela Medas
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy.
| | - Ilaria Carlomagno
- Department of Sciences, University of Roma Tre, Rome, Italy
- Elettra-Sincrotrone Trieste, Basovizza, Trieste, Italy
| | | | | | - Tohru Araki
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Oxfordshire, Didcot, UK
| | | | - Carla Buosi
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta Casu
- UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia POLARIS, Institute of Translational Pharmacology, Pula, Italy
| | | | - Andrei C Kuncser
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, Magurele, Romania
| | - V Adrian Maraloiu
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, Magurele, Romania
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Vernon EL, Smith JT, Jha AN. Relative comparison of tissue specific bioaccumulation and radiation dose estimation in marine and freshwater bivalve molluscs following exposure to phosphorus-32. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:312-320. [PMID: 30015316 DOI: 10.1016/j.jenvrad.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
With respect to environmental protection, understanding radionuclide bioconcentration is necessary to relate exposure to radiation dose and hence to biological responses. Few studies are available on tissue specific accumulation of short-lived radionuclides in aquatic invertebrates. Short-lived radionuclides such as 32Phosphorus (32P), although occurring in small quantities in the environment, are capable of concentrating in the biota, especially if they are chronically exposed. In this study, we firstly compared tissue specific bioaccumulation and release (depuration) of 32P in adult marine (Mytilus galloprovincialis, MG) and freshwater bivalve molluscs (Dreissena polymorpha, DP). Secondly, using the Environmental Risk from Ionising Contaminants Assessment and Management (ERICA) tool, we calculated tissue specific doses following determination of radionuclide concentration. Marine and freshwater bivalves were exposed for 10 days to varying 32P concentrations to acquire desired whole body average dose rates of 0.10, 1.0 and 10 mGy d-1. Dose rates encompass a screening dose rate value of 10 μGy h-1 (0.24 mGy d-1), in accordance with the ERICA tool. This study is the first to relate tissue specific uptake and release (via excretion) of 32P from two anatomically similar bivalve species. Results showed highly tissue specific accumulation of this radionuclide and similarity of accumulation pattern between the two species. Our data, which highlights preferential 32P accumulation in specific tissues such as digestive gland, demonstrates that in some cases, tissue-specific dose rates may be required to fully evaluate the potential effects of radiation exposure on non-human biota. Differential sensitivity between biological tissues could result in detrimental biological responses at levels presumed to be acceptable when adopting a 'whole-body' approach.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK
| | - Jim T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|