1
|
Vilela P, Safder U, Heo S, Nguyen HT, Lim JY, Nam K, Oh TS, Yoo C. Dynamic calibration of process-wide partial-nitritation modeling with airlift granular for nitrogen removal in a full-scale wastewater treatment plant. CHEMOSPHERE 2022; 305:135411. [PMID: 35738404 DOI: 10.1016/j.chemosphere.2022.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A main challenge in rapid nitrogen removal from rejected water in wastewater treatment plants (WWTPs) is growth of biomass by nitrite-oxidizing bacteria (NOB) and ammonia-oxidizing bacteria (AOB). In this study, partial nitritation (PN) coupled with air-lift granular unit (AGU) technology was applied to enhance nitrogen-removal efficiency in WWTPs. For successful PN process at high-nitrogen-influent conditions, a pH of 7.5-8 for high free-ammonia concentrations and AOB for growth of total bacterial populations are required. The PN process in a sequential batch reactor (SBR) with AGU was modeled as an activated sludge model (ASM), and dynamic calibration using full-scale plant data was performed to enhance aeration in the reactor and improve the nitrite-to-ammonia ratio in the PN effluent. In steady-state and dynamic calibrations, the measured and modeled values of the output were in close agreement. Sensitivity analysis revealed that the kinetic and stoichiometric parameters are associated with growth and decay of heterotrophs, AOB, and NOB microorganisms. Overall, 80% of the calibrated data fit the measured data. Stage 1 of the dynamic calibration showed NO2 and NO3 values close to 240 mg/L and 100 mg/L, respectively. Stage 2 showed NH4 values of 200 mg/L at day 30 with the calibrated effluent NO2 and NO3 value of 250 mg/L. In stage 3, effluent NH4 concentration was 200 mg/L at day 60.
Collapse
Affiliation(s)
- Paulina Vilela
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea; ESPOL Polytechnic University, Escuela Superior Politécnica Del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Usman Safder
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - SungKu Heo
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Hai-Tra Nguyen
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Juin Yau Lim
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - KiJeon Nam
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Tae-Seok Oh
- BKT Co. Ltd., 25 Yuseong-daero 1184beon-gil, Yuseong-gu, Daejeon, 34109, South Korea
| | - ChangKyoo Yoo
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
2
|
Gonçalves JM, Beckmann C, Bebianno MJ. Assessing the effects of the cytostatic drug 5-Fluorouracil alone and in a mixture of emerging contaminants on the mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 305:135462. [PMID: 35753414 DOI: 10.1016/j.chemosphere.2022.135462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 μg/L), polystyrene nanoparticles (nPS; 50 nm; 10 μg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Clara Beckmann
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
3
|
Zhang L, Li QX, Li X, Yoza B, Zhou L. Toxicity of Nanoparticles of AgO, La₂O₃, CuO, AgO-Fe₃O₄, Ag-Graphene, and GO-Cu-AgO to the Fungus Moniliella wahieum Y12 T Isolated from Degraded Biodiesel and the Bacterium Escherichia coli. J Biomed Nanotechnol 2022; 18:928-938. [PMID: 35715899 DOI: 10.1166/jbn.2022.3299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Moniliella wahieum Y12T (M. wahieum Y12T), a fungal isolated from biodiesel caused serious biodiesel contamination and resulting in biofouling and corrosion, especially during storage. Nanoparticles (NPs) composed of silver, copper, iron, and graphene or their binary mixtures were examined as environmental inhibitors against the fungus Moniliella wahieum Y12T, a biodiesel contaminant. Exposure of M. wahieum Y12T and Escherichia coli (E. coli) to low concentrations of Ag-based nanoparticles (from 0.01 to 0.05 mg mL-1) resulted in excellent growth inhibition. The half-maximal inhibitory concentration (IC50) of M. wahieum Y12T by La₂O₃ NPs was 138 times greater when compared with silver (AgO). The median effective concentration (EC50) of La₂O₃ NPs on E. coli was 379 times more than M. wahieum Y12T. At this same concentration, E. coli was uninhibited after exposure to the NPs. However, a fluorescein diacetate analysis showed the Ag-based NPs (including AgO, AgO-Fe₃O₄ and GO-Cu-AgO) significantly reduced the metabolic activity for both of the compared organisms. Compared with other metal oxide NPs, AgO and AgO-Fe₃O₄ NPs display strong bactericidal effect with higher stability and dispersibility, with the zeta potential of -22.27 mV and poly-dispersity index (PDI) values of 0.36. These results demonstrate the broad-spectrum biological inhibition that occurs with both Ag-based bimetallic and graphene oxide nanoparticles and the combined utilization of Ag-based NPs paves a new way for inhibits the biodegradation of biodiesel.
Collapse
Affiliation(s)
- Lin Zhang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Xiaotong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Brandon Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East West Rd., Honolulu, HI, 96822, USA
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| |
Collapse
|
4
|
Wang R, Lou J, Fang J, Cai J, Hu Z, Sun P. Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal. REV CHEM ENG 2020. [DOI: 10.1515/revce-2018-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractWith the rapid growth of economics and nanotechnology, a significant portion of the anthropogenic emissions of heavy metals and nanoparticles (NPs) enters wastewater streams and discharges to wastewater treatment plants, thereby potentially posing a risk to the bacteria that facilitate the successful operation of the enhanced biological phosphorus (P) removal (EBPR) process. Although some efforts have been made to obtain detailed insights into the effects of heavy metals and metal (oxide) nanoparticles [Me(O)NPs], many unanswered questions remain. One question is whether the toxicity of Me(O)NPs originates from the released metal ions. This review aims to holistically evaluate the effects of heavy metals and Me(O)NPs. The interactions among extracellular polymeric substances, P, and heavy metals [Me(O)NPs] are presented and discussed for the first time. The potential mechanisms of the toxicity of heavy metals [Me(O)NPs] are summarized. Additionally, mathematical models of the toxicity and removal of P, heavy metals, and Me(O)NPs are overviewed. Finally, knowledge gaps and opportunities for further study are discussed to pave the way for fully understanding the inhibition of heavy metals [Me(O)NPs] and for reducing their inhibitory effect to maximize the reliability of the EBPR process.
Collapse
Affiliation(s)
- Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhirong Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- GL Environment Inc., Hamilton, Canada
| | - Peide Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
5
|
Vilela P, Jácome G, Kim SY, Nam K, Yoo C. Population response modeling and habitat suitability of Cobitis choii fish species in South Korea for climate change adaptation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109949. [PMID: 31757512 DOI: 10.1016/j.ecoenv.2019.109949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Endangered species ecosystems require appropriate monitoring for assessing population growth related to the emerging pollutants in their habitat conditions. The response of population growth of Cobitis choii, an endangered fish species, under the exposure to emerging pollutants present in the Geum River Basin of South Korea was studied. Toxicity models of concentration addition (CA), independent action (IA), and concentration addition-independent action (CAIA) were implemented utilizing the concentration of a set of 25 chemicals recorded in the study area. Thus, a population-level response analysis was developed based on the abundance of Cobitis choii for period 2011-2015. The results were compared showing that the CA and IA models were the most conservative approaches for the prediction of growth rate. Further, a standard abnormality index (SAI) and habitat suitability (HS) indicators based on the climate, habitat, and abundance data were presented to completely analyze the population growth of the species. Suitability of the species growth was most probable for year 2015 for the variables of air temperature and land surface temperature. A spatial analysis was complementarily presented to visualize the correlation of variables for the best suitability of the species growth. This study presents a methodology for the analysis of the ecosystem's suitability for Cobitis choii growth and its assessment of the chemicals present in Geum River stream.
Collapse
Affiliation(s)
- Paulina Vilela
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - Gabriel Jácome
- Escuela de Recursos Naturales Renovables, Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte (UTN), Avenida 17 de Julio 5-21, y Gral José María Cordova, EC100150, Ibarra, Imbabura, Ecuador
| | - Sang Youn Kim
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - KiJeon Nam
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - ChangKyoo Yoo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea.
| |
Collapse
|
6
|
Safder U, Nam K, Kim D, Heo S, Yoo C. A real time QSAR-driven toxicity evaluation and monitoring of iron containing fine particulate matters in indoor subway stations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:361-369. [PMID: 30458403 DOI: 10.1016/j.ecoenv.2018.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A fine particulate matter less than 2.5 µm (PM2.5) in the underground subway system are the cause of many diseases. The iron containing PMs frequently confront in underground stations, which ultimately have an impact on the health of living beings especially in children. Hence, it is necessary to conduct toxicity assessment of chemical species and regularized the indoor air pollutants to ensure the good health of children. Therefore, in this study, a new indoor air quality (IAQ) index is proposed based on toxicity assessment by quantitative structure-activity relationship (QSAR) model. The new indices called comprehensive indoor air toxicity (CIAT) and cumulative comprehensive indoor air toxicity (CCIAT) suggests the new standards based on toxicity assessment of PM2.5. QSAR based deep neural network (DNN) exhibited the best model in predicting the toxicity assessment of chemical species in particulate matters, which yield lowest RMSE and QF32 values of 0.6821 and 0.8346, respectively, in the test phase. After integration with a standard concentration of PM2.5, two health risk indices of CIAT and CCIAT are introduced based on toxicity assessment results, which can be use as the toxicity standard of PM2.5 for detail IAQ management in a subway station. These new health risk indices suggest more sensitive air pollutant level of iron containing fine particulate matters or molecular level contaminants in underground spaces, alerting the health risk of adults and children in "unhealthy for sensitive group".
Collapse
Affiliation(s)
- Usman Safder
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - KiJeon Nam
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - Dongwoo Kim
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - SungKu Heo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - ChangKyoo Yoo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea.
| |
Collapse
|
7
|
Abstract
Metal and metalloid nanoparticles (NPs) have attracted substantial attention from research communities over the past few decades. Traditional methodologies for NP fabrication have also been intensely explored. However, drawbacks such as the use of toxic agents and the high energy consumption involved in chemical and physical processes hinder their further application in various fields. It is well known that some bacteria are capable of binding and concentrating dissolved metal and metalloid ions, thereby detoxifying their environments. Bioinspired fabrication of NPs is environmentally friendly and inexpensive and requires only low energy consumption. Some biosynthesized NPs are usually used as heterogeneous catalysts in environmental remediation and show higher catalytic efficiency because of their enhanced biocompatibility, stability and large specific surface areas. Therefore, bacteria used as nanofactories can provide a novel approach for removing metal or metalloid ions and fabricating materials with unique properties. Even though a wide range of NPs have been biosynthesized, and their synthetic mechanisms have been proposed, some of these mechanisms are not known in detail. This review focuses on the synthesis and catalytic applications of NPs obtained using bacteria. The known mechanisms of bioreduction and prospects in the design of NPs for catalytic applications are also discussed.
Collapse
|