1
|
Radwan IM, Wang C, Kim JH, Wei H, Wang D. Sorptive removal of neonicotinoid pesticides by nanobiochars: Efficiency, kinetics, and reusability. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138354. [PMID: 40280060 DOI: 10.1016/j.jhazmat.2025.138354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The widespread use of neonicotinoid (NEO) pesticides has raised significant environmental concerns due to their toxicity. We investigated the performance of 16 nanobiochars (NBCs), including NBC produced by Douglas fir at 900 °C (Doug 900 NBC), as sustainable sorbents for removing three common NEOs from aqueous solutions: imidacloprid, clothianidin, and thiamethoxam. The NBCs showed high sorption efficiency (∼ 100 %) and fast sorption kinetics (< 0.5 h) for three NEOs at environmentally relevant concentrations (100 ng/L). The sorption efficiency of NEOs was determined by the physicochemical properties of NBCs, including specific surface area (SSA), pore volume (PV), pore diameter (PD), and elemental composition (carbon, nitrogen, and hydrogen contents). The NBCs with higher SSA and larger PV offered more abundant sorption sites, facilitating fast NEO sorption. Particularly, the Doug 900 NBC achieved ∼ 100 % removal efficiency of NEOs within 0.5 h under simulated groundwater conditions (67.5 mg/L of total dissolved solids and 10 mg/L of humic acid). The Doug 900 NBC also maintained high removal efficiency over four continuous reuse cycles. The structural equation modeling revealed that pyrolysis temperature indirectly affects NEO sorption by modifying NBC's properties of SSA, PV, and PD. Our findings highlight the high potential of NBCs for sustainable removal of NEO pesticides in aquatic environments at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Islam M Radwan
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Chongyang Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, WI 53706, USA; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Carpena-Istan V, Jurado MM, Suarez-Estrella F, Lopez-Gonzalez JA, Estrella-Gonzalez MJ, Martinez-Gallardo MR, Toribio AJ, Salinas J, Lopez MJ. Effective microbial formulations using sustainable carriers for the remediation of plastic-affected soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124887. [PMID: 40064076 DOI: 10.1016/j.jenvman.2025.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
The increasing use of mulching films in intensive agriculture, together with their inefficient end-of-life disposal, has led to a significant plastic accumulation in soils, which contributes to disrupting ecosystems. The aim of this work was to determine the ability of different sustainable carriers to harbor and introduce plastic-degrading microorganisms into contaminated soils to provide a biotechnological tool that potentially enhances plastic decontamination, ameliorating the harmful effect of this type of pollutant in soil. To this end, pure cultures and co-cultures of Bacillus subtilis and Pseudomonas alloputida (specialized plastic-degrading strains) were added to three sustainable carriers (vermicompost, biochar, and calcium alginate beads) for the preparation of microbial formulations. After a storage period, the maintenance of cell viability and enzymatic activities related to the bioremediation potential of plastic materials of the inocula tested in the different microbial formulations (carrier + inoculant) were evaluated. The effectiveness of the formulations for plastic mineralization was tested by measuring CO2 emissions after two months. The results showed that biochar, followed by vermicompost, favored greater microbial survival (107 CFU g-1), while alginate formulations showed variable cell viability results, from 107 to 104 CFU g-1. Biochar also excelled in maintaining enzymatic activities related to plastic degradation, achieving the expression of 100% of the tested enzymes. Additionally, biochar-based formulations applied to soils contaminated with LLDPE plastic showed the highest mineralization rates, with statistically significant differences compared to the plastic-free control. These results lay the foundation for the development of new plastic decontamination technologies paving the way for the sustainable treatment of polluting and recalcitrant materials such as plastic.
Collapse
Affiliation(s)
- Victor Carpena-Istan
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Macarena M Jurado
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain.
| | - Francisca Suarez-Estrella
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Juan A Lopez-Gonzalez
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Maria J Estrella-Gonzalez
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Maria R Martinez-Gallardo
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Ana J Toribio
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Jesus Salinas
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Maria J Lopez
- Department of Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| |
Collapse
|
3
|
Meng F, Wang Y, Wei Y. Advancements in Biochar for Soil Remediation of Heavy Metals and/or Organic Pollutants. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1524. [PMID: 40271705 PMCID: PMC11990842 DOI: 10.3390/ma18071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The rapid industrialization and economic growth have exacerbated the contamination of soils with both heavy metals and organic pollutants. These persistent contaminants pose substantial threats to ecosystem integrity and human health due to their long-term environmental persistence and potential for bioaccumulation. Biochar, with its high specific surface area, well-developed pore structure, and abundant surface functional groups, has emerged as a promising material for remediating soils contaminated by heavy metals and organic pollutants. While some research has explored the role of biochar in soil remediation, several aspects remain under investigation. Fully harnessing the potential of biochar for soil contamination remediation is of critical importance. This review provides an overview of the preparation methods and physicochemical properties of biochar, discusses its application in soils contaminated by organic compounds and/or heavy metals, and examines the mechanisms underlying its interaction with pollutants. Additionally, it summarizes the toxicity assessments of biochar during soil remediation and outlines future research directions, offering scientific insights and references for the practical deployment of biochar in soil pollution remediation.
Collapse
Affiliation(s)
- Fanyue Meng
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yanming Wang
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yuexing Wei
- College of Environment and Ecology, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| |
Collapse
|
4
|
Hu X, Huang L, Chen H, Chen L, Fallgren PH. Effects of soil bulk density and corresponding soil infiltration rate on the migration and transformation of gibberellic acid. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104488. [PMID: 39667097 DOI: 10.1016/j.jconhyd.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
High intensity agricultural activities can lead to a decrease in soil fertility and an increase in soil bulk density, which may significantly impact the migration and transformation of pesticides in soil. As a new widely-used micro-toxic pesticide, gibberellic acid (GA3) is more soluble and hydrophilic than most pesticides, which could readily migrate throughout the soil during water infiltration and impact groundwater quality. In this study, the leaching of GA3 in saturated soils with different bulk densities (1.15-1.75 g/cm3) and infiltration rates (0.2215-0.0017 mm/s) were analyzed using column experiments. The migration and distribution of GA3 in the soil with a depth of 50 cm were also investigated. The results indicated that GA3 could completely penetrate the soil with bulk densities less than 1.45 g/cm3, and GA3 mass variation in the effluent was normally distributed. The maximum mass of GA3 in the effluent was calculated using the equation Moutlet(max) = 79.01 t-0.97 (R2 = 0.9811), and 83.69-93.16 % mass of the added GA3 migrated downward in the soil. The analysis of the distribution of GA3 in the soil showed that GA3 accumulated in the upper soil layers with depths of 0-25 cm (the total depth of soil was 50 cm). In addition, the residual and hydrolyzed GA3 amounts in the soil were 75.07-96.47 % and 5-30 % of the added GA3, respectively. Overall, the soil bulk density and irrigation volume determine what type of impact that GA3 may potentially have on the environment.
Collapse
Affiliation(s)
- Xiaolei Hu
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin 300072, PR China; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Linxian Huang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Huihua Chen
- Jinhua Huachuang Environmental Protection Engineering Co., Ltd, Jinhua, Zhejiang 321017, PR China
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Paul H Fallgren
- Advanced Environmental Technologies, LLC, Fort Collins, CO 80525, United States
| |
Collapse
|
5
|
Ndour PMS, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:485-513. [PMID: 39730919 DOI: 10.1007/s11356-024-35660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented. This current review aims at (i) updating the state of the art about the contribution of organic, mineral and microbial amendments in improving phytostabilization, phytoextraction of inorganic and phytodegradation of organic pollutants and (ii) reviewing their potential beneficial effects on soil microbiota, nutrient cycling, plant growth and carbon sequestration. We found that the benefits of amendment application during phytoremediation go beyond limiting the dispersion of pollutants as they enable a more rapid recovery of soil functions leading to wider environmental, social and economic gains. Effects of amendments on plant growth are amendment-specific, and their effect on carbon balance needs more investigation. We also pointed out some research questions that should be investigated to improve amendment-assisted phytoremediation strategies and discussed some perspectives to help phytomanagement projects to improve their economic sustainability.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
| | - Julien Langrand
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Joel Fontaine
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| |
Collapse
|
6
|
Milanković V, Tasić T, Brković S, Potkonjak N, Unterweger C, Pašti IA, Lazarević-Pašti T. Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5499. [PMID: 39597323 PMCID: PMC11595743 DOI: 10.3390/ma17225499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
With growing concerns regarding environmental pollution and the need for sustainable waste management practices, this study investigates the potential of utilizing spent coffee grounds (SCG) as a precursor for producing functional carbon materials aimed at organophosphorus pesticide remediation under environmentally relevant conditions. Carbonization of SCG is followed by various activation methods, including treatment with potassium hydroxide, phosphoric acid, and carbon dioxide, individually or in combination. The resulting biochars are systematically analyzed for their adsorption performance towards malathion and chlorpyrifos. Screening tests revealed a selective adsorption preference towards aromatic chlorpyrifos over aliphatic malathion. Activation processes significantly influence adsorption kinetics and efficiency, with physical activation showing notable adsorption rates and capacity enhancements. Moreover, the SCG-derived biochars exhibit a pronounced dependency on adsorption temperature. Adsorption, regeneration, and reuse of the most promising material are tested in a real, spiked tap water sample, proving that the presence of ions in tap water did not affect the adsorption and that the material has the potential to be reused more than ten times. This work proposes a straightforward approach for recycling SCG by converting it into functional carbon materials, underscoring the importance of selecting the appropriate activation processes and conditions for practical applications in pesticide remediation.
Collapse
Affiliation(s)
- Vedran Milanković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Tamara Tasić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Snežana Brković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Nebojša Potkonjak
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Christoph Unterweger
- Wood K Plus—Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria;
| | - Igor A. Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia;
| | - Tamara Lazarević-Pašti
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| |
Collapse
|
7
|
Wang W, Shi H, Liu X, Mao L, Zhang L, Zhu L, Wu C, Wu W. Enhanced remediation of acetochlor-contaminated soils using phosphate-modified biochar: Impacts on environmental fate, microbial communities, and plant health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177359. [PMID: 39500462 DOI: 10.1016/j.scitotenv.2024.177359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Given that acetochlor (ACT) persists in soil for extended periods, disrupting microbial community structure and causing phytotoxicity to sensitive crops, this study investigated the potential of phosphate-modified biochar (PBC-800) to remediate ACT-contaminated soil. Incorporating 0.5 % PBC-800 into fluvo-aquic, red, and black soils increased their adsorption capacities by 80.4 mg g-1, 76.6 mg g-1, and 76.0 mg g-1, respectively. Even after six months of aging, the Kf values remained 1.6 to 5.1 times higher than in untreated soils. PBC-800 also accelerated ACT degradation across all three soil types, reducing residual ACT levels by 34.3 % to 76.4 % after 60 days, and shortening the degradation half-life by 5 to 7 days. High-throughput sequencing revealed that ACT reduced soil microbial diversity and disrupted community structure, while 0.5 % PBC-800 amendments promoted the growth of degradation-capable genera such as Rhodococcus, Lysobacter, and Gemmatimonas, enhancing microbial ecosystem stability. Furthermore, the amendment of soil with 0.5 % PBC-800 reduced ACT residue concentrations in maize and soybeans by 76.5 % to 82.9 %, and restored plant biomass, leaf chlorophyll content, and mesophyll cell ultrastructure to levels comparable to the control. Therefore, amending ACT-contaminated soil with PBC-800 mitigates ecological and environmental risks, boosts microbial activity, and safeguards plant health.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojie Shi
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenzhu Wu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing 211299, China.
| |
Collapse
|
8
|
Parven A, Meftaul IM, Venkateswarlu K, Megharaj M. Pre-emergence herbicides used in urban and agricultural settings: dissipation and ecological implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:493. [PMID: 39508979 PMCID: PMC11543765 DOI: 10.1007/s10653-024-02269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024]
Abstract
Herbicides are widely recognized as the most cost-effective solution for weed control, but their extensive use in both urban and agricultural settings raise serious concerns about nontarget effects. We assessed the possible hazards associated with pre-emergence herbicides such as dimethenamid-P, metazachlor, and pyroxasulfone, which are frequently applied in both urban and agricultural soils. The dissipation rate constant values (k day-1: 0.010-0.024) were positively linked to total organic carbon (TOC), silt, clay, soil pH, and Al and Fe oxides, but negatively correlated with sand content. In contrast, half-life values (DT50: 29-69 days) of the herbicides showed negative correlations with TOC, clay, silt, soil pH, and Fe and Al oxides, while sand content showed a positive impact. The selected herbicides showed minimal impact on soil dehydrogenase activity (DHA). Mostly, soils with higher organic matter (OM) content exhibited increased DHA levels, highlighting the role of OM in influencing this soil enzyme across different soils. Assessment of environmental indicators like groundwater ubiquity score (GUS:1.69-6.30) and leachability index (LIX: 0.23-0.97) suggested that the herbicides might reach groundwater, posing potential risks to nontarget biota and food safety. Human non-cancer risk evaluation, in terms of hazard quotient (HQ < 1) and hazard index (HI < 1), suggests minimal or no risks from exposure to soil containing herbicide residues at 50% of the initial concentrations. Our data thus help the stakeholders and regulatory agencies while applying these pre-emergence herbicides in soils and safeguarding human and environmental health.
Collapse
Affiliation(s)
- Aney Parven
- Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
9
|
Wang J, Norgaard T, Pugliese L, Carvalho PN, Wu S. Global meta-analysis and machine learning reveal the critical role of soil properties in influencing biochar-pesticide interactions. ENVIRONMENT INTERNATIONAL 2024; 193:109131. [PMID: 39541786 DOI: 10.1016/j.envint.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Biochar application in soils is increasingly advocated globally for its dual benefits in enhancing agricultural productivity and sequestering carbon. However, lingering concerns persist regarding its environmental impact, particularly concerning its interactions with pesticide residues in soil. Previous research has fragmentarily indicated elevated pesticide residues and prolonged persistence in biochar-amended soil, suggesting a potential adverse consequence of biochar application on pesticide degradation. Yet, conclusive evidence and conditions for this phenomenon remain elusive. To address this gap, we conducted a comprehensive assessment using meta-analysis and machine learning techniques, synthesizing data from 58 studies comprising 386 observations worldwide. Contrary to initial concerns, our findings revealed no definitive increase in pesticide concentrations in soil following biochar application. Moreover, a significant reduction of 66 % in pesticide concentrations within soil organisms, such as plants and earthworms, was observed. The quantitative analysis identified soil organic matter content as a key factor influencing biochar-pesticide interactions, suggesting that applying biochar to soils rich in organic matter is less likely to increase pesticide persistence. This study provides a critical assessment of the environmental fate of pesticides under biochar application, offering valuable guidance for the optimal utilization of both pesticides and biochar in sustainable agricultural practices.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark.
| |
Collapse
|
10
|
Sun C, Wang G, Liu Y, Bei K, Yu G, Zheng W, Liu Y. The adsorption mechanism and optimal dosage of walnut shell biochar for chloramphenicol. Heliyon 2024; 10:e39123. [PMID: 39640795 PMCID: PMC11620052 DOI: 10.1016/j.heliyon.2024.e39123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Biochar derived from biomass pyrolysis has proven to be an excellent material for pesticide adsorption and can be used as soil amendment for pesticide non-point pollution. However, the adsorption and desorption mechanisms for certain biochar and pesticide are still unclear. In this study, we investigated the properties of biochar derived from walnut (Juglans regia L.) shell (WSB), and used batch equilibrium method to investigate the adsorption and desorption behavior for chlorantraniliprole (CAP). The physical-chemical analysis showed that there were mainly lignin charcoal of alkyl carbon, methoxyl carbon, aromatic carbon, and carboayl carbon as the primary carbon compounds of WSB. The π - π electron donor acceptor interaction, electrostatic interaction, and hydrogen bond were the primary adsorption mechanisms of the WSB adsorption. Batch equilibrium study under 298 K showed that WSB application in the soil significantly improved the adsorption ability for CAP, and the adsorption behavior was a mono-layer adsorption process as Langmuir model fitted the adsorption isotherm data better than the Freundlich model. While Freundlich model analysis showed that WSB addition to the soil changed the isothermal adsorption line from the S style to the L style. The spontaneous degree reaction of sorbents from strong to weak was in the following order: 5%-WSB >7%-WSB >10%-WSB >1%-WSB >3%-WSB > soil > WSB, and the maximum application effect was achieved at 5 % (m/m) WSB dosage mixed with the soil. Therefore, we considered that WSB addition in soil increased its CAP adsorption capacity, and 5 % (m/m) WSB application was the best choice for CAP pollution control. These data will contribute to the adsorption mechanism and the optimal use dosage of WSB for CAP pollution control.
Collapse
Affiliation(s)
- Caixia Sun
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gangjun Wang
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuhong Liu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Guoguang Yu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weiran Zheng
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuxue Liu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
11
|
Gibbert AM, Guimarães T, da Silva EMG, da Silva LBX, Vilca FZ, Mendes KF. Raw feedstock vs. biochar from olive stone: Impact on the sorption-desorption of diclosulam and tropical soil improvement. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:687-700. [PMID: 39402822 DOI: 10.1080/03601234.2024.2414360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
The addition of carbon-rich materials, such as raw feedstocks (RAW) and biochars, to agricultural soils is on the rise. This activity has many advantages, such as improving fertility, increasing water retention, and sequestering carbon. However, they can also increase the sorption of residual herbicides in the soil, reducing the effectiveness of weed control. Thus, the objective of this study was to evaluate soil improvement and the sorption-desorption process of diclosulam in soil unamended and amended with RAW from olive stone and their biochars produced in two pyrolysis temperatures (300 and 500 °C). Oxisol was used in this study, unamended and amended with RAW and biochars (BC300 and BC500) in a rate of 10% (w w-1). The sorption-desorption process was assessed by batch-equilibrium experiments and the analysis was performed using high-performance liquid chromatography (HPLC). The addition of the three materials to the soil increased the contents of pH, organic carbon, P, K, Ca, Mg, Zn, Fe, Mn, Cu, B, cation exchange capacity, base saturation and decreased H + Al. The unamended soil had Kf (Freundlich sorption coefficient) values of diclosulam sorption and desorption of 1.56 and 12.93 mg(1 - 1/n) L1/n Kg-1, respectively. Unamended soil sorbed 30.60% and desorbed 13.40% of herbicide. Soil amended with RAW, BC300, and BC500 sorbed 31.92, 49.88, and 30.93% of diclosulam and desorbed 13.33, 11.67, and 11.16%, respectively. The addition of RAW and biochars from olive stone has the potential to change the soil fertility, but does not interfere with the bioavailability of diclosulam in weed control under field conditions, since the materials slightly influenced or did not alter the sorption-desorption of diclosulam.
Collapse
Affiliation(s)
| | - Tiago Guimarães
- Department of Forest Engineering, Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Franz Zirena Vilca
- Laboratory of Organic Contaminants and Environment of the IINDEP of the National University of Moquegua, Peru, Urb Ciudad Jardin-Pacocha, Ilo, Peru
| | - Kassio Ferreira Mendes
- Center of Nuclear Energy in Agriculture, University of São Paulo (CENA/USP), Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
12
|
Liu C, Ye J, Lin Y, Wu X, Price GW, Wang Y. Effect of natural aging on biochar physicochemical property and mobility of Cd (II). Sci Rep 2024; 14:22214. [PMID: 39333259 PMCID: PMC11436867 DOI: 10.1038/s41598-024-72771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
This project utilized both field experiment and laboratory analyses to address the gap in understanding regarding the alterations in properties and functions of biochar, and the impact of heavy metal passivation in soil over long-term natural field aging. The study aimed to examine the changes in the physical and chemical characteristics of biochar over an extended period of natural aging. Additionally, it sought to analyze the impact and mechanisms of biochar in reducing of the harmful effects of the heavy metal cadmium (Cd) during the aging process. Both original and aged biochar conformed to the pseudo-second-order kinetics model and the Langmuir model. The aging process enhanced the adsorption of Cd by biochar and mitigated the leaching of Cd2+ into the soil. These findings provide a scientific basis for evaluating biochar's environmental behavior and its potential use in the remediation of soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Cenwei Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
- Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou, 350003, Fujian, China
| | - Jing Ye
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
- Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou, 350003, Fujian, China
| | - Yi Lin
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
- Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou, 350003, Fujian, China
| | - Xiaomei Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Yixiang Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China.
- Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou, 350003, Fujian, China.
| |
Collapse
|
13
|
Assunção JAES, Machado DDB, Felisberto JS, Chaves DSDA, Campos DR, Cid YP, Sadgrove NJ, Ramos YJ, Moreira DDL. Insecticidal activity of essential oils from Piper aduncum against Ctenocephalides felis felis: a promising approach for flea control. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e007624. [PMID: 39292067 PMCID: PMC11452071 DOI: 10.1590/s1984-29612024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
Piper aduncum L., a Brazilian medicinal plant, is known for its bioactive properties, including repellent and insecticidal effects. This study investigated the insecticidal potential of essential oils (EOs) from P. aduncum, collected during the dry and rainy seasons, against fleas (Ctenocephalides felis felis Bouché, 1835) in egg and adult stages. The EOs were obtained by hydrodistillation using a modified Clevenger apparatus for 2 h. Qualitative and quantitative analysis were performed via gas chromatography. The findings revealed that dillapiole was the predominant substance in both EOs, accounting for 77.6% (rainy) and 85.5% (dry) of the EOs. These EOs exhibited high efficacy against the parasite C. felis felis, resulting in 100% egg mortality at a concentration of 100 μg/mL and 100% mortality for adult fleas starting from 1,000 μg/mL. Dillapiole standard was also effective but at a relatively high concentration. This finding suggested that EOs from P. aduncum exhibit cytotoxicity against these pests and might hold potential for commercial production, offering practical applications for such bioprospecting. This study uniquely revealed that the EOs from P. aduncum, which is rich in dillapiole, demonstrated pulicidal activity against the parasite C. felis felis, particularly in inhibiting the hatching of the eggs of these parasites.
Collapse
Affiliation(s)
- Jeferson Adriano e Silva Assunção
- Laboratório de Produtos Naturais e Bioquímica, Diretoria de Pesquisa, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Pesquisa Translacional em Fármacos e Medicamentos, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Daniel de Brito Machado
- Laboratório de Produtos Naturais e Bioquímica, Diretoria de Pesquisa, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Jessica Sales Felisberto
- Laboratório de Produtos Naturais e Bioquímica, Diretoria de Pesquisa, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Douglas Siqueira de Almeida Chaves
- Departamento de Ciências Farmacêuticas, Instituto de Saúde e Ciências Biológicas, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil
| | - Diefrey Ribeiro Campos
- Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil
| | - Yara Peluso Cid
- Departamento de Ciências Farmacêuticas, Instituto de Saúde e Ciências Biológicas, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil
| | | | - Ygor Jessé Ramos
- Laboratório Farmácia da Terra, Faculdade de Farmácia, Universidade Federal da Bahia – UFBA, Salvador, BA, Brasil
| | - Davyson de Lima Moreira
- Laboratório de Produtos Naturais e Bioquímica, Diretoria de Pesquisa, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Pesquisa Translacional em Fármacos e Medicamentos, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
14
|
Sun C, Liu Y, Bei K, Zheng W, Wang Q, Wang Q. Impact of biochar on the degradation rates of three pesticides by vegetables and its effects on soil bacterial communities under greenhouse conditions. Sci Rep 2024; 14:19986. [PMID: 39198523 PMCID: PMC11358384 DOI: 10.1038/s41598-024-70932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
A 28 days pesticide degradation experiment was conducted for broccoli (Brassica oleracea L. var. italica Planch) and pakchoi (Brassica chinensis L.) with three pesticides (chlorantraniliprole (CAP), haloxyfop-etotyl (HPM), and indoxacarb (IXB)) to explore the effects of biochar on pesticide environmental fate and rhizosphere soil diversity. Rice straw biochar (RB) was applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions, and its effects on the degradation of three pesticides in vegetables and in soil were investigated individually. Overall, RB application effectively facilitated CAP and HPM degradation in broccoli by 13.51-39.42% and in broccoli soil by 23.80-74.10%, respectively. RB application slowed the degradation of CAP, HPM and IXB in pakchoi by 0.00-57.17% and slowed the degradation of CAP in pakchoi by 37.32-43.40%. The results showed that the effect of RB application on pesticide degradation in crops and soil was related to biochar properties, pesticide solubility, plant growth status, and soil characteristics. Rhizosphere soil microorganisms were also investigated, and the results showed that biochar application may be valuable for altering bacterial richness and diversity. The effect of biochar application on pesticide residues in crops and soil was influenced by the vegetable variety first, and the second was pesticide characteristics. RB applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions is recommended for broccoli production to ensure food safety. Our results suggested that biochar application in soil could reduce pesticide non-point source pollution, especially for highly soluble pesticides, and could affect soil microorganisms.
Collapse
Affiliation(s)
- Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
| | - Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Qinfei Wang
- Institute of Variety Resources, Chinese Academy of Thermal Sciences, Haikou, 270203, Hainan, People's Republic of China
| | - Qiang Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| |
Collapse
|
15
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
16
|
Zhou Y, Wang X, Yang Y, Jiang L, Wang X, Tang Y, Xiao L. Enhanced copper removal by magnesium modified biochar derived from Alternanthera philoxeroides. ENVIRONMENTAL RESEARCH 2024; 251:118652. [PMID: 38508361 DOI: 10.1016/j.envres.2024.118652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Adsorption processes are being widely used by various researchers for the removal of heavy metals from waste streams and biochar has been frequently used as an adsorbent. In this study, a MgO-loaded biochar derived from Alternanthera philoxeroides (MAPB) was synthesized for the removal of Cu(II). Compared with other biochar absorbents, MAPB showed a relatively slow adsorption kinetics, but an effective removal of Cu(II) with a maximum sorption capacity of 1, 238 mg/g. The adsorption mechanism of Cu(II) by MAPB was mainly controlled by chemical precipitation as Cu2(OH)3NO3, complexation and ion replacement. Fixed bed column with MAPB packed in same dosage (1, 000 mg) and different bed depth (1.3, 2.6 and 3.9 cm) showed that the increased of bed depth by mixing MAPB with quartz sand could increase the removal of Cu(II). The fitted breakthrough (BT) models showed that mixing MAPB with support media could reduce the mass transfer rate, increase the dynamic adsorption capacity and BT time. Therefore, MAPB adsorbent act as a highly efficient long-term adsorbent for Cu(II) contaminated water treatment may have great ecological and environmental significance.
Collapse
Affiliation(s)
- Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Xiaoyu Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Yu Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Lijuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Xiaolin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China.
| |
Collapse
|
17
|
Bao X, Gu Y, Chen L, Wang Z, Pan H, Huang S, Meng Z, Chen X. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171472. [PMID: 38458459 DOI: 10.1016/j.scitotenv.2024.171472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hui Pan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
18
|
Peng F, Liu J, Ping J, Dong Y, Xie L, Zhou Y, Liao L, Song H. An effective strategy for biodegradation of high concentration phenol in soil via biochar-immobilized Rhodococcus pyridinivorans B403. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33752-33762. [PMID: 38687450 DOI: 10.1007/s11356-024-33386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
High concentration of phenol residues in soil are harmful to human health and ecological safety. However, limited information is available on the in-situ bioremediation of phenol-contaminated soil using biochar as a carrier for bacteria. In this study, bamboo -derived biochar was screened as a carrier to assemble microorganism-immobilized composite with Rhodococcus pyridinivorans B403. Then, SEM used to observe the micromorphology of composite and its bioactivity was detected in solution and soil. Finally, we investigated the effects of free B403 and biochar-immobilized B403 (BCJ) on phenol biodegradation in two types of soils and different initial phenol concentrations. Findings showed that bacterial cells were intensively distributed in/onto the carriers, showing high survival. Immobilisation increased the phenol degradation rate of strain B403 by 1.45 times (37.7 mg/(L·h)). The phenol removed by BCJ in soil was 81% higher than free B403 on the first day. Moreover, the removal of BCJ remained above 51% even at phenol concentration of 1,500 mg/kg, while it was only 15% for free B403. Compared with the other treatment groups, BCJ showed the best phenol removal effect in both tested soils. Our results indicate that the biochar-B403 composite has great potential in the remediation of high phenol-contaminated soil.
Collapse
Affiliation(s)
- Fang Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yishan Zhou
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lipei Liao
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
19
|
Rodgers TFM, Spraakman S, Wang Y, Johannessen C, Scholes RC, Giang A. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5500-5511. [PMID: 38483320 DOI: 10.1021/acs.est.3c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.
Collapse
Affiliation(s)
- Timothy F M Rodgers
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Sylvie Spraakman
- Green Infrastructure Design Team, City of Vancouver Engineering Services, Vancouver, British Columbia V5Z0B4, Canada
| | - Yanru Wang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Cassandra Johannessen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Amanda Giang
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
20
|
Dong X, Chu Y, Tong Z, Sun M, Meng D, Yi X, Gao T, Wang M, Duan J. Mechanisms of adsorption and functionalization of biochar for pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116019. [PMID: 38295734 DOI: 10.1016/j.ecoenv.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.
Collapse
Affiliation(s)
- Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xiaotong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
21
|
Zhang YM, Dong WR, Lin CY, Xu WB, Li BZ, Liu GX, Shu MA. Risk assessment of pesticide compounds: IPT and TCZ cause hepatotoxicity, activate stress pathway and affect the composition of intestinal flora in red swamp crayfish (Procambarusclarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123315. [PMID: 38185353 DOI: 10.1016/j.envpol.2024.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang-Xu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Bolan S, Sharma S, Mukherjee S, Kumar M, Rao CS, Nataraj KC, Singh G, Vinu A, Bhowmik A, Sharma H, El-Naggar A, Chang SX, Hou D, Rinklebe J, Wang H, Siddique KHM, Abbott LK, Kirkham MB, Bolan N. Biochar modulating soil biological health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169585. [PMID: 38157897 DOI: 10.1016/j.scitotenv.2023.169585] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes. First, biochar supports habitats for microorganisms due to its porous nature and by promoting the formation of stable soil micro-aggregates. Biochar also serves as a carbon and nutrient source. Biochar alters soil physical and chemical properties, creating optimum soil conditions for microbial diversity. Biochar can also immobilize soil pollutants and reduce their bioavailability that would otherwise inhibit microbial growth. However, depending on the pyrolysis settings and feedstock resources, biochar can be comprised of contaminants including polycyclic aromatic hydrocarbons and potentially toxic elements that can inhibit microbial activity, thereby impacting soil health.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Ch Srinivasa Rao
- ICAR-National Academy of Agricultural Research Management, Hyderabad 500 030, India
| | - K C Nataraj
- Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anantapur 515 001, Andhra Pradesh, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Harmandeep Sharma
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Scott X Chang
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lynette K Abbott
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
23
|
Ratnadass A, Llandres AL, Goebel FR, Husson O, Jean J, Napoli A, Sester M, Joseph S. Potential of silicon-rich biochar (Sichar) amendment to control crop pests and pathogens in agroecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168545. [PMID: 37984651 DOI: 10.1016/j.scitotenv.2023.168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soil-borne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nematodes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth and resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/root-damaging vs above-ground/aerial part-damaging; "biotrophic" vs "necrotrophic" sensu lato, and corresponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR AIDA, 97410 Saint-Pierre, Réunion, France; AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Ana L Llandres
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, Institut de Recherche Coton (IRC), Cotonou, Benin; CIRAD, UPR AIDA, International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - François-Régis Goebel
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Olivier Husson
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Janine Jean
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Alfredo Napoli
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Mathilde Sester
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Aïda, Phnom Penh, Cambodia; Institut Technologique du Cambodge, Phnom Penh, Cambodia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Materials Science and Engineering, University of NSW, Sydney, NSW 2052, Australia; Institute for Superconducting and Electronic Materials, School of Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
24
|
Xiao Y, Zhou G, Qiu X, Liu F, Chen L, Zhang J. Biodiversity of network modules drives ecosystem functioning in biochar-amended paddy soil. Front Microbiol 2024; 15:1341251. [PMID: 38328424 PMCID: PMC10847562 DOI: 10.3389/fmicb.2024.1341251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Soil microbes are central in governing soil multifunctionality and driving ecological processes. Despite biochar application has been reported to enhance soil biodiversity, its impacts on soil multifunctionality and the relationships between soil taxonomic biodiversity and ecosystem functioning remain controversial in paddy soil. Methods Herein, we characterized the biodiversity information on soil communities, including bacteria, fungi, protists, and nematodes, and tested their effects on twelve ecosystem metrics (including functions related to enzyme activities, nutrient provisioning, and element cycling) in biochar-amended paddy soil. Results The biochar amendment augmented soil multifunctionality by 20.1 and 35.7% in the early stage, while the effects were diminished in the late stage. Moreover, the soil microbial diversity and core modules were significantly correlated with soil multifunctionality. Discussion Our analysis revealed that not just soil microbial diversity, but specifically the biodiversity within the identified microbial modules, had a more pronounced impact on ecosystem functions. These modules, comprising diverse microbial taxa, especially protists, played key roles in driving ecosystem functioning in biochar-amended paddy soils. This highlights the importance of understanding the structure and interactions within microbial communities to fully comprehend the impact of biochar on soil ecosystem functioning in the agricultural ecosystem.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiuwen Qiu
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Fangming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
25
|
Ren Y, Wang G, Bai X, Su Y, Zhang Z, Han J. Research progress on remediation of organochlorine pesticide contamination in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:25. [PMID: 38225511 DOI: 10.1007/s10653-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Deteriorated soil pollution has grown into a worldwide environmental concern over the years. Organochlorine pesticide (OCP) residues, featured with ubiquity, persistence and refractoriness, are one of the main pollution sources, causing soil degradation, fertility decline and nutritional imbalance, and severely impacting soil ecology. Furthermore, residual OCPs in soil may enter the human body along with food chain accumulation and pose a serious health threat. To date, many remediation technologies including physicochemical and biological ways for organochlorine pollution have been developed at home and abroad, but none of them is a panacea suitable for all occasions. Rational selection and scientific decision-making are grounded in in-depth knowledge of various restoration techniques. However, soil pollution treatment often encounters the interference of multiple factors (climate, soil properties, cost, restoration efficiency, etc.) in complex environments, and there is still a lack of systematic summary and comparative analysis of different soil OCP removal methods. Thus, to better guide the remediation of contaminated soil, this review summarized the most commonly used strategies for OCP removal, evaluated their merits and limitations and discussed the application scenarios of different methods. It will facilitate the development of efficient, inexpensive and environmentally friendly soil remediation strategies for sustainable agricultural and ecological development.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
26
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
27
|
Derbali I, Derbali W, Gharred J, Manaa A, Slama I, Koyro HW. Mitigating Salinity Stress in Quinoa ( Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments. PLANTS (BASEL, SWITZERLAND) 2023; 13:92. [PMID: 38202399 PMCID: PMC10780479 DOI: 10.3390/plants13010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas.
Collapse
Affiliation(s)
- Imed Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Walid Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Jihed Gharred
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Inès Slama
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
| |
Collapse
|
28
|
Ouhajjou M, Edahbi M, Hachimi H. First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:28. [PMID: 38066302 DOI: 10.1007/s10661-023-12182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
With the long-term application of pesticides on sugar beet farms in the irrigated perimeter of Tadla in Morocco for over 50 years, pesticide monitoring is necessary to assess soil health. The objective of our study was to monitor multiple pesticide residues in topsoil samples collected from post-harvest sugar beet fields and verify their migration to deep soil layers. Topsoil and deep soil samples were collected from arbitrarily selected sugar beet fields in the IPT. In this study, a target-screening method was applied. All target pesticides were detected in soil samples, with tefluthrin being the most frequently detected pesticide. The residue with the highest concentration in soil samples was DDE. All the soil samples contained a mixture of pesticide residues, with a maximum of 13 residues per sample. The total pesticide content decreased toward more profound layers of soil, except in one field where it reached a concentration of 348 µg/kg at the deeper soil layer. For pesticides detected at the three soil depths, only tefluthrin concentration increased in the deep soil layer. The results provide comprehensive and precise information on the pesticide residue status in sugar beet soils warning against the multiple risks that this contamination can cause. This study indicates the need of regular monitoring of pesticides over a large area of the perimeter to enable decision-makers to pronounce the impacts of the extension and intensification of sugar beet cultivation at the irrigated perimeter of Tadla.
Collapse
Affiliation(s)
- Majda Ouhajjou
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco.
| | - Mohamed Edahbi
- Higher School of Technology (ESTFBS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| | - Hanaa Hachimi
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| |
Collapse
|
29
|
Belovezhets LA, Levchuk AA, Pristavka EO. Prospects for application of microorganisms in bioremediation of soils contaminated with pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 59:15-20. [PMID: 37966060 DOI: 10.1080/03601234.2023.2281197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The contamination of soil with residual amounts of pesticides remains an urgent challenge for human community. The most efficient approach to address this challenge is the direct microbial degradation of a pesticide in agricultural lands. To this end, the selected microorganisms, which quickly and completely utilize pesticides, are employed. In the present work, two herbicides belonging to different classes of chemical compounds, that is, imazamox and chlorsulfuron were used. The screening of promising microorganisms was carried out among different strains of bacteria and fungi in a liquid mineral medium containing a pesticide as the only source of carbon. It was found that the most active microorganisms were capable of utilizing up to 90% of the active substance for a short time. The dynamics of pesticides degradation indicated that the maximum destruction of the studied substances occurred during the first two weeks of cultivation. Further, the rate of degradation dramatically dropped or stopped at all. An increase in the concentration of pesticides in the cultivation medium almost completely suppressed their degradation. It is interesting that the bacteria were more suitable for the degradation of imazamox, while the fungi rendered the destruction of chlorsulfuron.
Collapse
Affiliation(s)
- Lyudmila A Belovezhets
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Aleksey A Levchuk
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Ekaterina O Pristavka
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
30
|
Sojithamporn P, Leksakul K, Sawangrat C, Charoenchai N, Boonyawan D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023; 12:4386. [PMID: 38137190 PMCID: PMC10743213 DOI: 10.3390/foods12244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.
Collapse
Affiliation(s)
- Phanumas Sojithamporn
- Graduate Program in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Nivit Charoenchai
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Center (PBP), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
31
|
Sarker A, Yoo JH, Jeong WT. Environmental fate and metabolic transformation of two non-ionic pesticides in soil: Effect of biochar, moisture, and soil sterilization. CHEMOSPHERE 2023; 345:140458. [PMID: 37844696 DOI: 10.1016/j.chemosphere.2023.140458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Soil moisture, organic matter, and soil microbes are the key considering factors that control the persistence, degradation, and transformation of applied pesticides under varied soil conditions. In this study, underlying influence of these factors was assessed through the fates and metabolic transformation of two non-ionic pesticides (e.g., Phorate and Terbufos) in soils. Concisely, two distinct experiments including a customized batch equilibrium (sorption study), and a lab incubation trial (degradation study) were performed, following the OECD guidelines. As per study findings, biochar (BC) amendment was found to be the most influential factors during sorption study, particularly, 1% BC amendment contributed to achieve the best results. In addition, the non-linearity of sorption isotherm (1/n < 1.0) was revealed through Freundlich isotherm, indicating the strong adsorption of studied pesticides onto the soils. On the other hand, during degradation study, soil moisture initiates the enhanced degradation of parent pesticides and subsequent metabolism. In the presence of 40% water holding capacity (WHC), 1% BC amendment enhances the metabolic transformation, while H2O2 treatment could hinder the process. Additionally, the half-life degradation (t1/2) of phorate and terbufos was controlled by biochar amendment, moisture, and soil sterilization, respectively. Finally, BC can accelerate the metabolic transformation, whereas, phorate underwent a metabolic change into sulfoxide and sulfone while terbufos turned into solely sulfoxide. This pioneering study gathered crucial data for understanding the persistence and metabolic transition of non-ionic pesticides in soils and their patterns of degradation.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea
| | - Ji-Hyock Yoo
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea
| | - Won-Tae Jeong
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea.
| |
Collapse
|
32
|
Siedt M, Vonhoegen D, Smith KEC, Roß-Nickoll M, van Dongen JT, Schäffer A. Fermented biochar has a markedly different effect on fate of pesticides in soil than compost, straw, and a mixed biochar-product. CHEMOSPHERE 2023; 344:140298. [PMID: 37758091 DOI: 10.1016/j.chemosphere.2023.140298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Current knowledge about how biochars affect the fate of pesticides in soil is based on studies that used pure biochars. After finding that an additional biological post-pyrolysis treatment, such as co-composting or lactic fermentation, is required for biochars for superior performance in temperate arable soils, a knowledge gap formed of how such further processed biochar products would affect the fate of pesticides in soil. This study compared the effects of a novel fermented biochar alone or mixed with biogas residues on the fate of two pesticides, 4-chloro-2-methylphenoxyacetic acid (MCPA) and metalaxyl-M, in a temperate arable soil to the traditional organic amendments wheat straw and compost. The fate of 14C-labeled MCPA was markedly affected in different ways. Fermented biochar effectively reduced the water-extractability and mineralization due to adsorption that was comparable to adsorption strengths reported for pure biochars. However, this effect was weak for the biochar mixed with biogas residues. Straw reduced water-extractable amounts due to increased biodegradation and formation of likely biogenic non-extractable residues of MCPA. In contrast, compost decelerated mineralization and increased the water solubility of the MCPA residues due to released dissolved organic matter. The amendments' effects were minor regarding 14C-metalaxyl-M, except for the fermented biochar which again reduced water-extractability and delayed degradation due to adsorption. Thus, the effects of the organic amendments differed for the two pesticide compounds with only the fermented biochar's effect being similar for both. However, this effect was no longer present in the mixed product containing 20% biochar. Our findings clearly show that biologically treated biochar-containing products can affect the fate of pesticides in soil very differently, also when compared to traditional organic amendments. Such impacts and their desirable and undesirable ecotoxicological implications need to be considered before the large-scale application of biochars to temperate arable soils.
Collapse
Affiliation(s)
- Martin Siedt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Molecular Ecology of the Rhizosphere, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Denise Vonhoegen
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Kilian E C Smith
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Molecular Ecology of the Rhizosphere, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
33
|
Song B, Zhou C, Qin M, Zhao B, Sang F. When biochar is involved in rhizosphere dissipation and plant absorption of pesticides: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118518. [PMID: 37385197 DOI: 10.1016/j.jenvman.2023.118518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Clarifying the influences of biochar input on the rhizosphere dissipation and plant absorption of pesticides is a crucial prerequisite for utilizing biochar in the restoration of pesticide-contaminated soils. Nevertheless, the application of biochar to pesticide-contaminated soils does not always achieve consistent results on the rhizosphere dissipation and plant absorption of pesticides. Under the new situation of vigorously promoting the application of biochar in soil management and carbon sequestration, a timely review is needed to further understand the key factors affecting biochar remediation of pesticide-contaminated soil. In this study, a meta-analysis was conducted utilizing variables from three dimensions of biochar, remediation treatment, and pesticide/plant type. The pesticide residues in soil and the pesticide uptake by plant were used as response variables. Biochar with high adsorption capacity can impede the dissipation of pesticides in soil and mitigate their absorption by plants. The specific surface area of biochar and the type of pesticide are critical factors that affect pesticide residues in soil and plant uptake, respectively. Applying biochar with high adsorption capacity, based on specific dosages and soil characteristics, is recommended for the remediation of continuously cultivated soil contaminated with pesticides. This article aims to provide a valuable reference and understanding for the application of biochar-based soil remediation technology and the treatment of pesticide pollution in soil.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Beichen Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Fan Sang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
34
|
Niaz A, Spokas KA, Gámiz B, Mulla D, Arshad KR, Hussain S. 2-Methyl-4-chlorophenoxyacetic acid (MCPA) sorption and desorption as a function of biochar properties and pyrolysis temperature. PLoS One 2023; 18:e0291398. [PMID: 37683028 PMCID: PMC10490996 DOI: 10.1371/journal.pone.0291398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a highly mobile herbicide that is frequently detected in global potable water sources. One potential mitigation strategy is the sorption on biochar to limit harm to unidentified targets. However, irreversible sorption could restrict bioefficacy thereby compromising its usefulness as a vital crop herbicide. This research evaluated the effect of pyrolysis temperatures (350, 500 and 800°C) on three feedstocks; poultry manure, rice hulls and wood pellets, particularly to examine effects on the magnitude and reversibility of MCPA sorption. Sorption increased with pyrolysis temperature from 350 to 800°C. Sorption and desorption coefficients were strongly corelated with each other (R2 = 0.99; P < .05). Poultry manure and rice hulls pyrolyzed at 800°C exhibited irreversible sorption while for wood pellets at 800°C desorption was concentration dependent. At higher concentrations some desorption was observed (36% at 50 ppm) but was reduced at lower concentrations (1-3% at < 5 ppm). Desorption decreased with increasing pyrolysis temperature. Sorption data were analyzed with Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. Freundlich isotherms were better predictors of MCPA sorption (R2 ranging from 0.78 to 0.99). Poultry manure and rice hulls when pyrolyzed at higher temperatures (500 and 800°C) could be used for remediation efforts (such as spills or water filtration), due to the lack of desorption observed. On the other hand, un-pyrolyzed feedstocks or biochars created at 350°C could perform superior for direct field applications to limit indirect losses including runoff and leaching, since these materials also possess the ability to release MCPA subsequently to potentially allow herbicidal action.
Collapse
Affiliation(s)
- Abdullah Niaz
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, United States of America
| | - Kurt A. Spokas
- United States Department of Agriculture, Agricultural Research Service, St. Paul, MN, United States of America
| | - Bea Gámiz
- Department of Inorganic Chemistry, Chemical Institute for Energy and the Environment (IQUEMA), University of Córdoba, Córdoba, Spain
| | - David Mulla
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, United States of America
| | - Khaliq R. Arshad
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
| | - Sarfraz Hussain
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
| |
Collapse
|
35
|
Zhang L, Xu L, Zhang L, Zhang Y, Chen Y. Adsorption-desorption characteristics of atrazine on soil and vermicompost prepared with different ratios of raw materials. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:583-593. [PMID: 37614009 DOI: 10.1080/03601234.2023.2247942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In this work, vermicompost was prepared with maize stover and cattle dung in ratios of 60:40 (VC1), 50:50 (VC2) and 40:60 (VC3), and the physicochemical properties of the vermicompost were related to the ratio of the raw materials used. The effect of the vermicomposts on the adsorption kinetics, adsorption isotherms and desorption of atrazine were investigated in unamended soil (S) and soil amended with 4% (w/w) of VC1(S-VC1), VC2(S-VC2) and VC3(S-VC3). The total organic carbon (TOC) content of VC1, VC2 and VC3 was 38.46, 37.33 and 34.47%, the HA content was 43.50, 42.22 and 39.28 g/kg, and the HA/FA ratios was 1.47, 0.44 and 0.83, respectively. The adsorption of atrazine on the soil, on the vermicompost and on soils amended with vermicompost followed a pseudo-second-order kinetic model. The Freundlich equation better fitted the adsorption isotherm of atrazine. The vermicomposts enhanced atrazine adsorption and decreased atrazine desorption. Correlation analysis showed that the TOC and HA were significantly positively correlated with Kf, which indicated that TOC and HA of the vermicomposts contributed significantly to the adsorption and desorption of atrazine. This study demonstrated that vermicomposts have great potential in the bioremediation of atrazine pollution and that their role is related to the raw materials used to prepare them.
Collapse
Affiliation(s)
- Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun, China
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Starkville, Mississippi, USA
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
36
|
Sene S, Dollinger J, Hammecker C, Lagacherie M, Negro S, Samouelian A. Potential of fluorescent tracers to appraise biochar amendment strategies for pesticide mitigation - insights from comparative sorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92182-92192. [PMID: 37486469 DOI: 10.1007/s11356-023-28821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mitigation of pesticide dispersion in soil and water is required to protect ecosystem health and the anthropic uses of water bodies. Biochar amendments have been suggested to reduce pesticide dispersion due to their high sorption potentials. Nevertheless, appraisals at different scales have been limited by the costs of pesticide analyses. The aim of this study was to evaluate the potential of two fluorescent tracers, uranine (UR) and sulforhodamine B (SRB), for use as pesticide proxies in the context of biochar amendments used for mitigation purposes. Therefore, we compared the sorption processes of both fluorescent tracers and those of three pesticides, glyphosate, 2,4-D, and difenoconazole for soils; three wood biochars (pine, oak, and beech/charm blend); and soil/biochar mixtures representing agricultural usages. The results showed that the sorption of glyphosate by soil was unaffected by amendment with the tested pine, oak, and wood blend biochars. In contrast, the sorption coefficients of UR, SRB, 2,4-D, and difenoconazole were significantly increased with these biochar amendments. SRB, in particular, exhibited sorption behavior similar to that of the hydrophobic fungicide difenoconazole. This indicates promise for the use of SRB as a proxy for hydrophobic pesticides, in testing biochar amendments.
Collapse
Affiliation(s)
- Seynabou Sene
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France
| | - Jeanne Dollinger
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France.
| | - Claude Hammecker
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France
| | - Manon Lagacherie
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France
| | - Sandrine Negro
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France
| | - Anatja Samouelian
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France
| |
Collapse
|
37
|
Mielke KC, Brochado MGDS, Laube AFS, Guimarães T, Medeiros BADP, Mendes KF. Pyrolysis Temperature vs. Application Rate of Biochar Amendments: Impacts on Soil Microbiota and Metribuzin Degradation. Int J Mol Sci 2023; 24:11154. [PMID: 37446332 DOI: 10.3390/ijms241311154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Biochar-amended soils influence the degradation of herbicides depending on the pyrolysis temperature, application rate, and feedstock used. The objective of this study was to evaluate the influence of sugarcane straw biochar (BC) produced at different pyrolysis temperatures (350 °C, 550 °C, and 750 °C) and application rates in soil (0, 0.1, 0.5, 1, 1.5, 5, and 10% w/w) on metribuzin degradation and soil microbiota. Detection analysis of metribuzin in the soil to find time for 50% and 90% metribuzin degradation (DT50 and DT90) was performed using high-performance liquid chromatography (HPLC). Soil microbiota was analyzed by respiration rate (C-CO2), microbial biomass carbon (MBC), and metabolic quotient (qCO2). BC350 °C-amended soil at 10% increased the DT50 of metribuzin from 7.35 days to 17.32 days compared to the unamended soil. Lower application rates (0.1% to 1.5%) of BC550 °C and BC750 °C decreased the DT50 of metribuzin to ~4.05 and ~5.41 days, respectively. BC350 °C-amended soil at high application rates (5% and 10%) provided high C-CO2, low MBC fixation, and high qCO2. The addition of low application rates (0.1% to 1.5%) of sugarcane straw biochar produced at high temperatures (BC550 °C and BC750 °C) resulted in increased metribuzin degradation and may influence the residual effect of the herbicide and weed control efficiency.
Collapse
Affiliation(s)
- Kamila Cabral Mielke
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | | - Tiago Guimarães
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | |
Collapse
|
38
|
Zhang YM, Xu WB, Lin CY, Li BZ, Shu MA. Selenium alleviates biological toxicity of thiamethoxam (TMX): Bioaccumulation of TMX, organ damage, and antioxidant response of red swamp crayfish (Procambarus clarkii). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131896. [PMID: 37364439 DOI: 10.1016/j.jhazmat.2023.131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Pesticides are important for agricultural development; however, animals involved in rice-fish farming absorb the pesticides used during the farming process. Thiamethoxam (TMX) is extensively used in agriculture and is gradually occupying the market for traditional pesticides. Therefore, this study aimed to investigate whether selenomethionine (SeMet) could affect the survival rate, bioaccumulation of TMX, serum biochemical parameters, lipid peroxidation, antioxidants in the hepatopancreas, and expression of stress genes after exposure of red swamp crayfish to 10 ppt TMX for 7 days. The results showed that the survival rate significantly increased and the bioaccumulation of TMX significantly decreased with SeMet administration (P < 0.05). Furthermore, severe histological damage to the hepatopancreas of red crayfish was observed after exposure to TMX; however, this damage was alleviated after SeMet administration. SeMet also significantly reduced the TMX-induced changes in serum biochemical parameters, malondialdehyde content, and antioxidant enzyme activity in crayfish hepatopancreas (P < 0.05). Notably, analysis of the expression of 10 stress response genes showed that 0.5 mg/kg SeMet might decrease cell damage in the hepatopancreas. Consequently, our findings suggest that higher levels of TMX in crayfish may cause hepatopancreatic cell toxicity, which can be harmful to human health; however, SeMet could mitigate these effects, providing an understanding of pesticide compounds and food safety.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Guo S, Zhao Q, Hu H, Wang W, Bilal M, Fei Q, Zhang X. Metabolic Degradation and Bioactive Derivative Synthesis of Phenazine-1-Carboxylic Acid by Genetically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37247609 DOI: 10.1021/acs.jafc.3c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) secreted by Pseudomonas chlororaphis has been commercialized and widely employed as an antifungal pesticide. However, it displays potential hazards to nontarget microorganisms and the environment. Although the PCA degradation characteristics have received extensive attention, the biodegradation efficiency is still insufficient to address the environmental risks. In this study, an engineered Pseudomonas capable of degrading PCA was constructed by introducing heterologous PCA 1,2-dioxygenase (PcaA1A2A3A4). By integrating the PCA degradation module in the chemical mutagenesis mutant P3, 7.94 g/L PCA can be degraded in 60 h, which exhibited the highest PCA degradation efficiency to date and was 35.4-fold higher than that of the PCA natural degraders. Additionally, PCA was converted to 1-methoxyphenazine through structure modification by introducing the functional enzymes PhzSPa and PhzMLa, which has good antifungal activity and environmental compatibility. This work demonstrates new possibilities for developing PCA-derived biopesticides and enables targeted control of the impact of PCA in diverse environments.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Tsiantas P, Bempelou E, Doula M, Karasali H. Validation and Simultaneous Monitoring of 311 Pesticide Residues in Loamy Sand Agricultural Soils by LC-MS/MS and GC-MS/MS, Combined with QuEChERS-Based Extraction. Molecules 2023; 28:molecules28114268. [PMID: 37298746 DOI: 10.3390/molecules28114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Soil can be contaminated by pesticide residues through agricultural practices, by direct application or through spray-drift in cultivations. The dissipation of those chemicals in the soil may pose risks to the environment and human health. A simple and sensitive multi-residue analytical method was optimized and validated for the simultaneous determination of 311 active substances of pesticides in agricultural soils. The method involves sample preparation with QuEChERS-based extraction, and determination of the analytes with a combination of GC-MS/MS and LC-MS/MS techniques. Calibration plots were linear for both detectors over the range of five concentration levels, using matrix-matched calibration standards. The obtained recoveries from fortified-soil samples ranged from 70 to 119% and from 72.6 to 119% for GC-MS/MS and LC-MS/MS, respectively, while precision values were <20% in all cases. As regards the matrix effect (ME), signal suppression was observed in the liquid chromatography (LC)-amenable compounds, which was further estimated to be negligible. The gas chromatography (GC)-amenable compounds showed enhancement in the chromatographic response estimated as medium or strong ME. The calibrated limit of quantification (LOQ) value was 0.01 μg g-1 dry weight for most of the analytes, while the corresponding calculated limit of determination (LOD) value was 0.003 μg g-1 d.w. The proposed method was subsequently applied to agricultural soils from Greece, and positive determinations were obtained, among which were non-authorized compounds. The results indicate that the developed multi-residue method is fit for the purpose of analyzing low levels of pesticides in soil, according to EU requirements.
Collapse
Affiliation(s)
- Petros Tsiantas
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Eleftheria Bempelou
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Helen Karasali
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| |
Collapse
|
41
|
Terrón-Sánchez J, Martín-Franco C, Vicente LA, Fernández-Rodríguez D, Albarrán Á, Rato Nunes JM, Peña D, López-Piñeiro A. Combined use of biochar and alternative management systems for imazamox induced pollution control in rice growing environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117430. [PMID: 36801681 DOI: 10.1016/j.jenvman.2023.117430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Imazamox (IMZX) is a persistent herbicide having probable risks for non-target organisms in the environment and water contamination. Alternatives to conventional flooding rice production, including biochar amendment, may induce changes in soil properties which can greatly modify the environmental fate of IMZX. This two-year study is the first to evaluate how tillage and irrigation practices, with or without fresh or aged biochar (Bc), that are alternatives to conventional rice production impact IMZX's environmental fate. The treatments were: conventional tillage and flooding irrigation (CTFI), conventional tillage and sprinkler irrigation (CTSI), no-tillage and sprinkler irrigation (NTSI), and the corresponding Bc-amendment treatments (CTFI-Bc, CTSI-Bc, and NTSI-Bc). Fresh and aged Bc amendment decreased IMZX's sorption onto the soil in tillage treatments, with Kf values decreasing 3.7 and 4.2-fold (fresh case) and 1.5 and 2.6-fold (aged case) for CTSI-Bc and CTFI-Bc, respectively. The transition to sprinkler irrigation reduced IMZX persistence. Overall, Bc amendment also reduced chemical persistence with half-life values decreasing 1.6 and 1.5-fold for CTFI and CTSI (fresh year) and 1.1, 1.1, and 1.3-fold for CTFI, CTSI, and NTSI (aged year), respectively. Sprinkler irrigation reduced IMZX leaching by up to a factor of 2.2. The use of Bc as amendment led to a significant decrease in IMZX leaching only under tillage conditions, but notable in particular for the CTFI case where leaching losses were reduced in the fresh year from 80% to 34% and, in the aged year, from 74% to 50%. Hence the change in irrigation from flooding to sprinkler either alone or in combination with the use of Bc (fresh or aged) amendment could be considered an effective way to sharply mitigate IMZX contamination of water in environments where rice is grown, particularly in those managed with tillage.
Collapse
Affiliation(s)
- Jaime Terrón-Sánchez
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, 06071, Badajoz, Spain
| | - Carmen Martín-Franco
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas S/n, 06071, Badajoz, Spain
| | - Luis Andrés Vicente
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas S/n, 06071, Badajoz, Spain
| | - Damián Fernández-Rodríguez
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, 06071, Badajoz, Spain
| | - Ángel Albarrán
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, 06071, Badajoz, Spain
| | | | - David Peña
- Área de Edafología y Química Agrícola, Escuela de Ingenierías Agrarias- IACYS, Universidad de Extremadura, Ctra de Cáceres, 06071, Badajoz, Spain.
| | - Antonio López-Piñeiro
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas S/n, 06071, Badajoz, Spain
| |
Collapse
|
42
|
Jin MK, Zhang Q, Yang YT, Zhao CX, Li J, Li H, Qian H, Zhu D, Zhu YG. Exposure to cypermethrin pesticide disturbs the microbiome and disseminates antibiotic resistance genes in soil and the gut of Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131026. [PMID: 36812731 DOI: 10.1016/j.jhazmat.2023.131026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Worldwide, pyrethroids, such as cypermethrin, are the second most applied group of insecticides, however, their effects on the soil microbiome and non-target soil fauna remain largely unknown. Herein, we assessed the change of bacterial communities and antibiotic resistance genes (ARGs) of soil and in the gut of the model soil species Enchytraeus crypticus using a combination of 16S rRNA gene amplicon sequencing, and high-throughput qPCR of ARGs. Results indicate that cypermethrin exposure enriches potential pathogens (e.g. Bacillus anthracis) in the soil and gut microbiome of E. crypticus, heavily disrupting the latter's microbiome structure, and even disrupts activities of the E. crypticus immune system. The co-occurrence of potential pathogens (e.g. Acinetobacter baumannii), ARGs, and mobile genetic elements (MGEs) revealed the increased risk of pathogenicity as well as antibiotic resistance in potential pathogens. Moreover, structural equation modeling demonstrated that the dissemination of ARGs was not only promoted by MGEs, but also by the ratio of the core to non-core bacterial abundance. Collectively, these results provide an in-depth view of the previously unappreciated environmental risk of cypermethrin on the dissemination of ARGs in the soil and non-target soil fauna.
Collapse
Affiliation(s)
- Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| | - Yu-Tian Yang
- Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cai-Xia Zhao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hongjie Li
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, China
| |
Collapse
|
43
|
Mubeen I, Fawzi Bani Mfarrej M, Razaq Z, Iqbal S, Naqvi SAH, Hakim F, Mosa WFA, Moustafa M, Fang Y, Li B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107670. [PMID: 37018866 DOI: 10.1016/j.plaphy.2023.107670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Agrochemicals are products of advanced technologies that use inorganic pesticides and fertilizers. Widespread use of these compounds has adverse environmental effects, leading to acute and chronic exposure. Globally, scientists are adopting numerous green technologies to ensure a healthy and safe food supply and a livelihood for everyone. Nanotechnologies significantly impact all aspects of human activity, including agriculture, even if synthesizing certain nanomaterials is not environmentally friendly. Numerous nanomaterials may therefore make it easier to create natural insecticides, which are more effective and environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and extend shelf life, while controlled-release products can improve the delivery of pesticides. Nanotechnology platforms enhance the bioavailability of conventional pesticides by changing kinetics, mechanisms, and pathways. This allows them to bypass biological and other undesirable resistance mechanisms, increasing their efficacy. The development of nanomaterials is expected to lead to a new generation of pesticides that are more effective and safer for life, humans, and the environment. This article aims to express at how nanopesticides are being used in crop protection now and in the future. This review aims to shed some light on the various impacts of agrochemicals, their benefits, and the function of nanopesticide formulations in agriculture.
Collapse
Affiliation(s)
- Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates.
| | - Zarafshan Razaq
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Shehzad Iqbal
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, 3460000, Maule, Chile.
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Fahad Hakim
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Walid F A Mosa
- Plant Production Department (Horticulture- Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Yadav R, Khare P. Dissipation kinetics of chlorpyrifos and 3,5,6 trichloro-2-pyridinol under vegetation of different aromatic grasses: Linkage with enzyme kinetics and microbial community of soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130960. [PMID: 36860046 DOI: 10.1016/j.jhazmat.2023.130960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The dissipation of chlorpyrifos (CP) and its hydrolytic metabolite 3,5,6-trichloro-2-pyridinol (TCP) in the soil is crucial for safe agriculture. However, there is still lacking relevant information about its dissipation under different vegetation for remediation purposes. In the present study, evaluation of dissipation of CP and TCP in non-planted and planted soil with different cultivars of three types of aromatic grass viz Cymbopogon martinii (Roxb. Wats), Cymbopogon flexuosus, and Chrysopogon zizaniodes (L.) Nash was examined in light of soil enzyme kinetics, microbial communities, and root exudation. Results revealed that the dissipation of CP was well-fitted into a single first-order exponential model (SFO). A significant reduction in the half-life (DT50) of CP was observed in planted soil (30-63 days) than in non-planted soil (95 days). The presence of TCP in all soil samples was observed. The three types of the inhibitory effect of CP i.e. linear mixed inhibition (increase in enzyme-substrate affinity (Km) and decrease in enzyme pool (Vmax), un-competitive inhibition (decrease in Km and Vmax), and simple competitive inhibition were observed on soil enzymes involved in mineralization of carbon, nitrogen, phosphorus, and sulfur. The improvement in the enzyme pool (Vmax) was observed in planted soil. Streptomyces, Clostridium, Kaistobacter, Planctomyces, and Bacillus were the dominant genera in CP stress soil. CP contamination in soil demonstrated a reduction of richness in microbial diversity and enhancement of functional gene family related to cellular process, metabolism, genetic, and environmental information processing. Among all the cultivars, C. flexuosus cultivars demonstrated a higher dissipation rate of CP along with more root exudation.
Collapse
Affiliation(s)
- Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
45
|
Hu Y, Jiang Z, Hou A, Wang X, Zhou Z, Qin B, Cao B, Zhang Y. Impact of atrazine on soil microbial properties: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121337. [PMID: 36841420 DOI: 10.1016/j.envpol.2023.121337] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Atrazine is a biotoxic long-residing herbicide whose toxic effects on soil microorganisms have attracted widespread attention. However, previous studies on the effects of atrazine on soil microorganisms have yielded highly variable results. Therefore, a meta-analysis using a database containing 1141 data points from 39 peer-reviewed papers was conducted to illustrate the response of soil microorganisms to the application of atrazine. The results showed that the application of atrazine significantly increased soil microbial biomass and respiration by 8.9% and 26.77%, respectively, and decreased soil microbial diversity and enzyme activity by 4.87% and 24.04%, respectively. In addition, mixed-effect models were used to explain the influence of moderator variables, including water holding capacity, temperature, pH, organic carbon content, atrazine concentration, duration, and soil texture, on the results to help account for inconsistent conclusions. It was found that soil microbial biomass was significantly positively correlated with temperature, organic carbon content, atrazine concentration, clay content and silt content, while it was negatively correlated with pH and sand content. Soil microbial respiration was negatively correlated with pH and positively correlated with atrazine concentration. Soil microbial diversity was positively correlated with water holding capacity, pH, silt content and sand content, and negatively correlated with organic carbon content and clay content. Soil enzyme activity, the indicator that showed the largest decrease after atrazine application, was significantly positively correlated with water holding capacity, temperature, organic carbon content, and herbicide concentration; it was negatively correlated with soil pH. On the basis of these analysis results, we recommend that atrazine should not be allowed to persist in alkaline sandy soil for long periods of time, as this can result in atrazine having a significant negative impact on soil microorganisms.
Collapse
Affiliation(s)
- Yang Hu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Anqi Hou
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodong Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziqian Zhou
- College of Life Science, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Qin
- College of Life Science, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
46
|
Cheng Z, Hou Z, Han H, Yu X, Li J, Zhao Q, Zhang N, Lu Z. Adsorption, mobility, and degradation of the pesticide propaquizafop in five agricultural soils in China. Sci Rep 2023; 13:5814. [PMID: 37037846 PMCID: PMC10086030 DOI: 10.1038/s41598-023-32771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
Propaquizafop is a fatty acid synthetic herbicide used to control annual and perennial grasses. To understand the potential environmental risks of propaquizafop to crops and food safety, the adsorption, mobility, and degradation of propaquizafop in five different soils were studied. At an initial concentration of 5 mg L-1 propaquizafop, its adsorption equilibrium was reached within 24 h, and the adsorption rates were between 46.98 and 57.76%. The Elovich kinetic model provided the best fit for the kinetic model, with R2 values between 0.9882 and 0.9940. For the isothermal adsorption tests, the Freundlich model was used to better fit the adsorption characteristics of propaquizafop in different soils, with R2 values between 0.9748 and 0.9885. Increasing the concentration of Ca2+ was beneficial for propaquizafop adsorption. In the soil thin-layer chromatography tests, the Rf of propaquizafop in the five soil samples ranged from 0.076 to 0.123. The results of the soil column leaching tests showed that propaquizafop did not migrate in the five soil columns; it was not detected in the leachate of each soil column, and propaquizafop in the soil columns only existed in the 0-5 cm soil layer. The results of soil thin-layer chromatography and soil column leaching tests showed that propaquizafop is a pesticide with a weak migration ability. Under the same environmental conditions, the degradation rate of propaquizafop in different soils followed the order LF fluvo-aquic soil (T1/2 = 1.41 d) > CS red loam (T1/2 = 2.76 d) > SX paddy soil (T1/2 = 3.52 d) > CC black soil (T1/2 = 5.74 d) > BS ginseng soil (T1/2 = 7.75 d). Considering the effects of soil moisture, incubation temperature, and microorganisms on propaquizafop degradation in the soil, temperature was found to have the greatest influence on its degradation rate.
Collapse
Affiliation(s)
- Zhijia Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongbo Han
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaolong Yu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaxin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Qinghui Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ning Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
47
|
Oyeyiola YB, Opeolu BO. Immediate effects of atrazine application on soil organic carbon and selected macronutrients and amelioration by sawdust biochar pretreatment. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Abstract
Increasing use of herbicides has contributed immensely to current soil and water degradation in the tropics. Published works on effects of herbicides on soil organic carbon (SOC) – a major indicator for soil health and macronutrients and their enhancement by biochar are scarce for soils in Africa despite heavy herbicide applications every cropping season. This incubation trial evaluated immediate effects of atrazine application on SOC and selected soil macronutrients. The potential of sawdust (SD) biochar to mitigate associated SOC and macronutrients depletion was also assessed. A total of 950 g soil was placed in each leaching column (20 cm length and 7 cm diameter). The experiment was a factorial combination of four SD biochar types: SD + poultry manure (PM) pyrolyzed at 350 °C, SD-PM at 350 °C, SD + PM at 450 °C and SD-PM at 450 °C applied at two rates of 5 and 10 t/ha equivalent to 2.38 and 4.76 g/950 g soil, respectively. Atrazine alone and absolute control (AC) that received neither biochar nor atrazine were included for comparison. The treatments were replicated thrice in completely randomized design. Appropriate biochar was applied within 5 cm soil depth, moistened to field capacity, and left to equilibrate for 2 weeks. Thereafter, 20 mL atrazine solution was applied at 2.5 kg a.i/ha (achieved through 6.75 g atrazine powder/l of distilled water). Basal NPK 15:15:15 fertilizer mixed with urea at 0.1 and 0.03 g/900 g soil, respectively, was applied to mimic farmers’ practice on atrazine treated fields. Maize seeds were thereafter sown in the treated soils and nurtured for 2 weeks. Data taken on soil pH, SOC, exchangeable bases, available phosphorus, and dry biomass weight (DBW) of maize seedlings at the expiration of the trial were subjected to two-way analysis of variance using Genstat Statistical Package with means separated using LSD at 5% probability level. There were significant reductions in soil pH (5.8%), SOC (31%), and Ex. Ca (27%) in atrazine alone soil compared to AC. Contrarily, similar atrazine treated soil pretreated with SD biochar had increased soil pH, SOC, exchangeable Ca, available P, and DBW by 5.6 (in SD + PM@450 °C), 73.6 (SD-PM@450 °C), 84 (SD + PM@450 °C), 2,338.4 (SD + PM@450 °C), and 154.8% (SD + PM@350 °C), respectively, dominantly at 10 t/ha compared to AC. Sole atrazine treated soil was, however, higher in soil available P (23.8 mg/kg) and TDBW (0.56 g) against 5.42 mg/kg and 0.42 g from AC, respectively. Biochar pH and organic carbon were the most influential biochar properties contributing significantly to SOC sequestration and macronutrient enrichment in the atrazine treated soil. Pretreatment of soils with sawdust biochar prior to atrazine application is, therefore, recommended for mitigating associated organic carbon and macronutrient depletion in the soils for enhanced maize production.
Collapse
Affiliation(s)
- Yetunde Bunmi Oyeyiola
- Department of Crop Production and Soil Science , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Beatrice Olutoyin Opeolu
- Faculty of Applied Sciences , Cape Peninsula University of Technology , Cape Town , South Africa
| |
Collapse
|
48
|
Park B, Choi SJ. Magnetic biochar modified with crosslinked chitosan and EDTA for removing cobalt from aqueous solutions. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
49
|
Sachdeva S, Kumar R, Sahoo PK, Nadda AK. Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120937. [PMID: 36608723 DOI: 10.1016/j.envpol.2022.120937] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.
Collapse
Affiliation(s)
- Saloni Sachdeva
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector 62, Noida, 201309, Uttar Pradesh, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda, 151401, Punjab, India; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| |
Collapse
|
50
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Ashraf A, Song Y. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120335. [PMID: 36202269 DOI: 10.1016/j.envpol.2022.120335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|