1
|
Dos Santos Cordeiro AA, de Sousa Antunes LF, da Costa Rodrigues Dos Santos G, Guerra JGM, Berbara RLL, da Silva Araújo E, Espindola JAA. Agronomic potential of different fermented organic composts based on agro-industrial plant waste. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:863. [PMID: 39212815 DOI: 10.1007/s10661-024-12983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Organic composts such as "bokashi", obtained from the fermentation of bran mixtures and inoculated with microorganisms, improve soil characteristics. In Brazil, the most widely used formulation for the production of this compost is obtained from a mixture of wheat and castor bean bran, but both have a high monetary cost. Replacing these components with regionally available sources represents the possibility of reducing costs and making more sustainable use of this waste. The aim of this study was to analyze the chemical characteristics and determine the availability of nitrogen for the plants. The study was divided into two stages, consisting of an incubation test in the laboratory and a bioassay in the greenhouse using forage sorghum as an indicator species. In the laboratory trial, the treatments consisted of two raw material sources with a low C/N ratio (castor bean bran-CAB and cottonseed bran-COB), corresponding to 40% of the mixture; three sources with a high C/N ratio (wheat bran-WHB or rice bran-RIB), gradually replaced by passion fruit peel bran-PFPB), corresponding to 60% of the mixture. The materials were mixed, moistened, inoculated with microorganisms (Embiotic®) and kept in sealed containers with a capacity of 620 cm3 for 21 days. In the greenhouse, in addition to the aforementioned treatments, seven controls were included: no addition of organic and synthetic N sources; ammonium nitrate; CAB; COB; WHB; RIB and PFPB. In the second stage, dry mass production and N content in sorghum plant tissues were determined, and the rates of N availability were estimated. It was found that the pH of the standard compost was 4.75, and in the other formulations it ranged from 4.62 to 5.3, the highest values being observed when WHB was fully replaced by RIB There was a significant difference in the EC values, but all were well below the value considered adequate. Replacing CAB with COB and WHB with RIB and PFPB resulted in a reduction in N content and an increase in the C:N ratio. Replacing WHB with PFPB led to an increase in K content and a reduction in P and Mg content. In the bioassay, the highest biomass production was in the treatments with the fermented composts, and the highest biological recovery of N was obtained in the ammonium nitrate treatment, followed by the CAB, COB and WHB treatments.
Collapse
|
2
|
Canatoy RC, Jeong ST, Cho SR, Galgo SJC, Kim PJ. Importance of biochar as a key amendment to convert rice paddy into carbon negative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162331. [PMID: 36805061 DOI: 10.1016/j.scitotenv.2023.162331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Biochar being made up of recalcitrant carbon (C) compounds is considered a negative emission technology (NET) due to its indirect removal of atmospheric carbon dioxide (CO2). However, there is no clear report about how biochar remains a NET when organic amendment application in rice paddy results in a huge emission of greenhouse gases (GHG) particularly, methane (CH4). To evaluate the net impact of biochar application on the net global warming potential (GWP) in rice paddy, no organic amendment (control), fresh manure, compost, and biochar treatments were selected during the whole investigation period. Compared to compost, biochar application decreased annual CH4 and N2O emissions by 55 and 31 %, respectively. In comparison to the control, biochar application increased CH4 emission by 163 % but decreased N2O emission by 19 %. Soil organic carbon (SOC) stock would annually deplete by 2.2 Mg C ha-1 under control; however, biochar application could increase the SOC stock by 18.1 Mg C ha-1 which was 63 and 33 % higher than fresh and compost treatments, respectively. As a result, the control had a net GWP of 10 Mg CO2-eq ha-1 however, this impact was increased with fresh manure and compost application by around 319 and 159 %, respectively. Interestingly, biochar application converted rice paddy into a C sink having a net GWP of -0.104 to -0.191 Mg CO2-eq ha-1. Since there was a comparable difference in grain yield among organic amendments, greenhouse gas intensity (GHGI) which is the net GWP per grain yield was significantly high in compost application of approximately 3.1 Mg CO2-eq Mg-1 grain being 127 % higher than control. However, the biochar application had a -0.02 Mg CO2-eq Mg-1 grain which was 1.4 Mg CO2-eq Mg-1 grain lower than the control. Conclusively, biochar application could be a considerable option in maintaining soil quality and productivity without contributing any GHG emissions and their associated impacts.
Collapse
Affiliation(s)
- Ronley C Canatoy
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea; Department of Soil Science, College of Agriculture, Central Mindanao University, Maramag, 8710, Republic of the Philippines
| | - Seung Tak Jeong
- Rural Development Administration, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Song Rae Cho
- Soil and Fertilizer Management Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Snowie Jane C Galgo
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea; Division of Applied Life Science (BK21+ Program), Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
3
|
Lawrence BT, Melgar JC. Annual compost amendments can replace synthetic fertilizer, improve soil moisture, and ensure tree performance during peach orchard establishment in a humid subtropical climate. FRONTIERS IN PLANT SCIENCE 2023; 14:1172038. [PMID: 37223805 PMCID: PMC10200951 DOI: 10.3389/fpls.2023.1172038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
The application of organic matter (OM) to peach orchards is currently uncommon in commercial operations but could potentially replace synthetic fertilizers and improve long-term orchard sustainability. The purpose of the study was to monitor how annual applications of compost to replace synthetic fertilizer would change soil quality, peach tree nutrient and water status, and tree performance during the first four years of orchard establishment within a subtropical climate. Food waste compost was incorporated before planting and added annually over four years with the following treatments: 1) 1x rate, applied as dry weight at 22,417 kg ha-1 (10 tons acre-1) incorporated during the first year and 11,208 kg ha-1 (5 tons acre-1) applied topically each year after; 2) 2x rate, applied as dry weight at 44,834 kg ha-1 (20 tons acre-1) incorporated during the first year and 22,417 kg ha-1 (10 tons acre-1) applied topically each year after; and 3) control, with no compost added. Treatments were applied to a virgin orchard location, where peach trees had never previously been grown, and to a replant location, where peach trees had been grown previously for more than 20 years. Synthetic fertilizer was reduced in the 1x and 2x rates by 80 and 100% during the spring and all treatments received the summer application according to standard practice. Soil OM, phosphorus and sodium all increased with the addition of 2x compost in the replant location at 15 cm depth, but not within the virgin location compared to the control treatment. The 2x rate of compost improved soil moisture during the growing season, but tree water status was similar between treatments. Tree growth was similar between treatments in the replant location, but the 2x treatment had larger trees compared to the control by the third year. Foliar nutrients were similar between treatments over the four years, while 2x compost rate increased fruit yield in the virgin location compared to the control the second year of harvest. The 2x food waste compost rate could be considered as a replacement for synthetic fertilizers and to potentially increase tree growth during orchard establishment.
Collapse
|
4
|
Hu Y, Zhan P, Thomas BW, Zhao J, Zhang X, Yan H, Zhang Z, Chen S, Shi X, Zhang Y. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158402. [PMID: 36055500 DOI: 10.1016/j.scitotenv.2022.158402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 05/27/2023]
Abstract
In orchard systems, organic amendments and cover crops may enhance soil organic carbon (SOC) and total nitrogen (STN) stocks, but on a global scale a comprehensive understanding of these practices is needed. This study reports a worldwide meta-analysis of 131 peer-reviewed publications, to quantify potential SOC and STN accumulation in orchard soils induced by organic fertilization and cover cropping. Annual gains of 3.73 Mg C/ha and 0.38 Mg N/ha were realized with the introduction of organic fertilizer, while cover crop management led to annual increases of 2.00 Mg C/ha and 0.20 Mg N/ha. The SOC and STN accumulation rates depended mostly on climatic conditions and initial SOC and STN content. The SOC and STN accumulated fastest during the first three years of cover crop implementation, at 2.98 Mg C/ha/yr and 0.25 Mg N/ha/yr and declined thereafter. Organic fertilization caused significantly more annual SOC and STN accumulation at higher (400-800 mm) than lower (<400 mm) rainfall levels. When cover cropping for more than five years, SOC accumulated the fastest with <800 mm of mean annual rainfall. Organic fertilization led to faster SOC accumulation with mean annual temperature between 15 and 20 °C than >20 °C. Organic amendments led to the slowest SOC accumulation rate when the initial SOC concentration was <10 g C/kg. This study provides policy makers and orchard managers science-based evidence to help guide adaptive management practices that build SOC stocks, improve soil conditions and enhance resilience of orchard systems to climate change.
Collapse
Affiliation(s)
- Yingxiao Hu
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China
| | - Pengjie Zhan
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
| | - Ben W Thomas
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia V0M 1A0, Canada
| | - Jingkun Zhao
- Chongqing Agricultural Technology Extension Station, Chongqing 401121, China
| | - Xueliang Zhang
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
| | - He Yan
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
| | - Zhibin Zhang
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
| | - Shuang Chen
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
| | - Xiaojun Shi
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing 400715, China
| | - Yuting Zhang
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Macadamia Husk Compost Improved Physical and Chemical Properties of a Sandy Loam Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su13136997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poor soil fertility caused mainly by low and declining soil organic carbon is one of the major constraints limiting crop productivity in tropical and subtropical regions of South Africa. We evaluated the effect of macadamia husk compost (MHC) on selected chemical and physical properties of a sandy loam soil in NE South Africa in two successive seasons. The treatments, laid out in randomised, complete block design and replicated four times, were: (i) zero control, (ii) inorganic fertilizer (100:60:60 NPK Kg ha−1), (iii) MHC at 15 t ha−1, and (iv) MHC at 30 t ha−1. Soil bulk density; water holding capacity; soil pH; electrical conductivity (EC); organic carbon; total N; and available P, K, Ca, Mg, Al, Zn, and Cu were determined at 0–15 cm soil depth. Macadamia husk compost application decreased bulk density and increased water holding capacity. MHC and inorganic fertilizer increased soil pH, organic carbon, total N, C:N ratio, available P, exchangeable cations, and micronutrients but the effect was more pronounced under MHC treatments in both seasons. The positive effect of MHC on soil physicochemical properties was associated with an increase in soil organic carbon due to MHC application; hence, MHC may offer a sustainable option of increasing soil productivity, particularly in areas characterised by low SOC.
Collapse
|
6
|
Baldi E, Cavani L, Mazzon M, Marzadori C, Quartieri M, Toselli M. Fourteen years of compost application in a commercial nectarine orchard: effect on microelements and potential harmful elements in soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141894. [PMID: 32896791 DOI: 10.1016/j.scitotenv.2020.141894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The objective of this experiment was to valuate, after 14 years, the impact of annual compost applications on micronutrient and potentially toxic trace elements on nectarine tree uptake and soil fertility. The study was performed in the Po valley, Italy, on the variety Stark RedGold (grafted on GF677). Since orchard planting, the following treatments were applied, in a randomized complete block design, with four replicates: 1. unfertilized control; 2. mineral fertilization (N was supplied as NO3NH4 at 70-130 kg ha-1 year-1); 3. compost at 5 t DW ha-1 year-1; 4. compost at 10 t DW ha-1 year-1. The actual rate of application was 12.5 (LOW) and 25 (HIGH) t ha-1, since compost was concentrated in the tree row. Compost was made from domestic organic wastes mixed with pruning material from urban ornamental trees and garden management and stabilized for 3 months. The supply of compost HIGH induced an enrichment of soil total Cu, Zn and Cd, and a decrease of Fe and Co concentration; with values always below the European threshold limits for heavy metals in the soil. In addition, compost (at both rates) increased availability (DTPA-extractable) of Fe, Mn and Zn, Cd, Ni, and Pb in the top soil (0-0.15 m). Total micronutrient and trace element tree content was not affected by fertilization treatments; however, the recycled fraction returned to the soil at the end of the season through abscised leaves and pruned wood of Cu, Fe, Mn and Zn was increased by mineral fertilization; Fe and Zn also by compost HIGH. Our data show that the introduction of compost at both 12.5 and 25 t ha-1 year-1 in the row did not increase the risk of pollution related to potentially toxic trace elements and at the same time increased the bioavailability of Fe, Mn and Zn.
Collapse
Affiliation(s)
- Elena Baldi
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy.
| | - Luciano Cavani
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Martina Mazzon
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Claudio Marzadori
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Maurizio Quartieri
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Moreno Toselli
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| |
Collapse
|
7
|
Yang J, Duan Y, Yang X, Awasthi MK, Li H, Zhang L. Modeling CO 2 exchange and meteorological factors of an apple orchard using partial least square regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43439-43451. [PMID: 32016877 DOI: 10.1007/s11356-019-07123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The eddy covariance (EC) technique was used to measure variations of orchard-atmosphere CO2 exchange, as a function of meteorological variables in an apple orchard in 2016-2017. The annual average CO2 exchange rate was 2.295 kg m-2. Excavations and biomass assessments demonstrated that the orchard stored close to 20.6 tC ha-1 as plant C over a 15-year period. Seasonally, high rates of CO2 uptake and low CO2 emissions occurred between May and August and December and March, respectively. The maximum rates of monthly CO2 exchange were 144.44 and 153.61 gC m-2 month-1 in August 2016 and June 2017, respectively. Partial least squares (PLS) regressions were used to analyze the influence of meteorological factors to on CO2 exchange rates. Temperature and photosynthetic active radiation (PAR) were observed to exert the largest influence on driving variation in CO2 exchange. The main meteorological factors affecting CO2 exchange on daily and monthly time scales were soil temperature (Tsoil), air temperature (Ta), PAR, below canopy CO2 concentration (BCC), vapor pressure deficit (VPD), and soil water content at 50 cm (SWC50cm). The regression model equation describing CO2 exchange included Ta, VPD, precipitation (PPT), and sunshine duration (SD), as significant variables. This model curve fitting explains over 80% of the variation in CO2 exchange. This study provides CO2 exchange characteristics and a model equation capable of predicting CO2 exchange of an apple orchard. Graphical Abstract.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Horticulture, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, China
| | - Yumin Duan
- College of Horticulture, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, China
| | - Xiaoni Yang
- College of Horticulture, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, China
| | - Huike Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, China
| | - Linsen Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Tran QNM, Mimoto H, Koyama M, Nakasaki K. Lactic acid bacteria modulate organic acid production during early stages of food waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:341-347. [PMID: 31207523 DOI: 10.1016/j.scitotenv.2019.06.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Lactic acid bacteria are observed during early stages of almost all food waste composting. Among them, 2 types of lactic acid bacteria, Pediococcus (homofermentative lactic acid bacterium) and Weissella (heterofermentative lactic acid bacterium) have been often reported. In this study, the roles of these 2 types of lactic acid bacteria in the composting were tried to elucidate. It has been pointed out that Pediococcus accelerates the composting process by producing lactic acid which prevented acetic acid generation, thus activating indigenous composting microorganisms. On the other hand, this study elucidated that Weissella produced acetic acid of 20 mg g-1 DS, which is harmful to composting microorganisms, resulting in the inhibition of vigorous organic matter degradation. When these 2 coexist in the starting material, whether the composting succceeds or not depends on the ratio of these 2 lactic acid bacteria. If Pediococcus and Weissella ratio was higher than 101.5, acetic acid level was almost 3 times lower than that observed in the composting with their lower ratios of 1 and 10-1, probably because of the interaction of Pediococcus and Weissella resulting in the suppression of Weissella activity, and thus composting was accelerated.
Collapse
Affiliation(s)
- Quyen Ngoc Minh Tran
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Mimoto
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
9
|
Toselli M, Baldi E, Cavani L, Mazzon M, Quartieri M, Sorrenti G, Marzadori C. Soil-plant nitrogen pools in nectarine orchard in response to long-term compost application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:10-18. [PMID: 30927723 DOI: 10.1016/j.scitotenv.2019.03.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The search for sustainable source of N, the need of soil organic matter restoration, along with the call for recycling of organic wastes has led to a rise of the use of organic fertilizers. The aim of the present experiment was to evaluate: the effectiveness of compost application as a N fertilizer, the impact on N distribution in soil and plant and on tree performances, in a long-term experiment (14 years). The study was carried out in the Po valley, Italy and, since orchard planting (2001), the following treatments were applied: 1. unfertilized control; 2. mineral fertilization; 3. compost at a rate of 5 t DW ha-1 yr-1; 4. compost at a rate of 10 t DW ha-1 yr-1. Soil total N, potentially mineralizable, microbial and extractable N were higher in compost in comparison to mineral (fertilizer). The effect was found both in the row and in the inter-row and the rise of N fractions was evident in the shallowest soil layer of the row. Soil mineral, potentially mineralizable N was increased by mineral (11.1 mg kg-1) and compost 10 (12.4 mg kg-1) fertilization compared with control (6.7 mg kg-1). Vegetative growth and yield were increased in trees treated with mineral and compost 10; moreover, these plants were able to recycle (66.1 and 70.5 kg ha-1 yr-1, respectively) and remobilize (41.5 and 48.7 kg ha-1 yr-1, respectively) a higher amount of N than those of control and compost 5. In conclusion, organic fertilization strategy promoted the buildup of soil N reserve, meaning a capacity of the ecosystem to sequestrate N. The application of compost 10 showed a similar effect on plant growth and production as mineral fertilization, but introduced the advantage of the use of a cheap, renewable waste material, providing a new insight on N fertilization management.
Collapse
Affiliation(s)
- Moreno Toselli
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Elena Baldi
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy.
| | - Luciano Cavani
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Martina Mazzon
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Maurizio Quartieri
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Giovambattista Sorrenti
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - Claudio Marzadori
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| |
Collapse
|