1
|
Agathokleous E, Calabrese EJ, Veresoglou SD. The microbiome orchestrates contaminant low-dose phytostimulation. TRENDS IN PLANT SCIENCE 2025; 30:515-525. [PMID: 39736489 DOI: 10.1016/j.tplants.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025]
Abstract
Our understanding of the physiological mechanisms of the plant hormetic response to countless environmental contaminants is rapidly advancing. However, the microbiome is a critical determinant of plant responses to stressors, thus possibly influencing hormetic responses. Here, we review the otherwise neglected role of microbes in shaping plant stimulation by subtoxic concentrations of contaminants and vice versa. Numerous contaminants at subtoxic levels enhance microorganisms and proliferate symbionts, such as mycorrhizae and other plant beneficial microbes, leading to both direct and indirect improvements in plant physiological performance. Microbial symbiosis facilitates nutrient uptake by plants, indicating an important contribution of symbionts to phytostimulation under subtoxic contamination. We also discuss the mechanisms and implications of the stimulation of plant-microbe systems by subtoxic contaminants.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Yang G, Jiang D, Huang LJ, Cui C, Yang R, Pi X, Peng X, Peng X, Pi J, Li N. Distinct toxic effects, gene expression profiles, and phytohormone responses of Polygonatum cyrtonema exposed to two different antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133639. [PMID: 38309169 DOI: 10.1016/j.jhazmat.2024.133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.
Collapse
Affiliation(s)
- Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418099, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Zhang Z, Zhao L, Yang J, Pang J, Lambers H, He H. Effects of environmentally relevant concentrations of oxytetracycline and sulfadiazine on the bacterial communities, antibiotic resistance genes, and functional genes are different between maize rhizosphere and bulk soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22663-22678. [PMID: 38409385 DOI: 10.1007/s11356-024-32578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Antibiotic contamination in soil has become a major concern worldwide. At present, it is not clear how two co-existed antibiotics with environmentally relevant concentrations would affect soil bacterial community structure, the abundances of antibiotic resistance genes (ARGs) and functional genes, and whether the effects of antibiotics would differ between rhizosphere and bulk soil. We conducted a greenhouse pot experiment to grow maize in a loess soil treated with oxytetracycline (OTC) or sulfadiazine (SDZ) or both at an environmentally relevant concentration (1 mg kg-1) to investigate the effects of OTC and SDZ on the rhizosphere and bulk soil bacterial communities, abundances of ARGs and carbon (C)-, nitrogen (N)-, and phosphorus (P)-cycling functional genes, and on plant growth and plant N and P nutrition. The results show that the effects of environmentally relevant concentrations of OTC and SDZ on bacterial communities and abundances of ARGs and functional genes differ between maize rhizosphere and bulk soil. The effects of two antibiotics resulted in a higher absolute abundances of accA, tet(34), tnpA-04, and sul2 in the rhizosphere soil than in the bulk soil and different bacterial community compositions and biomarkers in the rhizosphere soil and the bulk soil. However, OTC had a stronger inhibitory effect on the abundances of a few functional genes in the bulk soil than SDZ did, and their combination had no synergistic effect on plant growth, ARGs, and functional genes. The role of co-existed OTC and SDZ decreased shoot height and increased root N concentration. The results demonstrate that environmentally relevant concentrations of antibiotics shift soil microbial community structure, increase the abundances of ARGs, and reduce the abundances of functional genes. Furthermore, soil contamination with antibiotics can diminish agricultural production via phytotoxic effects on crops, and combined effects of antibiotics on plant growth and nutrient uptake should be considered.
Collapse
Affiliation(s)
- Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Le Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hans Lambers
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Institute of Soil and Water Conservation, Yangling, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
5
|
Yu L, Zhang X, Jin D, Lou F, Zhao J, Hun X. Chemiluminescence assay for kanamycin based on target recycling strategy. LUMINESCENCE 2022; 37:987-994. [PMID: 35411693 DOI: 10.1002/bio.4250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
A chemiluminescence (CL) sensing strategy for kanamycin residue detection in fish samples was established based on luminol-functionalized gold nanoparticles as CL nanoprobe materials combined with DNA hairpin structure and carboxyl modified magnetic beads. Relying on nucleic acid amplification technology, the system can successfully realize the recycling of kanamycin, so that the biosensor can release a large number of luminol-functionalized gold nanoparticles with excellent CL performance even at a low residual level of kanamycin. The biosensor strategy showed a good linear relationship with kanamycin in the range of 0.09 nM-130 nM, the detection limit was as low as 0.04 nM. This method proves the excellent performance of the sensing strategy and provides a low-cost and high-sensitivity CL analysis strategy for the detection of kanamycin and even other antibiotics.
Collapse
Affiliation(s)
- Liyuan Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Xiaoqian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Daobin Jin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fangxu Lou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Jikuan Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, P. R. China
| |
Collapse
|
6
|
|
7
|
Wahid F, Baig S, Bhatti MF, Manzoor M, Ahmed I, Arshad M. Growth responses and rubisco activity influenced by antibiotics and organic amendments used for stress alleviation in Lactuca sativa. CHEMOSPHERE 2021; 264:128433. [PMID: 33032212 DOI: 10.1016/j.chemosphere.2020.128433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The global increase in the consumption of antibiotics has resulted in contamination of different ecosystems with severe implications on crop productivity. This study investigated the effects of ampicillin and ofloxacin on Lactuca sativa germination upon solution exposure and growth when cultivated in soils treated with three organic amendments (compost, rice husk and vermicompost). Two levels of both antibiotics 5 and 10 mg L-1 (for solution) or mg kg-1 (for soil) were tested in addition to the control. Results indicated that addition of compost significantly (p < 0.05) increased (50%) the root lengths of plant exposed to ampicillin (5 mg L-1). Similarly, vermicompost-amended treatments displayed a 64% increase (p < 0.05) in the shoot length of seedlings under the effect of 5 mg L-1 ofloxacin, depicting a positive synergistic effect between the antibiotics and amendments in the germination test. Nevertheless, the germination percentage remained unaffected in all the treatments. In greenhouse experiment, enhanced plant biomass was observed with the use of rice husk across all the treatment groups. Comparable to the germination test, plants treated with rice husk and compost signaled a higher content of rubisco large subunit (157% and 85%, respectively) and soluble protein (248% and 108%, respectively) post antibiotics application. On the contrary, an antagonistic effect of the rice husk and ofloxacin 5 mg kg-1 was observed on the chlorophyll content, evident by a 37% decrease. Overall, it was observed that the effect of antibiotics on different plant traits vary depending on the antibiotic concentration as well as type of amendment used.
Collapse
Affiliation(s)
- Fakhria Wahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sofia Baig
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Maria Manzoor
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan; Institute of Environmental and Agricultural Sciences, Faculty of Life Sciences, University of Okara, Okara 56130, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Bioresource Conservation Institute (BCI), National Agricultural Research Centre (NARC), Islamabad, 45500, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
8
|
Efremova LN, Strelnikova SR, Gazizova GR, Minkina EA, Komakhin RA. A Synthetic Strong and Constitutive Promoter Derived from the Stellaria media pro-SmAMP1 and pro-SmAMP2 Promoters for Effective Transgene Expression in Plants. Genes (Basel) 2020; 11:E1407. [PMID: 33256091 PMCID: PMC7760760 DOI: 10.3390/genes11121407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
Synthetic promoters are vital for genetic engineering-based strategies for crop improvement, but effective methodologies for their creation and systematic testing are lacking. We report here on the comparative analysis of the promoters pro-SmAMP1 and pro-SmAMP2 from Stellaria media ANTIMICROBIAL PEPTIDE1 (AMP1) and ANTIMICROBIAL PEPTIDE2 (AMP2). These promoters are more effective than the well-known Cauliflower mosaic virus 35S promoter. Although these promoters share about 94% identity, the pro-SmAMP1 promoter demonstrated stronger transient expression of a reporter gene in Agrobacterium infiltration of Nicotiana benthamiana leaves, while the pro-SmAMP2 promoter was more effective for the selection of transgenic tobacco (Nicotiana tabacum) cells when driving a selectable marker. Using the cap analysis of gene expression method, we detected no differences in the structure of the transcription start sites for either promoter in transgenic plants. For both promoters, we used fine-scale deletion analysis to identify 160 bp-long sequences that retain the unique properties of each promoter. With the use of chimeric promoters and directed mutagenesis, we demonstrated that the superiority of the pro-SmAMP1 promoter for Agrobacterium-mediated infiltration is caused by the proline-inducible ACTCAT cis-element strictly positioned relative to the TATA box in the core promoter. Surprisingly, the ACTCAT cis-element not only activated but also suppressed the efficiency of the pro-SmAMP1 promoter under proline stress. The absence of the ACTCAT cis-element and CAANNNNATC motif (negative regulator) in the pro-SmAMP2 promoter provided a more constitutive gene expression profile and better selection of transgenic cells on selective medium. We created a new synthetic promoter that enjoys high effectiveness both in transient expression and in selection of transgenic cells. Intact promoters with differing properties and high degrees of sequence identity may thus be used as a basis for the creation of new synthetic promoters for precise and coordinated gene expression.
Collapse
Affiliation(s)
- Larisa N. Efremova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (L.N.E.); (S.R.S.)
| | - Svetlana R. Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (L.N.E.); (S.R.S.)
| | - Guzel R. Gazizova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (G.R.G.); (E.A.M.)
| | - Elena A. Minkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (G.R.G.); (E.A.M.)
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (L.N.E.); (S.R.S.)
| |
Collapse
|
9
|
Shtark OY, Puzanskiy RK, Avdeeva GS, Yurkov AP, Smolikova GN, Yemelyanov VV, Kliukova MS, Shavarda AL, Kirpichnikova AA, Zhernakov AI, Afonin AM, Tikhonovich IA, Zhukov VA, Shishova MF. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ 2019; 7:e7495. [PMID: 31497392 PMCID: PMC6709666 DOI: 10.7717/peerj.7495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Arbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea (Pisum sativum L.) leaves associated with mycorrhization at key plant developmental stages. Plants of pea cv. Finale were grown in constant environmental conditions under phosphate deficiency. The plants were analyzed at six distinct time points, which corresponded to certain developmental stages of the pea: I: 7 days post inoculation (DPI) when the second leaf is fully unfolded with one pair of leaflets and a simple tendril; II: 21 DPI at first leaf with two pairs of leaflets and a complex tendril; III: 32 DPI when the floral bud is enclosed; IV: 42 DPI at the first open flower; V: 56 DPI when the pod is filled with green seeds; and VI: 90-110 DPI at the dry harvest stage. Inoculation with Rhizophagus irregularis had no effect on the fresh or dry shoot weight, the leaf photochemical activity, accumulation of chlorophyll a, b or carotenoids. However, at stage III (corresponding to the most active phase of mycorrhiza development), the number of internodes between cotyledons and the youngest completely developed leaf was lower in the inoculated plants than in those without inoculation. Moreover, inoculation extended the vegetation period of the host plants, and resulted in increase of the average dry weight per seed at stage VI. The leaf metabolome, as analyzed with GC-MS, included about three hundred distinct metabolites and showed a strong correlation with plant age, and, to a lesser extent, was influenced by mycorrhization. Metabolic shifts influenced the levels of sugars, amino acids and other intermediates of nitrogen and phosphorus metabolism. The use of unsupervised dimension reduction methods showed that (i) at stage II, the metabolite spectra of inoculated plants were similar to those of the control, and (ii) at stages IV and V, the leaf metabolic profiles of inoculated plants shifted towards the profiles of the control plants at earlier developmental stages. At stage IV the inoculated plants exhibited a higher level of metabolism of nitrogen, organic acids, and lipophilic compounds in comparison to control plants. Thus, mycorrhization led to the retardation of plant development, which was also associated with higher seed biomass accumulation in plants with an extended vegetation period. The symbiotic crosstalk between host plant and AM fungi leads to alterations in several biochemical pathways the details of which need to be elucidated in further studies.
Collapse
Affiliation(s)
- Oksana Y. Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Dynamics of Arctic Vegetation, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina S. Avdeeva
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey P. Yurkov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Marina S. Kliukova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey L. Shavarda
- Center for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksandr I. Zhernakov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Alexey M. Afonin
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Igor A. Tikhonovich
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Vladimir A. Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
10
|
Chen T, Zhu Z, Zhang H, Shen X, Qiu Y, Yin D. Enhanced Removal of Veterinary Antibiotic Florfenicol by a Cu-Based Fenton-like Catalyst with Wide pH Adaptability and High Efficiency. ACS OMEGA 2019; 4:1982-1994. [PMID: 31459449 PMCID: PMC6648108 DOI: 10.1021/acsomega.8b03406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/11/2019] [Indexed: 05/10/2023]
Abstract
The study on the removal of refractory veterinary antibiotic florfenicol (FF) in water is still very limited. In this study, an efficient Fenton-like catalyst was developed by synthesizing a series of Cu-based multi-metal layered double hydroxides (CuNiFeLa-LDHs) to degrade FF in aqueous solution. In the experiments, the screened CuNiFeLa-2-LDH with the molar ratio of La3+/(Fe3+ + La3+) = 0.1 exhibited high catalytic activity, achieving almost complete degradation of 5 mg L-1 FF under 5 mmol L-1 H2O2 conditions. The mechanisms revealed that the enhanced catalytic performance was ascribed to the existence of Ni which accelerated the electron transfer rate and La which served as a Lewis acidic site to provide more reactive sites in this Cu-dominated Fenton-like reaction, further generating •OH, •O2 -, and O2 1 as active species to attack pollutants directly. Interestingly, the catalyst showed a wide pH adaptability and little release of copper ions to the solution. The regenerated CuNiFeLa-2-LDH is demonstrated to be a stable and reliable material for florfenicol degradation.
Collapse
Affiliation(s)
- Ting Chen
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
- E-mail: . Phone: +86-21-6598 2426. Fax: +86-21-6598 4626
| | - Hua Zhang
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiaolin Shen
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| | - Yanling Qiu
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| | - Daqiang Yin
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| |
Collapse
|