1
|
Deng Z, Sun C, Ma G, Zhang X, Guo H, Zhang T, Zhang Y, Hu Y, Li D, Li YY, Kong Z. Anaerobic treatment of nitrogenous industrial organic wastewater by carbon-neutral processes integrated with anaerobic digestion and partial nitritation/anammox: Critical review of current advances and future directions. BIORESOURCE TECHNOLOGY 2025; 415:131648. [PMID: 39447922 DOI: 10.1016/j.biortech.2024.131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Anaerobic digestion combined with partial nitritation/anammox technology holds promising potential for the carbon-neutral treatment of nitrogenous industrial organic wastewater, boasting remarkable advantages in effective removal of both organic matters and nitrogen, bio-energy recovery and carbon emission reduction. This study provides a concise overview of the development and advantages of anaerobic digestion combined with partial nitritation/anammox technology for treating nitrogenous industrial organic wastewater. The process excels in removing organic matter and nitrogen, recovering bio-energy, and reducing carbon emissions, compared to traditional physicochemical and biological methods. Case studies highlight its energy-saving and efficient attributes, especially for carbon-neutral nitrogen removal. Challenges for achieving stable operation in the future are discussed, and the study offers insights into the broader application of this integrated process in industrial wastewater treatment.
Collapse
Affiliation(s)
- Zixuan Deng
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chengde Sun
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Tao Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Wu ZL, Shih YJ, Chao DM. Treatment of cosmetic wastewater containing N, N-dimethylformamide and high concentration of chloride salt by chemical precipitation and electrochemical method. CHEMOSPHERE 2024; 368:143780. [PMID: 39571946 DOI: 10.1016/j.chemosphere.2024.143780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
High-strength wastewater containing elevated levels of chloride salt and N, N-dimethylformamide (DMF) solvent was collected from manufacturing of sunscreen cream (for UVA/UVB protection) at a cosmetic factory. In evaporation process, precipitates, formed due to the high chloride content (around 160 g/L), clog the pipeline, seriously reducing the treatment efficiency. This study aimed to develop a two-stage process integrating chemical precipitation and electrochemical oxidation to specifically remove the concentrated chloride salt and organic compounds (COD >100 g/L). Chloride ions were initially recovered as insoluble Friedel's salt using calcium hydroxide (Ca(OH)2) and sodium aluminate (NaAlO2) as the precipitants. The [Cl]/[Ca]/[Al] ratio and solution pH were optimized to obtain a pure crystallized phase of Ca2AlCl(OH)6•2H2O. Afterwards, the organic compound were treated by a Fered-Fenton with the addition of H2O2 and FeSO4 to degrade the remaining COD. The cost and energy consumption of this integrated processes were evaluated, compared to the conventional evaporation method.
Collapse
Affiliation(s)
- Zhi-Lun Wu
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan
| | - Yu-Jen Shih
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan.
| | - Dong-Ming Chao
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan
| |
Collapse
|
3
|
Wang Y, Cao L, Lu Y, Liao J, Lu Y, Su C, Gao S. Impact analysis of hydraulic residence time and dissolved oxygen on performance efficiency and microbial community in N, N-dimethylformamide wastewater treated by an AnSBR-ASBR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123326. [PMID: 38195026 DOI: 10.1016/j.envpol.2024.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Suitable operating parameters are one of the key factors to efficient and stable biological wastewater treatment of N, N-dimethylformamide (DMF) wastewater. In this study, an improved AnSBR-ASBR reactor (anaerobic sequencing batch reactor, AnSBR, and aerobic SBR, ASBR, run in series) was used to investigated the effects of operating conditions such as hydraulic residence time (HRT), AnSBR stirring speed and ASBR dissolved oxygen (DO) for DMF wastewater treatment. When HRT decreased from 24 h to 12 h, the average removal rates of COD by the AnSBR were 34.59% and 39.54%, respectively. Meanwhile, the removal rate of NH4+-N by ASBR decreased from 88.38% to 62.81%. The DMF removal rate reached the best at 18 h and the expression of dehydrogenase was the highest in the AnSBR. The abundance of Megasphaera, the dominant sugar-degrading bacteria in the AnSBR, continued to decline due to the decrease of HRT. The relative abundance of Methanobacterium gradually increased to 80.2% with the decrease of HRT and that hydrotrophic methanogenesis dominated the methanogenic process. The HRT decrease promoted butyrate and pyruvate metabolism in anaerobic sludge, but the proportion of glycolysis and methane metabolism decreased. The AnSBR-ASBR reactor had the best operation performance when HRT was 18 h, AnSBR speed was 220 r/min, and ASBR DO content was 3-4 mg/L. This study provided an effective reference for the reasonable selection of operating parameters in the treatment of DMF-containing wastewater by the AnSBR-ASBR.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Yiying Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Junjie Liao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Shu Gao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
4
|
Gadow SI, Hussein H, Abdelhadi AA, Hesham AEL. Anaerobic Biotechnology: Implementations and New Advances. MODERN APPROACHES IN WASTE BIOREMEDIATION 2023:165-180. [DOI: 10.1007/978-3-031-24086-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Kong Z, Hao T, Chen H, Xue Y, Li D, Pan Y, Li Y, Li YY, Huang Y. Anaerobic membrane bioreactor for carbon-neutral treatment of industrial wastewater containing N, N-dimethylformamide: Evaluation of electricity, bio-energy production and carbon emission. ENVIRONMENTAL RESEARCH 2023; 216:114615. [PMID: 36272592 DOI: 10.1016/j.envres.2022.114615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The feasibility of anaerobic membrane bioreactor (AnMBR) for the treatment of N, N-dimethylformamide (DMF)-containing wastewater was theoretically compared with the conventional activated sludge (CAS) process in this study. The electricity consumption and expenditure, bio-energy production and CO2 emission were investigated using the operational results of a lab-scale AnMBR operated in a long-term operation. The AnMBR was capable of producing bio-methane from wastewater and generated 3.45 kWh/m3 of electricity as recovered bio-energy while the CAS just generated 1.17 kWh/m3 of electricity from the post-treatment of excessive sludge disposal. The large quantity of bio-methane recovered by the AnMBR can also be sold as sustainable bioresource for the use of household natural gas with a theoretical profit gain of 29,821 US$/year, while that of the CAS was unprofitable. The AnMBR was also demonstrated to significantly reduce the carbon emission by obtaining a theoretical negative CO2 production of -2.34 kg CO2/m3 with the recycle of bio-energy while that for the CAS was 4.50 kg CO2/m3. The results of this study demonstrate that the AnMBR process has promising potential for the carbon-neutral treatment of high-strength DMF-containing wastewater in the future.
Collapse
Affiliation(s)
- Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan.
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Yi Xue
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
6
|
Fan Y, Tan X, Huang Y, Hao T, Chen H, Yi X, Li D, Pan Y, Li Y, Kong Z. Chemical oxygen demand and nitrogen removal from real membrane-manufacturing wastewater by a pilot-scale internal circulation reactor integrated with partial nitritation-anammox. BIORESOURCE TECHNOLOGY 2022; 364:128116. [PMID: 36244606 DOI: 10.1016/j.biortech.2022.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
A pilot-scale system integrating internal circulation and partial nitritation-anammox successfully treated real high-strength membrane-manufacturing wastewater in this study. With this pilot-scale system, a high chemical oxygen demand (COD) removal efficiency of 85 % and a nitrogen removal of 90 % are achieved at an organic loading rate of 6.0 kg COD/m3/d. The nitrogenous organic matters in the internal circulation zone are degraded into ammonia nitrogen. In the partial nitrification zone, nitrite accumulation is achieved, providing a suitable NH4+-N/NO2--N ratio for anammox reaction. Partial nitritation is achieved by maintaining an operational temperature at 30-35 °C, free ammonia concentration at 5-7 mg/L and dissolved oxygen at 0.4-0.7 mg/L with a reflux ratio of 150 %. The COD to nitrogen ratio in the internal circulation effluent is maintained below 3.0 to inhibit nitrite oxidizing bacteria. This study demonstrates that a pilot-scale system can efficiently remove organic matters and nitrogen from wastewater of membrane-manufacturing industry.
Collapse
Affiliation(s)
- Yuqin Fan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinwei Tan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Xue Yi
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Kong Z, Xue Y, Hao T, Zhang Y, Wu J, Chen H, Song L, Rong C, Li D, Pan Y, Li Y, Li YY. Carbon-neutral treatment of N, N-dimethylformamide-containing industrial wastewater by anaerobic membrane bioreactor (AnMBR): Bio-energy recovery and CO 2 emission reduction. BIORESOURCE TECHNOLOGY 2022; 358:127396. [PMID: 35640814 DOI: 10.1016/j.biortech.2022.127396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
High-strength industrial wastewater containing approximately 2000 mg/L of N, N-dimethylformamide (DMF) was treated by the anaerobic membrane bioreactor (AnMBR) during a long-term operation with the concept of carbon neutrality in this study. Bio-methane was recovered as bio-energy or bio-resource from DMF-containing wastewater along with the CO2 emission reduction. The results are clear evidence of the feasibility of carbon-neutral treatment of DMF-containing wastewater by the AnMBR. With an effective degradation under the organic loading rate of 6.53 COD kg/m3/d at the HRT of 12 h, the AnMBR completely covered the energy consumption during long-term operation by saving electricity of 4.16 kWh/m3 compared with the conventional activated sludge process. The CO2 emission of the AnMBR was just 1.06 kg/m3, remarkably reducing 1.45 kg/m3 of CO2. The treatment of DMF-containing wastewater by the AnMBR perfectly realized the goal of carbon neutrality, and was considered as an alternative to the conventional activated sludge process.
Collapse
Affiliation(s)
- Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| | - Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jiang Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Liuying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
8
|
Kong Z, Wu J, Rong C, Wang T, Li L, Luo Z, Ji J, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Qin Y, Li YY. Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25 °C. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143526. [PMID: 33288248 DOI: 10.1016/j.scitotenv.2020.143526] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Sludge yield and suspended solid are important factors concerned in the anaerobic treatment of municipal wastewater. In this study, a large pilot-scale anaerobic membrane bioreactor (AnMBR) was constructed for effectively treating real municipal wastewater at an ambient temperature of 25 °C. The sludge yield and the degradation of influent suspended solids were evaluated during the long-term operation of the AnMBR. This reactor with 5.0 m3 effective volume is the largest one-stage submerged AnMBR that has ever been used to treat municipal wastewater. During the long-term operation of 217 days, this AnMBR obtained excellent COD and BOD5 removal efficiency over 90%. Stable biogas production was also successfully obtained from treating municipal wastewater. The sludge yield of the AnMBR was approximately 0.19-0.26 g MLSS g-1 COD removed for the treatment of real municipal wastewater. The shortest SRT of the AnMBR was calculated as 29 days for an HRT of 6 h at an empirical MLSS of 10 g L-1. While the influent suspended solid (SS) contained in the municipal wastewater was completely removed by the AnMBR, only 57%-66% of the influent SS was degraded. The rest of influent SS was directly converted to MLSS instead of being degraded. The AnMBR maintained a stable membrane filtration using a hollow-fiber membrane with a total area of 72 m2, realizing a flux of 2.75-17.83 LMH, and the mean transmembrane pressure (TMP) was 0.9-23.5 kPa. An online chemical backwash cleaning system helped to lower the TMP timely using sodium hypochlorite and citric acid when the TMP increased rapidly and reached the rated limit of membrane. This is the first report on demonstrating the successful operation and detailed performance of a large pilot-scale AnMBR applied to the treatment of real municipal wastewater.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiayuan Ji
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
9
|
Yang B, Lang H, Liu Z, Wang S, Men Z, Sun C. Three stages of hydrogen bonding network in DMF-water binary solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Kong Z, Wu J, Rong C, Wang T, Li L, Luo Z, Ji J, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Qin Y, Li YY. Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25 °C. BIORESOURCE TECHNOLOGY 2021; 319:124123. [PMID: 32971330 DOI: 10.1016/j.biortech.2020.124123] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 05/27/2023]
Abstract
The aim of this work was to demonstrate the operation of a large pilot-scale submerged anaerobic membrane bioreactor (5.0 m3) for biogas production from municipal wastewater at ambient temperature of 25 °C. To the best of our knowledge, this is the largest one-stage submerged AnMBR that has ever been reported. This AnMBR realized a hydraulic retention time (HRT) of 6 h and a treatment capacity of 20 m3 d-1, obtaining excellent effluent quality with COD removal efficiency over 90% and BOD5 removal over 95%. The biogas yield of the AnMBR was 0.25-0.27 L g-1 removed COD and 0.09-0.10 L L-1 raw wastewater. The methane content of the biogas was at the range of 75%-81%. The COD and nitrogen mass balance were also identified based on long-term operation. The hollow-fiber membrane module realized a flux of 2.75-17.83 LMH. An online backwash chemical cleaning system helped to lower the transmembrane pressure timely.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiayuan Ji
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
11
|
Guo T, Ji Y, Zhao J, Horn H, Li J. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system. WATER RESEARCH 2020; 186:116331. [PMID: 32877808 DOI: 10.1016/j.watres.2020.116331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A novel pilot-scale system based on aerobic granular sludge (AGS) as a biological treatment step was proposed to treat refractory wastewater from a membrane manufacturer. The components of the system included a microelectrolysis Fe-C filter, a hydrolysis acidification bioreactor (HA), sequence batch reactor 1 (AGS SBR1), sequence batch reactor 2 (AGS SBR2), and a membrane bioreactor (MBR). The Fe-C filter effectively improved the biodegradability of the wastewater components and introduced some byproducts (such as Fe2+, Fe3+, and Fe minerals) that are beneficial for the cultivation and stability of the AGS. Ideal conditions for aerobic granulation were maintained in the SBR, such as alternating feast and famine conditions. A selection pressure, including a hydraulic shear force and settling time, was also created therein. The results showed that the AGS was formed successfully in both SBR1 and SBR2, the sludge volume index after 30 min (SVI30) and mean particle size reached 34.2 mL/g and 720 µm, and 36.7 mL/g and 610 µm, respectively, and a satisfactory nutrient removal capacity was achieved in the system. During the entire experimental period, the microbial community changed significantly; enrichment of microbes with the secretion of extracellular polymeric substances (EPS), granule stabilization functions in the AGS, and the differentiation of microbes corresponding to the function of each unit were observed. The use of Fe-C, application of SBRs, and use of dewatered sludge as an inoculant played key roles in the cultivation and stability of the AGS.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yu Ji
- Hangzhou Tianchuang Environmental Technology Co., Ltd, Hangzhou, China
| | - Jingwei Zhao
- Hangzhou Tianchuang Environmental Technology Co., Ltd, Hangzhou, China
| | - Harald Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe, Germany
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
12
|
Ouyang J, Li C, Wei L, Wei D, Zhao M, Zhao Z, Zhang J, Chang CC. Activated sludge and other aerobic suspended culture processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1717-1725. [PMID: 32762078 DOI: 10.1002/wer.1427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper provides an overview of activated sludge related to suspended growth processes for the year 2019. The review encompasses process modeling of activated sludge, microbiology of activated sludge, process kinetics and mechanism, nitrogen and phosphorus control, design, and operation in the activated sludge field. The fate and effect of xenobiotics in activated sludge, including trace organic contaminant and heavy metal xenobiotics, which had influence on the growth of suspended sludge, are covered in this review. Compared to past reviews, many topics show increase in activity in 2019. These include, biokinetics process of aerobic granular sludge formation, pyrolysis kinetic mechanism of granular sludge. These topics are referred to formation and disintegration of granular sludge. Other sections include activated sludge settling model, toxicity resistant microbial community, nitritation-anammox processes for nitrogen removal, and respirometry used in the operation of real wastewater treatment plant are especially highlighted in this review. PRACTITIONER POINTS: Biokinetics process of aerobic granular sludge formation Toxicity resistant microbial community in activated sludge Nitritation-anammox processes for nitrogen removal in activated sludge.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhen Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
13
|
Chen Z, Li D, Wen Q. Investigation of hydrolysis acidification process during anaerobic treatment of coal gasification wastewater (CGW): Evolution of dissolved organic matter and biotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137995. [PMID: 32213409 DOI: 10.1016/j.scitotenv.2020.137995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Coal gasification wastewater (CGW) contains several types of aromatic pollutants, which impart high biotoxicity and reduce the quality of anaerobic treatment. Two types of hydrolysis acidification processes, namely microaerobic hybrid reactor (HA-1) and upflow anaerobic sludge blanket reactor (HA-2), were developed for pre-treatment before the anaerobic treatment. The changes in the dissolved organic matter and biotoxicity were investigated to comprehensively understand the degradation process. The results showed that HA-2 coupled with an anaerobic reactor achieved a 12.3% and 13.4% higher removal efficiency for chemical oxygen demand and total phenols, respectively, compared with the coupled process with HA-1. Furthermore, HA-2 could transform macromolecules into small molecules more efficiently and produce fewer intermediates. The coupled process with HA-2 preferentially removed complex aromatic substances with absorption wavelengths of 285 and 254 nm, according to the sequential orders interpreted from two-dimensional correlation spectroscopy. In addition, the results of fluorescence excitation-emission-matrix with regional integration analysis revealed that the contents of typical cyclic compounds in CGW, such as phenolic, heterocyclic, and polycyclic aromatic compounds were remarkably reduced by HA-2. In addition, HA-2 reduced the toxic unit value of CGW by 67.5% and increased the resazurin dehydrogenase activity of the sludge by 37.5% during CGW treatment, thus improving the biotoxicity removal and biodegradability. However, the coupled process with HA-2 did not significantly affect the "indirect estrogenic activity" of CGW. A Pearson correlation analysis indicated that spectral indicators, such as UV254 and ΦT,n, presented a high positive correlation with the reduction of acute toxicity and organics.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730070, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Hu D, Min H, Wang H, Zhao Y, Cui Y, Wu P, Ge H, Luo K, Zhang L, Liu W, Wang A. Performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater. BIORESOURCE TECHNOLOGY 2020; 305:123070. [PMID: 32120235 DOI: 10.1016/j.biortech.2020.123070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
This paper focused on the feasibility and performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater at different COD loading rates (LRs) from 2.02 ± 0.13 to 6.09 ± 0.14 kgCOD/(m3·d). Open-circuit UBES had a lower average COD removal rate of 62.4 ± 4.7% in Run2, and the accumulation of volatile fatty acid (VFA) was occurred. However, closed-circuit UBES can alleviate the accumulation of VFA (which was decreased from 720.4 to 102.4 mg/L), the highest average COD, SMX removal rates were 85.7 ± 3.2% and 73.7 ± 2.0%, respectively. The closed-circuit UBES can withstand more than 3 times LR than open-circuit UBES, which proved that the ability of microorganisms to resist toxic substance stress was strengthened. And the mathematical models for pollutants removal rate were established and well interpreted the results, which also can guide the operation of UBES.
Collapse
Affiliation(s)
- Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongchao Min
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Yuanyi Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Pan Wu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Kongyan Luo
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Lufeng Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
15
|
Kong Z, Li L, Wang T, Rong C, Xue Y, Zhang T, Wu J, Li YY. New insights into the cultivation of N, N-dimethylformamide-degrading methanogenic consortium: A long-term investigation on the variation of prokaryotic community inoculated with activated sludge. ENVIRONMENTAL RESEARCH 2020; 182:109060. [PMID: 31884196 DOI: 10.1016/j.envres.2019.109060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The cultivation of the N, N-dimethylformamide (DMF)-degrading methanogenic consortium is considered difficult. In this study, an up-flow anaerobic sludge blanket (UASB) was inoculated with activated sludge in order to culture the DMF-degrading anaerobic sludge under a constant DMF concentration of approximately 2000 mg L-1. While the UASB realized a nearly 100% degradation of DMF and a high methane production of 1.03 L d-1 for the first two months, both the removal efficiency and methane production continued to decrease until the end. The characterization of the prokaryotic community reveals that those DMF-hydrolyzing bacteria (DHB) originating from the activated sludge were responsible for the effective degradation of DMF. However, even when fed with a constant concentration of DMF, the DHB kept decreasing all the time while methane-producing archaea were rapidly cultivated. The variation of prokaryotic community suggests that the DHB could not proliferate anaerobically without utilizing the intermediate products from the hydrolysis of DMF, resulting in an unstable DMF-degrading consortium. The cultivation of DHB under the anaerobic condition of the UASB was therefore difficult. The reason it was not possible to culture a DMF-degrading methanogenic consortium in this study is that the DHB are denitrifying bacteria which require nitrate for their cell growth under the anaerobic condition. The solution to maintain the abundance of these DHB is to add doses of nitrate into the system. Nitrate is likely to help these DHB recapture intermediates from methanogens, enabling them to perform a heterotrophic denitrification by using a small proportion of DMF as the carbon source while simultaneously maintaining the cell growth of DHB.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
16
|
Kong Z, Li L, Kato H, Zhang T, Xue Y, Li YY. Dissection and characterization of the prokaryotic community during the long-term operation of a submerged anaerobic membrane bioreactor for the anaerobic treatment of N, N-dimethylformamide-containing wastewater with a co-cultured inoculum. BIORESOURCE TECHNOLOGY 2019; 282:482-493. [PMID: 30897486 DOI: 10.1016/j.biortech.2019.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
A submerged anaerobic membrane bioreactor (SAnMBR) was operated for the anaerobic treatment of wastewater containing approximately 2000 mg L-1N, N-dimethylformamide (DMF). Inoculated with a co-cultured inoculum, the SAnMBR obtained an excellent DMF removal under a low organic loading rate (OLR) of 3.14-4.16 g COD L-1 d-1. However, the elevation of OLR limited hydrolysis. While the co-cultured inoculum initially contains abundant DMF-hydrolyzing bacteria with potential to hydrolyze DMF into intermediates, such as Paracoccus, Hyphomicrobium, Burkholderia, Catellibacterium, Bacillus and Bradyrhizobium, since these bacteria are facultative anaerobes which survive anaerobically, they kept decaying rather than proliferating, resulting in the weakening of the DMF-hydrolyzing ability. Each re-inoculation of new sludge only temporarily revitalized hydrolysis activity for a short period. Due to the lack of nitrate, these bacteria were unable to proliferate. This suggests that a small dose of nitrate would help to enrich these bacteria and establish a stable DMF-degrading consortium.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Hiroyuki Kato
- The Japan Institute of Wastewater Engineering and Technology, Suido-Cho Bld 7F, 3-1 Suido-Cho, Shinjuku Ward, Tokyo 162-0811, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
17
|
Kong Z, Li L, Kurihara R, Zhang T, Li YY. Anaerobic treatment of N,N-dimethylformamide-containing high-strength wastewater by submerged anaerobic membrane bioreactor with a co-cultured inoculum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:696-708. [PMID: 30731415 DOI: 10.1016/j.scitotenv.2019.01.358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The anaerobic treatment of wastewater containing approximately 2000 mg L-1N,N-dimethylformamide (DMF) was conducted by a lab-scale submerged anaerobic membrane bioreactor (SAnMBR). The inoculum consisted of aerobic DMF-hydrolyzing activated sludge (DAS) and anaerobic digested sludge (ADS). A rapid start-up was achieved with thorough DMF methanogenic degradation on the first day. The results of a 250-day long-term experiment demonstrated that under a low organic loading rate (OLR) of 3.14-4.16 g COD L-1 d-1, SAnMBR maintained excellent DMF removal efficiency along with high methane conversion. However, the elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6.54 g COD L-1 d-1, both removal efficiency and methane production dramatically dropped. The DMF-hydrolyzing bacteria originating from the DAS gradually decayed under the anaerobic condition, resulting in the weak hydrolysis of DMF. The shortening of hydraulic retention time (HRT) is not recommended for the SAnMBR because severe membrane fouling occurred when HRT was shortened to 8 h. To handle high OLRs, an appropriate solution is to maintain a low F/M ratio by increasing both the influent DMF concentration and sludge concentration. The high CH4 content in the biogas, exceeding 85%, was shown to be the reason for the suitability of anaerobic treatment to DMF. Some improvements which would help to maintain the effective hydrolysis are proposed: a side-stream system to replenish DAS to the SAnMBR is helpful; slight dosage of nitrate could also help to enrich the DMF-hydrolyzing bacteria; and the co-digestion of DMF and other organics might be convenient to establish a stable DMF-degrading consortium.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Rei Kurihara
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|