1
|
Luo M, Wang J, Tan J, Wang J, Lin H, Liu Z, Sun T, Liu Y, Jiang Y, Wang H, Wang K, Xu X, Huang Z, Lin Y, Zhao M. Antagonistic effects of titanium dioxide nanoparticles on cadmium-induced nephrotoxicity and intestinal flora imbalance by reducing its bioavailability in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118263. [PMID: 40339232 DOI: 10.1016/j.ecoenv.2025.118263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Titanium dioxide nanoparticles (nTiO2) possess unique physicochemical properties, such as large specific surface area, enabling heavy metals adsorption like Cadmium (Cd), yet the combined risks to the ecosystem and human remain unclear. This 90-day study explored the combined effects of nTiO2 (at a population-relevant dose of 100 mg/kg body weight administered via gavage) and cadmium chloride (CdCl2) (50 mg Cd/L by drinking water) on kidney and gut microbiota of rats. Co-exposure of nTiO2 and Cd significantly reduced the nephrotoxicity induced by Cd, with lower levels of urine biochemical indicators and Cd content, milder histopathological changes and ultrastructural damage. A two-way ANOVA analysis suggested antagonism between nTiO2 and Cd on urinary creatinine (CRE) and Urea. Coincidentally, gut microbiota remained unaffected by nTiO2 but was disrupted by Cd. Co-exposure also partially alleviated the adverse changes, restoring the decreased Beta-diversity and the relative abundance of bacteria to control levels. Furthermore, co-exposure resulted in a 19.2 % decline in the blood Cd concentration and an 8.6 % reduction in kidney, while the Cd content of 24 h feces was 3.6 % higher. These findings suggested antagonistic effects of nTiO2 against Cd-induced nephrotoxicity and intestinal flora disorder in rats. The effects might be attributed to the adsorption of nTiO2 on Cd, which resulted in the reduced Cd intake and distribution, coupled with increased excretion, thereby decreasing the Cd bioavailability. This study provides new evidence for understanding the impacts of nTiO2 and Cd on mammals and will contribute to the further risk assessments of co-exposure to human health and environment safety.
Collapse
Affiliation(s)
- Mansi Luo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; South China University of Technology, Guangzhou 510006, China
| | - Jieling Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianbin Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Hong Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Zhe Liu
- Guangdong Provincial Institute of Public Health, Guangzhou 511430, China
| | - Tingting Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yun Liu
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou 510440, China
| | - Ying Jiang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Hongxia Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Kexin Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Xuedan Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Zhibiao Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Ying Lin
- South China University of Technology, Guangzhou 510006, China.
| | - Min Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| |
Collapse
|
2
|
Hu XF, Loan A, Chan HM. Re-thinking the link between exposure to mercury and blood pressure. Arch Toxicol 2025; 99:481-512. [PMID: 39804370 PMCID: PMC11775068 DOI: 10.1007/s00204-024-03919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Hypertension or high blood pressure (BP) is a prevalent and manageable chronic condition which is a significant contributor to the total global disease burden. Environmental chemicals, including mercury (Hg), may contribute to hypertension onset and development. Hg is a global health concern, listed by the World Health Organization (WHO) as a top ten chemical of public health concern. Most people are exposed to some level of Hg, with vulnerable groups, including Indigenous peoples and small-scale gold miners, at a higher risk for exposure. We published a systematic review and meta-analysis in 2018 showing a dose-response relationship between Hg exposure and hypertension. This critical review summarizes the biological effects of Hg (both organic and inorganic form) on the underlying mechanisms that may facilitate the onset and development of hypertension and related health outcomes and updates the association between Hg exposure (total Hg concentrations in hair) and BP outcomes. We also evaluated the weight of evidence using the Bradford Hill criteria. There is a strong dose-response relationship between Hg (both organic and inorganic) exposure and BP in animal studies and convincing evidence that Hg contributes to hypertension by causing structural and functional changes, vascular reactivity, vasoconstriction, atherosclerosis, dyslipidemia, and thrombosis. The underlying mechanisms are vast and include impairments in antioxidant defense mechanisms, increased ROS production, endothelial dysfunction, and alteration of the renin-angiotensin system. We found additional 16 recent epidemiological studies that have reported the relationship between Hg exposure and hypertension in the last 5 years. Strong evidence from epidemiological studies shows a positive association between Hg exposure and the risk of hypertension and elevated BP. The association is mixed at lower exposure levels but suggests that Hg can affect BP even at low doses when co-exposed with other metals. Further research is needed to develop robust conversion factors among different biomarkers and standardized measures of Hg exposure. Regulatory agencies should consider adopting a 2 µg/g hair Hg level as a cut-off for public health regulation, especially for adults older than child-bearing age.
Collapse
Affiliation(s)
- Xue Feng Hu
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Allison Loan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Bouredji A, Lakhmi R, Muresan-Paslaru B, Pourchez J, Forest V. Exposure of RAW264.7 macrophages to exhaust emissions (gases and PAH) and non-exhaust emissions (tire particles) induces additive or synergistic TNF-α production depending on the tire particle size. Toxicology 2024; 509:153990. [PMID: 39504919 DOI: 10.1016/j.tox.2024.153990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Road traffic is a major contributor to air pollution and consequently negatively affects human health. Car pollution originates both from exhaust emissions (EE) and non-exhaust emissions (NEE, such as tire and brake wear particles, erosion of road surfaces and resuspension of road dust). While the toxicity of EE and NEE has been characterized separately, their combined effects are poorly documented. However, we are constantly exposed to a mixture of pollutants and their interactions should not be neglected as they may significantly impact their toxicological profile resulting in additive, synergistic or antagonistic effects. To fill this gap, we investigated in vitro the combined toxicity of exhaust gases and benzo[a]pyrene (representative of EE) and tire particles (representative of NEE). Macrophages from the RAW264.7 cell line were exposed for 24 h to tire particles (TP) of variable size (6-113 µm), alone or in combination with exhaust gases (CO2, CO, NO, NO2) and benzo[a]pyrene (B[a]P) as an archetype of polycyclic aromatic hydrocarbon (PAH). The cell response was assessed in terms of cytotoxicity, proinflammatory response and oxidative stress. TP, gases and B[a]P, alone or in combination triggered neither cytotoxicity nor oxidative stress. On the contrary, a proinflammatory response was elicited with two different profiles depending on the size of the TP: TNF-α production was either slightly (with the finest TP) or strongly (with coarse TP) increased in the presence of gases and B[a]P, suggesting that the effects of TP, gases and B[a]P were either additive or synergistic, depending on TP size.
Collapse
Affiliation(s)
- Abderrahmane Bouredji
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne 42023, France
| | - Riadh Lakhmi
- Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, Saint-Etienne 42023, France
| | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne 42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne 42023, France.
| |
Collapse
|
4
|
Yu J, Dan N, Eslami SM, Lu X. State of the Art of Silica Nanoparticles: An Overview on Biodistribution and Preclinical Toxicity Studies. AAPS J 2024; 26:35. [PMID: 38514482 DOI: 10.1208/s12248-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.
Collapse
Affiliation(s)
- Joshua Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Seyyed Majid Eslami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
5
|
Relationship Between Myocardial Injury and Expression of PGC-1α and Its Coactivators in Chronic Keshan Disease. Curr Med Sci 2021; 42:85-92. [PMID: 34705216 DOI: 10.1007/s11596-021-2454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Keshan disease (KD) is a mitochondrial cardiomyopathy. The present study explored the roles of peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), the key regulator of mitochondrial structure and function, and its coactivators in myocardial injury in chronic KD. Furthermore, the usefulness of these molecules in the diagnosis of chronic KD was assessed. METHODS In the present case-control study, 43 patients with chronic KD and 30 healthy individuals living in KD endemic areas were included. The myocardial injury indicators and mRNA expression levels of PGC-1α, nuclear respiratory factor 1 (NRF1), PPARα, and estrogen-related receptor alpha (ERRα) in peripheral blood were examined. RESULTS It was found that the levels of atrial natriuretic peptide, creatine kinase, and lactate dehydrogenase (LDH) were higher in patients with chronic KD, when compared to controls, while the level of bradykinin was lower. Furthermore, the PGC-1α, NRF1 and PPARα mRNA levels were higher in patients with KD. The area under the receiver operating characteristic curve and the optimal diagnostic threshold of LDH was 0.937 and 304.0 U/L, respectively. It is noteworthy that the area under the combined receiver operating characteristic curve was larger, when compared to that for LDH detection alone (Z=2.055, P=0.0399). The area under the curve for the "LDH+PPARα" combination was 0.984, with 96.7% sensitivity and 93.0% specificity. CONCLUSION The combined detection of LDH and the expression of PPARα can be performed to diagnose the chronic KD.
Collapse
|
6
|
Ahmed T, Noman M, Manzoor N, Ali S, Rizwan M, Ijaz M, Allemailem KS, BinShaya AS, Alhumaydhi FA, Li B. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106093. [DOI: 10.1016/j.jece.2021.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
7
|
Liu P, Zhao Y, Wang S, Xing H, Dong WF. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103720. [PMID: 34332080 DOI: 10.1016/j.etap.2021.103720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Silica nanoparticles (SiNPs) and cadmium chloride (CdCl2) are two important environmental pollutants. In previous research, found that SiNPs in zebrafish larvae can amplify the cardiovascular damage caused by cadmium. Whether SiNPs in the ovaries can amplify the adverse effects of cadmium on the zebrafish ovaries is worth studying problem. In this study, sexually mature female zebrafish were used as model organisms and exposed to 1 μmol/L CdCl2 and/or 25 μg/mL SiNPs for 30 days. The results showed that the structure and function of ovaries in the sole and combined exposure groups changed significantly, resulting in reduced ovarian quality, decreased number of mature oocytes, and the development of malformed offspring. A deep-sequencing analysis showed that organisms' lipid metabolism and transportation, estrogen metabolism, and response to the maturation, meiosis, and vitellogenin synthesis of oocytes were significantly affected by single exposure or combined exposure. These findings provide further insights into the harm of cooperation of CdCl2 and/or SiNPs to the aquatic ecosystems.
Collapse
Affiliation(s)
- Pai Liu
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Yeming Zhao
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Sheng Wang
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Hao Xing
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Wen-Fei Dong
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
8
|
Wang Q, Chang Q, Sun M, Liu C, Fan J, Xie Y, Deng X. The combined toxicity of ultra-small SiO 2 nanoparticles and bisphenol A (BPA) in the development of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109125. [PMID: 34217845 DOI: 10.1016/j.cbpc.2021.109125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/27/2021] [Indexed: 12/19/2022]
Abstract
The complex combined effects of nanoparticles and environmental pollutants in the aqueous environment will inevitably affect aquatic ecosystem and human life. Bisphenol A (BPA) is listed as a typical kind of endocrine disruptors, there is little research about the joint toxicity of co-exposure of SiO2 nanoparticles (NPs) and BPA. In this study, fluorescent ultra-small SiO2 NPs (US-FMSNs) around 6.3 nm were synthesized and investigated for their combined effects with BPA on zebrafish during the early developmental stages within 4-168 h post fertilization (hpf). The results showed that US-FMSNs could accumulate in the chorion, abdomen and intestine in zebrafish. In addition, the different concentration (0.1, 1, 10 μg/mL) of BPA and US-FMSNs (200 μg/mL) demonstrated strong impact on multiple toxic endpoints at four periods (72, 96, 120, 168 hpf). We found US-FMSNs had no significant toxic effect on zebrafish, while BPA (10 μg/mL) showed a degree of developmental toxicity. Compared with single BPA (10 μg/mL) exposure, combined exposure enhanced the developmental toxicity of zebrafish, including increased mortality, decreased hatching rate and body length, and decreased activity of total superoxide dismutase (T-SOD) and increased malondialdehyde (MDA) levels. Our results indicated that US-FMSNs and BPA induced oxidative stress, and the effect of the co-exposure was less than that of single exposure (10 μg/mL). This study hereby provides a basis for the potential ecological and health risks of SiO2 NPs and BPA exposure.
Collapse
Affiliation(s)
- Qin Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mei Sun
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahui Fan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Forest V. Combined effects of nanoparticles and other environmental contaminants on human health - an issue often overlooked. NANOIMPACT 2021; 23:100344. [PMID: 35559845 DOI: 10.1016/j.impact.2021.100344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 06/15/2023]
Abstract
Air pollution is considered as a major public health issue worldwide. It consists of a complex mixture of pollutants including nanoparticles to which we are increasingly exposed to due to the dramatic development of the nanotechnologies and their incidental or intentional release in the environment. Consequently, some concerns have raised about the combined toxicity of air particulates and other air pollutants on human health. However, the interactions between the contaminants and their resulting combined toxicity are often overlooked. Indeed, the biological effects triggered by nanoparticles are usually assessed focusing on individual nanoparticles, while their interaction with co-contaminants can deeply impact, either positively or negatively, their biodistribution, fate in the organism and toxicological profile (additive, synergistic or antagonistic responses). This paper presents a bibliographic review on the combined toxicity of nanoparticles and co-pollutants and discusses the underlying mechanisms. It also highlights the scarcity of data in the current literature, arguing for an urgent need to take into account the mixture effects to be more representative of real-life conditions for a better and accurate human health risk assessment and management.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
| |
Collapse
|
10
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Jiang D, Hu X, Jin X, Ma A, Yin D. Oxidized nanoscale zero-valent iron changed the bioaccumulation and distribution of chromium in zebrafish. CHEMOSPHERE 2021; 263:128001. [PMID: 32828050 DOI: 10.1016/j.chemosphere.2020.128001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Influences of colloidal stabilities of nanoparticles (NPs) on the bioaccumulation of co-existing pollutants remains largely unknown. In this study, two oxidation products of nanoscale zero-valent iron (nZVI) with totally varied colloidal stabilities, termed highly oxidized nZVI (HO-nZVI) and lowly oxidized nZVI (LO-nZVI), were exposed to zebrafish with chromium (Cr); this approach was used to investigate the impacts of colloidal stability of oxidized nZVI on the bioaccumulation of Cr in zebrafish. A significant increase in the Cr and NP content in the viscera of fish in the presence of the oxidized nZVI after 20 days of exposure was confirmed, which indicated that Cr was consumed by fish through the uptake of the NPs. Furthermore, a significantly higher level of the HO-nZVI accumulated in the viscera in contrast to LO-nZVI, which suggested that the colloidal stability of NP is a crucial factor when evaluating the accessibility of NPs to zebrafish. Thus, HO-nZVI induced a significantly stronger enhancement of Cr content in fish than LO-nZVI. Our results suggest that oxidized nZVI will act as the carrier of co-existing heavy metals and change the transportation and distribution of heavy metals in zebrafish; moreover, the colloidal stability of NP will have a significant influence on the bioaccumulation of coexisting Cr.
Collapse
Affiliation(s)
- Danlie Jiang
- School of Materials and Chemical Engineering, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710021, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710021, China
| | - Aijie Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710021, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
12
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
13
|
Dussert F, Arthaud PA, Arnal ME, Dalzon B, Torres A, Douki T, Herlin N, Rabilloud T, Carriere M. Toxicity to RAW264.7 Macrophages of Silica Nanoparticles and the E551 Food Additive, in Combination with Genotoxic Agents. NANOMATERIALS 2020; 10:nano10071418. [PMID: 32708108 PMCID: PMC7408573 DOI: 10.3390/nano10071418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Synthetic amorphous silica (SAS) is used in a plethora of applications and included in many daily products to which humans are exposed via inhalation, ingestion, or skin contact. This poses the question of their potential toxicity, particularly towards macrophages, which show specific sensitivity to this material. SAS represents an ideal candidate for the adsorption of environmental contaminants due to its large surface area and could consequently modulate their toxicity. In this study, we assessed the toxicity towards macrophages and intestinal epithelial cells of three SAS particles, either isolated SiO2 nanoparticles (LS30) or SiO2 particles composed of agglomerated-aggregates of fused primary particles, either food-grade (E551) or non-food-grade (Fumed silica). These particles were applied to cells either alone or in combination with genotoxic co-contaminants, i.e., benzo[a]pyrene (B[a]P) and methane methylsulfonate (MMS). We show that macrophages are much more sensitive to these toxic agents than a non-differenciated co-culture of Caco-2 and HT29-MTX cells, used here as a model of intestinal epithelium. Co-exposure to SiO2 and MMS causes DNA damage in a synergistic way, which is not explained by the modulation of DNA repair protein mRNA expression. Together, this suggests that SiO2 particles could adsorb genotoxic agents on their surface and, consequently, increase their DNA damaging potential.
Collapse
Affiliation(s)
- Fanny Dussert
- Université Grenoble-Alpes, CEA, CNRS, IRIG-DIESE, SyMMES, Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), F-38000 Grenoble, France; (F.D.); (P.-A.A.); (M.-E.A.); (T.D.)
| | - Pierre-Adrien Arthaud
- Université Grenoble-Alpes, CEA, CNRS, IRIG-DIESE, SyMMES, Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), F-38000 Grenoble, France; (F.D.); (P.-A.A.); (M.-E.A.); (T.D.)
| | - Marie-Edith Arnal
- Université Grenoble-Alpes, CEA, CNRS, IRIG-DIESE, SyMMES, Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), F-38000 Grenoble, France; (F.D.); (P.-A.A.); (M.-E.A.); (T.D.)
| | - Bastien Dalzon
- Chemistry and Biology of Metals, Université Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France; (B.D.); (A.T.); (T.R.)
| | - Anaëlle Torres
- Chemistry and Biology of Metals, Université Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France; (B.D.); (A.T.); (T.R.)
| | - Thierry Douki
- Université Grenoble-Alpes, CEA, CNRS, IRIG-DIESE, SyMMES, Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), F-38000 Grenoble, France; (F.D.); (P.-A.A.); (M.-E.A.); (T.D.)
| | - Nathalie Herlin
- Université Paris Saclay, CEA Saclay, IRAMIS NIMBE UMR 3685, 91191 Gif/Yvette CEDEX, France;
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Université Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France; (B.D.); (A.T.); (T.R.)
| | - Marie Carriere
- Université Grenoble-Alpes, CEA, CNRS, IRIG-DIESE, SyMMES, Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), F-38000 Grenoble, France; (F.D.); (P.-A.A.); (M.-E.A.); (T.D.)
- Correspondence: ; Tel.: +33-4-3878-0328
| |
Collapse
|
14
|
Jiang J, Li Y, Liang S, Sun B, Shi Y, Xu Q, Zhang J, Shen H, Duan J, Sun Z. Combined exposure of fine particulate matter and high-fat diet aggravate the cardiac fibrosis in C57BL/6J mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122203. [PMID: 32171159 DOI: 10.1016/j.jhazmat.2020.122203] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Cardiac fibrosis is associated with fine particulate matter (PM2.5) exposure. In addition, whether high-fat diet (HFD) could exacerbate the PM2.5-induced cardiac injury was unevaluated. Thus, this study was aimed to investigate the combined effects of PM2.5 and HFD on cardiac fibrosis. The echocardiography and histopathological analysis showed that co-exposure of PM2.5 and HFD had a significant deleterious effect on both cardiac systolic and diastolic function accompanied the myofibril disorder and myocardial fibrosis in C57BL/6 J mice than exposed to PM2.5 or HFD alone. The augmented oxidative damage and increased α-SMA area percentage were detected in heart tissue of mice exposed to PM2.5 and HFD together. PM2.5 upregulated the expressions of cardiac fibrosis-related special markers, including collagen-I, collagen-III, TGF-β1, p-Smad3 and total Smad3, which had more pronounced activations in co-exposure group. Meanwhile, the factorial analysis exhibited the synergistic interaction regarded to the combined exposure of PM2.5 and HFD. Simultaneously, PM2.5 and palmitic acid increased intracellular ROS generation and activated the TGF-β1/Smad3 signaling pathway in cardiomyocytes. While the ROS scavenger NAC had effectively attenuated the ROS level and suppressed the TGF-β1/Smad3 signaling pathway. Taken together, our results demonstrated combined exposure to PM2.5 and HFD could aggravate cardiac fibrosis via activating the ROS/TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
15
|
Nazarparvar-Noshadi M, Ezzati Nazhad Dolatabadi J, Rasoulzadeh Y, Mohammadian Y, Shanehbandi D. Apoptosis and DNA damage induced by silica nanoparticles and formaldehyde in human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18592-18601. [PMID: 32198691 DOI: 10.1007/s11356-020-08191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to silica nanoparticles (SNPs) and formaldehyde (FA) is increasing and this has raised some concerns over their possible toxic effects on the exposed working populations. Notwithstanding several studies in this area, the combined toxicological effects of these contaminants have not been yet studied. Therefore, this in vitro study was designed to evaluate the SNPs and FA combined toxicity on human lung epithelial cells (A549 cells). The cells were exposed to SNPs and FA separately and in combined form and the single and combined toxicity of SNPs and FA were evaluated by focusing on cellular viability, DNA damage, and apoptosis via MTT, DAPI staining, DNA ladder, and Annexin V-FITC apoptosis assays. The results showed a significant increase in cytotoxicity, DNA damage, and chromatin fragmentation and late apoptotic\necrotic rates in combined treated cells compared with SNPs and FA-treated cells (P value < 0.05). Two-factorial analysis showed an additive toxic interaction between SNPs and FA. Eventually, this can be deduced that workers exposed simultaneously to SNPs and FA may be at high risk compared with exposure to each other.
Collapse
Affiliation(s)
- Mehran Nazarparvar-Noshadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:599-608. [PMID: 31904905 DOI: 10.1002/tox.22895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Extensive application of amorphous silica nanoparticles (Si NPs) and ubiquitous cadmium (Cd) may increase their chances of coexposure to humans. Studies on combined effects of Si NPs and Cd in human cells are very limited. We investigated the potential mechanism of toxicity caused by coexposure of amorphous Si NPs and Cd in human liver (HepG2) cells. Results showed that Si NPs were not toxic to HepG2. However, Cd induced significant toxicity in HepG2 cells. Interestingly, we observed that a noncytotoxic concentration of Si NPs potentiated the cytotoxicity of Cd in HepG2 cells. We further noticed that coexposure of Si NPs and Cd augmented oxidative stress evidenced by the generation of oxidants (reactive oxygen species, hydrogen peroxide, and lipid peroxidation) and depletion of antioxidants (glutathione level and antioxidant enzyme activity). Coexposure of Si NPs and Cd also augmented mitochondria-mediated apoptosis in HepG2 cells indicated by altered regulation of apoptotic genes (p53, bax, bcl-2, caspase-3, and caspase-9) along with reduced mitochondrial membrane potential. Interaction data indicated that Si NPs facilitate the cellular uptake of Cd due to its strong adsorption on the surface of Si NPs. Hence, Si NPs increased the bioaccumulation and toxicity of Cd in HepG2 cells. This study warrants further research to explore the potential mechanisms of combined toxicity of Si NPs and Cd in animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Lv Y, Jiang H, Li S, Han B, Liu Y, Yang D, Li J, Yang Q, Wu P, Zhang Z. Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113812. [PMID: 31884211 DOI: 10.1016/j.envpol.2019.113812] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is an internationally recognized carcinogenic hazard that causes serious pulmonary toxicity. However, Cr-induced pulmonary toxicity lacks effective treatment to date. Sulforaphane (SFN), a well-known organosulfur compound, has gained increasing attention because of its unique biological function. This study investigates if SFN could decrease K2Cr2O7-induced pulmonary toxicity and a potential mechanism involved using a rat 35-day Cr-induced pulmonary toxicity model and the mouse alveolar type II epithelial cell line (MLE-12). The results showed that SFN prevented Cr-induced oxidative stress, histopathological lesions, inflammation, apoptosis, and changes in protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) levels in vivo and in vitro. However, SFN can not play the protective effect against K2Cr2O7-induced cell injury after treating by an Akt-specific inhibitor (MK-2206 2HCl) in MLE-12 cells. Furthermore, SFN increased the expression of nuclear factor-E2-related factor-2 (Nrf2) phase II detoxification enzymes. Collectively, this study demonstrates that SFN prevents K2Cr2O7-induced lung toxicity in rats through enhancing Nrf2-mediated exogenous antioxidant defenses via activation of the Akt/GSK-3β/Fyn signaling pathway. SFN may be a novel natural substance to cure Cr-induced lung toxicity.
Collapse
Affiliation(s)
- Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
18
|
Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Feng T, Kang S, Wang X. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. CHEMOSPHERE 2019; 237:124403. [PMID: 31356996 DOI: 10.1016/j.chemosphere.2019.124403] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The contact between metal oxide nanoparticles (NPs) and human is more and more close with their wide applications. The inputs of metal oxide NPs to the environment are also growing every year, which causes potential environmental and human health risks. They are toxic to animals, microorganisms and plants at high concentrations, and they show different mechanisms of toxicity to different species. In addition, under complex environmental conditions, their toxic effects are often unpredictable. We have integrated the recent studies on the biotoxicity of metal oxide NPs from 2015-present, and clarified their toxic mechanism, as well as the toxic harm. It lays a foundation for further studying the toxicity and ecological risk of metal oxide NPs.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Jianhua Wu
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China.
| | - Yijie Xiong
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Shuang Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
19
|
Chen F, Jin J, Hu J, Wang Y, Ma Z, Zhang J. Endoplasmic Reticulum Stress Cooperates in Silica Nanoparticles-Induced Macrophage Apoptosis via Activation of CHOP-Mediated Apoptotic Signaling Pathway. Int J Mol Sci 2019; 20:E5846. [PMID: 31766455 PMCID: PMC6929173 DOI: 10.3390/ijms20235846] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
While silica nanoparticles (SiNPs) have wide applications, they inevitably increase atmospheric particulate matter and human exposure to this nanomaterial. Numerous studies have focused on how to disclose SiNP toxicity and on understanding its toxic mechanisms. However, there are few studies in the literature reporting the interaction between endoplasmic reticulum (ER) stress and SiNP exposure, and the corresponding detailed mechanisms have not been clearly determined. In this study, CCK-8 and flow cytometry assays demonstrated that SiNPs gradually decreased cell viability and increased cell apoptosis in RAW 264.7 macrophage cells in dose- and time-dependent manners. Western blot analysis showed that SiNPs significantly activated ER stress by upregulating GRP78, CHOP, and ERO1α expression. Meanwhile, western blot analysis also showed that SiNPs activated the mitochondrial-mediated apoptotic signaling pathway by upregulating BAD and Caspase-3, and downregulating the BCL-2/BAX ratio. Moreover, 4-phenylbutyrate (4-PBA), an ER stress inhibitor, significantly decreased GRP78, CHOP, and ERO1α expression, and inhibited cell apoptosis in RAW 264.7 macrophage cells. Furthermore, overexpression of CHOP significantly enhanced cell apoptosis, while knockdown of CHOP significantly protected RAW 264.7 macrophage cells from apoptosis induced by SiNPs. We found that the CHOP-ERO1α-caspase-dependent apoptotic signaling pathway was activated by upregulating the downstream target protein ERO1α and caspase-dependent mitochondrial-mediated apoptotic signaling pathway by upregulating Caspase-3 and downregulating the ratio of BCL-2/BAX. In summary, ER stress participated in cell apoptosis induced by SiNPs and CHOP regulated SiNP-induced cell apoptosis, at least partly, via activation of the CHOP-ERO1α-caspase apoptotic signaling pathway in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jiaqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jiahui Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yujing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (J.H.); (Y.W.); (Z.M.); (J.Z.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
20
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Co-Exposure to SiO 2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173199. [PMID: 31480624 PMCID: PMC6747183 DOI: 10.3390/ijerph16173199] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022]
Abstract
Widespread application of silica nanoparticles (nSiO2) and ubiquitous metalloid arsenic (As) may increase their chances of co-exposure to human beings in daily life. Nonetheless, studies on combined effects of nSiO2 and As in human cells are lacking. We investigated the co-exposure effects of nSiO2 and As in human liver (HepG2) and human fibroblast (HT1080) cells. Results showed that nSiO2 did not cause cytotoxicity. However, exposure of As caused oxidative stress and apoptosis in both types of cells. Interesting results were that co-exposure of a non-cytotoxic concentration of nSiO2 significantly augmented the As induced toxicity in both cells. Intracellular level of As was higher in the co-exposure group (nSiO2 + As) than the As group alone, suggesting that nSiO2 facilitates the cellular uptake of As. Co-exposure of nSiO2 and As potentiated oxidative stress indicated by pro-oxidants generation (reactive oxygen species, hydrogen peroxide and lipid peroxidation) and antioxidants depletion (glutathione level, and glutathione reductase, superoxide dismutase and catalase activities). In addition, co-exposure of nSiO2 and As also potentiated mitochondria-mediated apoptosis suggested by increased expression of p53, bax, caspase-3 and caspase-9 genes (pro-apoptotic) and decreased expression of bcl-2 gene (anti-apoptotic) along with depleted mitochondrial membrane potential. To the best of our knowledge, this is the first study showing that co-exposure of nSiO2 and As induced augmentation of oxidative stress and mitochondria-mediated apoptosis in HepG2 and HT1080 cells. Hence, careful attention is required for human health assessment following combined exposure to nSiO2 and As.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11142, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11142, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11142, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11142, Saudi Arabia
| |
Collapse
|
21
|
Zhu ZL, Wang SC, Zhao FF, Wang SG, Liu FF, Liu GZ. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:509-517. [PMID: 30583159 DOI: 10.1016/j.envpol.2018.12.044] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Toxicity of single microplastics on organisms has been reported widely, however, their joint toxicity with other contaminants on phytoplankton is rarely investigated. Here, we studied the toxicity of triclosan (TCS) with four kinds of microplastics namely polyethylene (PE, 74 μm), polystyrene (PS, 74 μm), polyvinyl chloride (PVC, 74 μm), and PVC800 (1 μm) on microalgae Skeletonema costatum. Both growth inhibition and oxidative stress including superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. We found that TCS had obvious inhibition effect on microalgae growth within the test concentrations, and single microplastics also had significant inhibition effect which followed the order of PVC800 > PVC > PS > PE. However, the joint toxicity of PVC and PVC800 in combination with TCS decreased more than that of PE and PS. The higher adsorption capacity of TCS on PVC and PVC800 was one possible reason for the greater reduction of their toxicity. The joint toxicity of PVC800 was still most significant (PE < PVC < PS < PVC800) because of the minimum particle size. According to the independent action model, the joint toxicity systems were all antagonism. Moreover, the reduction of SOD was higher than MDA which revealed that the physical damage was more serious than intracellular damage. SEM images revealed that the aggregation of microplastics and physical damage on algae was obvious. Collectively, the present research provides evidences that the existence of organic pollutants is capable of influencing the effects of microplastics, and the further research on the joint toxicity of microplastics with different pollutants is urgent.
Collapse
Affiliation(s)
- Zhi-Lin Zhu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Fei-Fei Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China.
| | - Guang-Zhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
22
|
Yazdimamaghani M, Moos PJ, Dobrovolskaia MA, Ghandehari H. Genotoxicity of amorphous silica nanoparticles: Status and prospects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 16:106-125. [PMID: 30529789 PMCID: PMC6455809 DOI: 10.1016/j.nano.2018.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Amorphous silica nanoparticles (SNPs) are widely used in biomedical applications and consumer products. Little is known, however, about their genotoxicity and potential to induce gene expression regulation. Despite recent efforts to study the underlying mechanisms of genotoxicity of SNPs, inconsistent results create a challenge. A variety of factors determine particle-cell interactions and underlying mechanisms. Further, high-throughput studies are required to carefully assess the impact of silica nanoparticle physicochemical properties on induction of genotoxic response in different cell lines and animal models. In this article, we review the strategies available for evaluation of genotoxicity of nanoparticles (NPs), survey current status of silica nanoparticle gene alteration and genotoxicity, discuss particle-mediated inflammation as a contributing factor to genotoxicity, identify existing gaps and suggest future directions for this research.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States
| | - Philip J Moos
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States.
| |
Collapse
|