1
|
Castro-Ríos K, Buri MCS, Ramalho da Cruz AD, Ceresini PC. Aspergillus fumigatus in the Food Production Chain and Azole Resistance: A Growing Concern for Consumers. J Fungi (Basel) 2025; 11:252. [PMID: 40278073 PMCID: PMC12028647 DOI: 10.3390/jof11040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Aspergillosis is a fungal disease caused by the inhalation of Aspergillus spores, with Aspergillus fumigatus being the primary causative agent. This thermotolerant fungus affects both immunocompetent and immunocompromised individuals, posing a significant public health concern. In recent years, the detection of A. fumigatus in food products and production environments has raised questions about its potential role as an additional route of exposure. Furthermore, the emergence of azole-resistant strains in agricultural settings highlights the need to better understand its transmission dynamics and implications for food safety. This review explores the occurrence of A. fumigatus in crops and food products, its possible routes of contamination, and the potential link between environmental exposure to azole fungicides and resistance development. Additionally, it identifies knowledge gaps and proposes future research directions to improve risk assessment and mitigation strategies within the food production chain.
Collapse
Affiliation(s)
- Katherin Castro-Ríos
- Department of Crop Protection, Agricultural Engineering and Soil, São Paulo State University—UNESP, Ilha Solteira 15385-000, SP, Brazil; (K.C.-R.); (M.C.S.B.); (A.D.R.d.C.)
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Industrial de Santander (UIS), Bucaramanga 680001, Santander, Colombia
| | - Maria Clara Shiroma Buri
- Department of Crop Protection, Agricultural Engineering and Soil, São Paulo State University—UNESP, Ilha Solteira 15385-000, SP, Brazil; (K.C.-R.); (M.C.S.B.); (A.D.R.d.C.)
| | - Arla Daniela Ramalho da Cruz
- Department of Crop Protection, Agricultural Engineering and Soil, São Paulo State University—UNESP, Ilha Solteira 15385-000, SP, Brazil; (K.C.-R.); (M.C.S.B.); (A.D.R.d.C.)
| | - Paulo Cezar Ceresini
- Department of Crop Protection, Agricultural Engineering and Soil, São Paulo State University—UNESP, Ilha Solteira 15385-000, SP, Brazil; (K.C.-R.); (M.C.S.B.); (A.D.R.d.C.)
| |
Collapse
|
2
|
Wang A, Shi S, Ma Y, Li S, Gui W. Insights into the role of FoxL2 in tebuconazole-induced male- biased sex differentiation of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174543. [PMID: 38977095 DOI: 10.1016/j.scitotenv.2024.174543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Tebuconazole (TEB) is a commonly used fungicide that inhibits the aromatase Cyp19A and downregulates the transcription factor forkhead box L2 (FoxL2), leading to male-biased sex differentiation in zebrafish larvae. However, the specific mechanism by which FoxL2 functions following TEB exposure remains unclear. In this study, the phosphorylation sites and kinase-specific residues in zebrafish FoxL2 protein (zFoxL2) were predicted. Subsequently, recombinant zFoxL2 was prepared via prokaryotic expression, and a polyclonal rabbit-anti-zFoxL2 antibody was generated. Zebrafish fibroblast (ZF4) cells were exposed to 100-μM TEB alone for 8 h, after which changes in the expression of genes involved in the foxl2 regulatory pathway (akt1, pi3k, cyp19a1b, c/ebpb and sox9a) were detected. When co-exposed to 1-μM estradiol and 100-μM TEB, the expression of these key genes tended to be restored. Interestingly, TEB did not affect the expression of the foxl2 gene or protein but it significantly suppressed the phosphorylation of FoxL2 (pFoxL2) at serine 238 (decreased by 43.64 %, p = 0.009). Co-immunoprecipitation assays showed that, following exposure to 100-μM TEB, the total precipitated proteins in ZF4 cells decreased by 17.02 % (p = 0.029) and 31.39 % (p = 0.027) in the anti-zFoxL2 antibody group and anti-pFoxL2 (ser238) antibody group, respectively, indicating that TEB suppressed the capacity of the FoxL2 protein to bind to other proteins via repression of its own phosphorylation. The pull-down assay confirmed this conclusion. This study preliminarily elucidated that the foxl2 gene functions via post-translational regulation through hypophosphorylation of its encoded protein during TEB-induced male-biased sex differentiation.
Collapse
Affiliation(s)
- Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shiyao Shi
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
3
|
Wang C, Miller N, Vines D, Severns PM, Momany M, Brewer MT. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl Environ Microbiol 2024; 90:e0205623. [PMID: 38651929 PMCID: PMC11107156 DOI: 10.1128/aem.02056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.
Collapse
Affiliation(s)
- Caroline Wang
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Natalie Miller
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Douglas Vines
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Paul M. Severns
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group, Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Marin T. Brewer
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Uehara S, Takahashi Y, Iwakoshi K, Nishino Y, Wada K, Ono A, Hagiwara D, Chiba T, Yokoyama K, Sadamasu K. Isolation of azole-resistant Aspergillus spp. from food products. Med Mycol 2024; 62:myae026. [PMID: 38490745 DOI: 10.1093/mmy/myae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024] Open
Abstract
The prevalence of azole-resistant Aspergillus fumigatus is increasing worldwide and is speculated to be related to the use of azole pesticides. Aspergillus spp., the causative agent of aspergillosis, could be brought into domestic dwellings through food. However, studies on azole-resistant Aspergillus spp. in food products are limited. Therefore, we aimed to isolate Aspergillus spp. from processed foods and commercial agricultural products and performed drug susceptibility tests for azoles. Among 692 food samples, we isolated 99 strains of Aspergillus spp. from 50 food samples, including vegetables (22.9%), citrus fruits (26.3%), cereals (25.5%), and processed foods (1.8%). The isolates belonged to 18 species across eight sections: Aspergillus, Candidi, Clavati, Flavi, Fumigati, Nidulantes, Nigri, and Terrei. The most frequently isolated section was Fumigati with 39 strains, followed by Nigri with 28 strains. Aspergillus fumigatus and A. welwitschiae were the predominant species. Ten A. fumigatus and four cryptic strains, four A. niger cryptic strains, two A. flavus, and four A. terreus strains exceeded epidemiological cutoff values for azoles. Aspergillus tubingensis, A. pseudoviridinutans, A. lentulus, A. terreus, and N. hiratsukae showed low susceptibility to multi-azoles. Foods containing agricultural products were found to be contaminated with Aspergillus spp., with 65.3% of isolates having minimal inhibitory concentrations below epidemiological cutoff values. Additionally, some samples harbored azole-resistant strains of Aspergillus spp. Our study serves as a basis for elucidating the relationship between food, environment, and clinically important Aspergillus spp.
Collapse
Affiliation(s)
- Satomi Uehara
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Yumi Takahashi
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Keiko Iwakoshi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Japan
| | - Yukari Nishino
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Kotono Wada
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Asuka Ono
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba MiCS, University of Tsukuba, Japan
| | - Takashi Chiba
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| |
Collapse
|
5
|
Schürch S, Gindro K, Schnee S, Dubuis PH, Codina JM, Wilhelm M, Riat A, Lamoth F, Sanglard D. Occurrence of Aspergillus fumigatus azole resistance in soils from Switzerland. Med Mycol 2023; 61:myad110. [PMID: 37930839 PMCID: PMC10653585 DOI: 10.1093/mmy/myad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.
Collapse
Affiliation(s)
- Stéphanie Schürch
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Katia Gindro
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Pierre-Henri Dubuis
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Josep Massana Codina
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Matthieu Wilhelm
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Arnaud Riat
- Service of Infectious Diseases and Service of Laboratory Medicine, Geneva University Hospitals and Geneva University, 1205 Geneva, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Crequer E, Ropars J, Jany J, Caron T, Coton M, Snirc A, Vernadet J, Branca A, Giraud T, Coton E. A new cheese population in Penicillium roqueforti and adaptation of the five populations to their ecological niche. Evol Appl 2023; 16:1438-1457. [PMID: 37622099 PMCID: PMC10445096 DOI: 10.1111/eva.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
Domestication is an excellent case study for understanding adaptation and multiple fungal lineages have been domesticated for fermenting food products. Studying domestication in fungi has thus both fundamental and applied interest. Genomic studies have revealed the existence of four populations within the blue-cheese-making fungus Penicillium roqueforti. The two cheese populations show footprints of domestication, but the adaptation of the two non-cheese populations to their ecological niches (i.e., silage/spoiled food and lumber/spoiled food) has not been investigated yet. Here, we reveal the existence of a new P. roqueforti population, specific to French Termignon cheeses, produced using small-scale traditional practices, with spontaneous blue mould colonisation. This Termignon population is genetically differentiated from the four previously identified populations, providing a novel source of genetic diversity for cheese making. The Termignon population indeed displayed substantial genetic diversity, both mating types, horizontally transferred regions previously detected in the non-Roquefort population, and intermediate phenotypes between cheese and non-cheese populations. Phenotypically, the non-Roquefort cheese population was the most differentiated, with specific traits beneficial for cheese making, in particular higher tolerance to salt, to acidic pH and to lactic acid. Our results support the view that this clonal population, used for many cheese types in multiple countries, is a domesticated lineage on which humans exerted strong selection. The lumber/spoiled food and silage/spoiled food populations were not more tolerant to crop fungicides but showed faster growth in various carbon sources (e.g., dextrose, pectin, sucrose, xylose and/or lactose), which can be beneficial in their ecological niches. Such contrasted phenotypes between P. roqueforti populations, with beneficial traits for cheese-making in the cheese populations and enhanced ability to metabolise sugars in the lumber/spoiled food population, support the inference of domestication in cheese fungi and more generally of adaptation to anthropized environments.
Collapse
Affiliation(s)
- Ewen Crequer
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jean‐Luc Jany
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Thibault Caron
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Monika Coton
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Alodie Snirc
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jean‐Philippe Vernadet
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Antoine Branca
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Tatiana Giraud
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Emmanuel Coton
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| |
Collapse
|
7
|
Miranda-Calixto A, Loera-Corral O, López-Pérez M, Figueroa-Martínez F. Improvement of Akanthomyces lecanii resistance to tebuconazole through UV-C radiation and selective pressure on microbial evolution and growth arenas. J Invertebr Pathol 2023; 198:107914. [PMID: 36958641 DOI: 10.1016/j.jip.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tebuconazole (TEB) is a fungicide widely used in agriculture; however, its constant application has increased the emergence of resistant plant pathogenic fungal strains and reduced the effectiveness of fungi as biological control agents; for instance, the entomopathogenic and hyperparasitic fungus Akanthomyces lecanii, suitable for simultaneous biological control of insect pest and plant pathogenic fungi, is highly sensitive to fungicides. We carried out the induction of resistance to TEB in two wild type strains of A. lecanii by UV radiation and selective pressure in increasing fungicide gradients using a modified Microbial Evolution and Growth Arena (MEGA), to produce A. lecanii strains that can be used as biological control agent in the presence of tebuconazole. Nine UV-induced and three naturally adapted A. lecanii strains were resistant to TEB at the agriculturally recommended dose, and three irradiated strains were resistant to TEB concentration ten times higher; moreover, growth, sporulation rates, production of hydrolytic enzymes, and virulence against the hemipteran Coccus viridis, a major pest of coffee crops, were not affected in the TEB-resistant strains. These A. lecanii TEB-resistant strains would have a greater opportunity to develop and to establish themselves in fields where the fungicide is present and can be used in a combined biological-chemical strategy to improve insect and plant pathogenic fungal control in agriculture. Also, the selective pressure through modified MEGA plate methodology can be used for the adaptation of entomopathogenic filamentous fungi to withstand other chemical or abiotic stresses that limits its effectiveness for pest control.
Collapse
Affiliation(s)
- Arturo Miranda-Calixto
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Octavio Loera-Corral
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Marcos López-Pérez
- Universidad Autónoma Metropolitana-Lerma Departamento de Ciencias Ambientales, Av. de las Garzas 10, El panteón, C. P. 52005 Lerma de Villada, Mexico
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow - Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico.
| |
Collapse
|
8
|
Resistance of Black Aspergilli Species from Grape Vineyards to SDHI, QoI, DMI, and Phenylpyrrole Fungicides. J Fungi (Basel) 2023; 9:jof9020221. [PMID: 36836335 PMCID: PMC9961879 DOI: 10.3390/jof9020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Fungicide applications constitute a management practice that reduces the size of fungal populations and by acting as a genetic drift factor, may affect pathogen evolution. In a previous study, we showed that the farming system influenced the population structure of the Aspergillus section Nigri species in Greek vineyards. The current study aimed to test the hypothesis that the differences in the population structure may be associated with the selection of fungicide-resistant strains within the black aspergilli populations. To achieve this, we determined the sensitivity of 102, 151, 19, and 22 for the A. uvarum, A. tubingensis, A. niger, and A. carbonarious isolates, respectively, originating either from conventionally-treated or organic vineyards to the fungicides fluxapyroxad-SDHIs, pyraclostrobin-QoIs, tebuconazole-DMIs, and fludioxonil-phenylpyrroles. The results showed widespread resistance to all four fungicides tested in the A. uvarum isolates originating mostly from conventional vineyards. In contrast, all the A. tubingensis isolates tested were sensitive to pyraclostrobin, while moderate frequencies of only lowly resistant isolates were identified for tebuconazole, fludioxonil, and fluxapyroxad. Sequencing analysis of the corresponding fungicide target encoding genes revealed the presence of H270Y, H65Q/S66P, and G143A mutations in the sdhB, sdhD, and cytb genes of A. uvarum resistant isolates, respectively. No mutations in the Cyp51A and Cyp51B genes were detected in either the A. uvarum or A. tubingensis isolates exhibiting high or low resistance levels to DMIs, suggesting that other resistance mechanisms are responsible for the observed phenotype. Our results support the initial hypothesis for the contribution of fungicide resistance in the black aspergilli population structure in conventional and organic vineyards, while this is the first report of A. uvarum resistance to SDHIs and the first documentation of H270Y or H65Q/S66P mutations in sdhB, sdhD, and of the G143A mutation in the cytb gene of this fungal species.
Collapse
|
9
|
Xu S, Shen J, Lang H, Zhang L, Fang H, Yu Y. Triazole resistance in Aspergillus fumigatus exposed to new chiral fungicide mefentrifluconazole. PEST MANAGEMENT SCIENCE 2023; 79:560-568. [PMID: 36205310 DOI: 10.1002/ps.7224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Triazole resistance in the human fungal pathogen Aspergillus fumigatus has been a growing challenge in clinic treatment with triazole drugs such as itraconazole. The fast evolvement of triazole resistance in A. fumigatus in the ecosystem has drawn great attention, and there has been a possible link between the application of triazole fungicides in agriculture and triazole resistance in A. fumigatus. The change in susceptibility of A. fumigatus exposed to the new chiral triazole fungicide mefentrifluconazole was investigated in this study. RESULTS The results indicated that triazole resistance in A. fumigatus was acquired with exposure to mefentrifluconazole at a level of greater than or equal to 2 mg L-1 in liquid medium and soil (not at 0.4 nor 1 mg L-1 ). Interestingly, stereoselectivity was found in the acquisition of triazole resistance in A. fumigatus when exposed to mefentrifluconazole. R-mefentrifluconazole, which is very active on plant pathogens, exhibited stronger possibility in the development of the resistance in A. fumigatus than its antipode. Overexpression of cyp51A, AtrF, AfuMDR1 and AfuMDR4 were associated with the acquired resistance in A. fumigatus with hereditary stability. CONCLUSION The results suggest that triazole resistance in A. fumigatus could be resulted from the selection of mefentrifluconazole at concentrations larger than 2 mg L-1 . Mefentrifluconazole should be applied within the dosage recommended by good agricultural practice to avoid the resistance in A. fumigatus in soil. This also may be applicable to other triazole fungicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiji Xu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Yu S, Wang Y, Shen F, Wu R, Cao D, Yu Y. Emergence of Triazole Resistance in Aspergillus fumigatus Exposed to Paclobutrazol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15538-15543. [PMID: 34915705 DOI: 10.1021/acs.jafc.1c05396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a global health problem, the source of triazole resistance in Aspergillus fumigatus has gained much attention. This study was conducted to explore whether the triazole plant regulator paclobutrazol could evolve triazole resistance in A. fumigatus. The results indicated that two triazole-resistant strains with hereditary stability were isolated from liquid medium and soil. The up-regulation of cyp51A, cyp51B, AtrF, cdr1B, AfuMDR1, AfuMDR2, and AfuMDR4 played an important role in these resistant strains. The triazole-resistance in A. fumigatus could depend on the selective pressure of paclobutrazol concentration and exposure time. These results indicate that the application of paclobutrazol may result in the emergency of triazole resistance in A. fumigatus and thus have a potential risk for the treatment of invasive aspergillosis.
Collapse
Affiliation(s)
- Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ruilin Wu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Duantao Cao
- The Laboratory for Phytochemistry and Plant-derived Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
12
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
13
|
von Ameln Lovison O, Jank L, de Souza WM, Ramalho Guerra R, Lamas AE, da Costa Ballestrin RA, da Silva Morais Hein C, da Silva TCB, Corção G, Martins AF. Identification of pesticides in water samples by solid-phase extraction and liquid chromatography-electrospray ionization mass spectrometry. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2670-2680. [PMID: 34355448 DOI: 10.1002/wer.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The Contaminants of Emerging Concern (CECs), including pesticides, have been a trending topic and Brazil is the country with the highest usage of pesticides worldwide. This study aimed to measure the presence of pesticide residues in the water from different sources in the city of Porto Alegre. We analyzed 55 samples from drinking water treatment plants, public water sites, and sewage treatment plants from winter 2018 to summer 2020 by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. Among 184 pesticides evaluated, 107 matched validation criteria (linearity, trueness, accuracy, repeatability, reproducibility) and 15 of them were detected in different water samples, including seven insecticides, five antifungals, and three herbicides, with a wide range of toxicity levels and noticeable seasonal differences. For the worst-case scenario evaluation, 20 out of 22 (90.9%) samples exceeded the Risk Quotient of 1. The sum of pesticide concentrations exceeded 100 ng L-1 in 66.7% of samples in February 19 and in 75% of samples in February 20 and the total pesticide concentration has reached the worrisome mark of 1615 and 954.96 ng L-1 respectively. Therefore, our results make evident the need to promote public policies to achieve better water quality monitoring. PRACTITIONER POINTS: Among 184 pesticides evaluated, 107 matched validation criteria (linearity, trueness, accuracy, repeatability, reproducibility). A total of 55 different water samples were analyzed, and 15 pesticides were detected and five quantified. For the worst-case scenario evaluation, 20 out of 21 samples exceeded the Risk Quotient of 1 on Feb/20. The pesticide concentrations sum exceeded 100 ng L-1 in 66.7% of samples on February 19 and in 75% of samples on February 20. It is mandatory to improve water monitoring to guide the development of public policies concerning its quality.
Collapse
Affiliation(s)
- Otávio von Ameln Lovison
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Louise Jank
- Laboratório Federal de Defesa Agropecuária - LFDA/RS, Ministério da Agricultura, Pecuária e Abastecimento, Porto Alegre, Brazil
| | - William Machado de Souza
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Ramalho Guerra
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alex Elias Lamas
- Coordenadoria Geral de Vigilância em Saúde de Porto Alegre, Diretoria Geral de Vigilância em Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rogerio Antonio da Costa Ballestrin
- Coordenadoria Geral de Vigilância em Saúde de Porto Alegre, Diretoria Geral de Vigilância em Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila da Silva Morais Hein
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gertrudes Corção
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza Francisco Martins
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Han L, Kong X, Xu M, Nie J. Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117660. [PMID: 34426382 DOI: 10.1016/j.envpol.2021.117660] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Tebuconazole is a broad-spectrum triazole fungicide that has been extensively applied in agriculture, but its toxicity on soil ecology remains unknown after repeated introduction to soil. This study investigated the degradation of tebuconazole and the changes in soil microbial community composition and functional diversity as well as network complexity in soil repeatedly treated with tebuconazole. Tebuconazole degraded slowly as the degradation half-life initially increased and then decreased during the four repeated treatments. High concentration of tebuconazole treatment significantly delayed the degradation of tebuconazole. The soil microbial functional diversity in tebuconazole-treated soils showed an inhibition-recovery-stimulation trend with increasing treatment frequency, which was related to the increased degradation rates of tebuconazole. Tebuconazole significantly decreased soil microbial biomass and bacterial community diversity, and this decreasing trend became more pronounced with increasing treatment frequency and concentration. Moreover, tebuconazole significantly decreased soil bacterial community network complexity, particularly at high concentration of tebuconazole treatment. Notably, four bacterial genera, Methylobacterium, Burkholderia, Hyphomicrobium, and Dermacoccus, were identified as the potential tebuconazole-degrading bacteria, with the relative abundances in the tebuconazole treatment significantly increasing by 42.1-34687.1% compared to the control. High concentration of tebuconazole treatment delayed increases in the relative abundances of Methylobacterium but promoted those of Burkholderia, Hyphomicrobium and Dermacoccus. Additionally, repeated tebuconazole treatments improved only four metabolic pathways, cell motility, membrane transport, environmental information processing, and xenobiotics biodegradation and metabolism, which were associated with the degradation of tebuconazole. The above results indicated that repeated tebuconazole treatments resulted in the significant accumulation of residues and long-term negative effects on soil ecology, and also emphasized the potential roles of dominant indigenous microbial bacteria in the degradation of tebuconazole.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China
| | - Xiabing Kong
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China
| | - Min Xu
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China; Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
15
|
Identification of Novel Mutations Contributing to Azole Tolerance of Aspergillus fumigatus through In Vitro Exposure to Tebuconazole. Antimicrob Agents Chemother 2021; 65:e0265720. [PMID: 34125587 DOI: 10.1128/aac.02657-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Azole resistance of Aspergillus fumigatus is a global problem. The major resistance mechanism is through cytochrome P450 14-α sterol demethylase Cyp51A alterations such as a mutation(s) in the gene and the acquisition of a tandem repeat in the promoter. Although other azole tolerance and resistance mechanisms, such as the hmg1 (a 3-hydroxy-3-methylglutaryl coenzyme-A reductase gene) mutation, are known, few reports have described studies elucidating non-Cyp51A resistance mechanisms. This study explored genes contributing to azole tolerance in A. fumigatus by in vitro mutant selection with tebuconazole, an azole fungicide. After three rounds of selection, we obtained four isolates with low susceptibility to tebuconazole. These isolates also showed low susceptibility to itraconazole and voriconazole. Comparison of the genome sequences of the isolates obtained and the parental strain revealed a nonsynonymous mutation in MfsD, a major facilitator superfamily protein (Afu1g11820; R337L mutation [a change of R to L at position 337]), in all isolates. Furthermore, nonsynonymous mutations in AgcA, a mitochondrial inner membrane aspartate/glutamate transporter (Afu7g05220; E535Stop mutation), UbcD, a ubiquitin-conjugating enzyme E2 (Afu3g06030; T98K mutation), AbcJ, an ABC transporter (Afu3g12220; G297E mutation), and RttA, a putative protein responsible for tebuconazole tolerance (Afu7g04740; A83T mutation), were found in at least one isolate. Disruption of the agcA gene led to decreased susceptibility to azoles. Reconstruction of the A83T point mutation in RttA led to decreased susceptibility to azoles. Reversion of the T98K mutation in UbcD to the wild type led to decreased susceptibility to azoles. These results suggest that these mutations contribute to lowered susceptibility to medical azoles and agricultural azole fungicides.
Collapse
|
16
|
Silva JT, Ruiz-Camps I, Aguado JM. [Invasive fungal infection over the last 30 years]. Rev Iberoam Micol 2021; 38:47-51. [PMID: 34294520 DOI: 10.1016/j.riam.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Clinical mycology is in continuous development. The appearance of new clinical guidelines has made it possible to improve the approach to opportunistic fungal infections, especially in immunosuppressed patients (oncohematological and/or transplant recipients). At the same time, the development of new diagnostic tools and new antifungals with a greater spectrum of action and fewer side effects have led to faster diagnoses and treatments that are more effective. Along with these advances, there has been a change in the epidemiology of invasive fungal infection (IFI), with the appearance of new patients (e.g., COPD, liver cirrhosis, post-influenza) and new microorganisms (Candida auris, Lomentospora prolificans, mucorales), and resistant fungi (isolates of Aspergillus resistant to azoles) which the clinician must take into account when choosing the treatment of a patient with an IFI. In this paper we will briefly review the advances in recent decades and the emerging problems.
Collapse
Affiliation(s)
- José Tiago Silva
- Unidad de Enfermedades Infecciosas, Hospital Universitario 12 de Octubre. Instituto de Investigación Hospital 12 de Octubre (i+12). Universidad Complutense de Madrid
| | - Isabel Ruiz-Camps
- Servicio de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebron, Barcelona
| | - José María Aguado
- Unidad de Enfermedades Infecciosas, Hospital Universitario 12 de Octubre. Instituto de Investigación Hospital 12 de Octubre (i+12). Universidad Complutense de Madrid.
| |
Collapse
|
17
|
Cao D, Wang F, Yu S, Dong S, Wu R, Cui N, Ren J, Xu T, Wang S, Wang M, Fang H, Yu Y. Prevalence of Azole-Resistant Aspergillus fumigatus is Highly Associated with Azole Fungicide Residues in the Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3041-3049. [PMID: 33544588 DOI: 10.1021/acs.est.0c03958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Triazole resistance in Aspergillus fumigatus is a growing public health concern. In addition to its emergence in the therapy of invasive aspergillosis by triazole medicines, it has been frequently detected in agricultural fields all over the world. Here, we explore the potential link between residues of azole fungicides with similar chemical structure to triazole medicines in soil and the emergence of resistant A. fumigatus (RAF) through 855 500 km2 monitoring survey in Eastern China covering 6 provinces. In total, 67.3%, 15.2%, 12.3%, 2.9%, 1.5%, 0.4%, and 0.3% of the soil samples contained these five fungicides (tebuconazole, difenoconazole, propiconazole, hexaconazole, and prochloraz) of 0-100, 100-200, 200-400, 400-600, 600-800, 800-1000, and >1000 ng/g, respectively. The fractions of samples containing RAF isolates were 2.4%, 5.2%, 6.4%, 7.7%, 7.4%, 14.3%, and 20.0% of the samples with total azole fungicide residues of 0-100, 100-200, 200-400, 400-600, 600-800, 800-1000, and >1000 ng/g, respectively. We find that the prevalence of RAFs is positively (P < 0.0001) correlated with residual levels of azole fungicides in soils. Our results suggest that the use of azole fungicides in agriculture should be minimized and the intervals between treatments expanded to reduce the selective pressure toward the development of resistance in A. fumigatus in agricultural fields.
Collapse
|
18
|
Extensive Genetic Diversity and Widespread Azole Resistance in Greenhouse Populations of Aspergillus fumigatus in Yunnan, China. mSphere 2021; 6:6/1/e00066-21. [PMID: 33568450 PMCID: PMC8544883 DOI: 10.1128/msphere.00066-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus is the main cause of invasive aspergillosis (IA) with a high annual global incidence and mortality rate. Recent studies have indicated an increasing prevalence of azole-resistant A. fumigatus (ARAF) strains, with agricultural use of azole fungicides as a potential contributor. China has an extensive agricultural production system and uses a wide array of fungicides for crop production, including in modern growth facilities such as greenhouses. Soils in greenhouses are among the most intensively cultivated. However, little is known about the occurrence and distribution of ARAF in greenhouse soils. Here, we investigated genetic variation and triazole drug susceptibility in A. fumigatus from greenhouses around metropolitan Kunming in Yunnan, southwest China. Abundant allelic and genotypic variations were found among 233 A. fumigatus strains isolated from nine greenhouses in this region. Significantly, ∼80% of the strains were resistant to at least one medical triazole drug, with >30% showing cross-resistance to both itraconazole and voriconazole. Several previously reported mutations associated with triazole resistance in the triazole target gene cyp51A were also found in our strains, with a strong positive correlation between the frequency of mutations at the cyp51A promoter and that of voriconazole resistance. Phylogenetic analyses of cyp51A gene sequences showed evidence for multiple independent origins of azole-resistant genotypes of A. fumigatus in these greenhouses. Evidence for multiple origins of azole resistance and the widespread distributions of genetically very diverse triazole-resistant strains of A. fumigatus in greenhouses calls for significant attention from public health agencies. IMPORTANCE The origin and prevalence of azole-resistant Aspergillus fumigatus have been attracting increasing attention from biologists, clinicians, and public health agencies. Current evidence suggests agricultural fungicide use as a major cause. In southwest China, greenhouses are used to produce large amounts of fruits, flowers, and vegetables for consumers throughout China as well as those in other countries, primarily in southeast Asia. Here, we found a very high frequency (∼80%) of triazole-resistant A. fumigatus in our sample, the highest reported so far, with a significant proportion of these strains resistant to both tested agricultural fungicides and medical triazole drugs. In addition, we found novel allelic and genotypic diversities and evidence for multiple independent origins of azole-resistant genotypes of A. fumigatus in greenhouse populations in this region. Our study calls for a systematic evaluation of the effects of azole fungicide usage in greenhouses on human health.
Collapse
|
19
|
Aspergillosis, Avian Species and the One Health Perspective: The Possible Importance of Birds in Azole Resistance. Microorganisms 2020; 8:microorganisms8122037. [PMID: 33352774 PMCID: PMC7767009 DOI: 10.3390/microorganisms8122037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
The One Health context considers health based on three pillars: humans, animals, and environment. This approach is a strong ally in the surveillance of infectious diseases and in the development of prevention strategies. Aspergillus spp. are fungi that fit substantially in this context, in view of their ubiquity, as well as their importance as plant pathogens, and potentially fatal pathogens for, particularly, humans and avian species. In addition, the emergence of azole resistance, mainly in Aspergillus fumigatus sensu stricto, and the proven role of fungicides widely used on crops, reinforces the need for a multidisciplinary approach to this problem. Avian species are involved in short and long distance travel between different types of landscapes, such as agricultural fields, natural environments and urban environments. Thus, birds can play an important role in the dispersion of Aspergillus, and of special concern, azole-resistant strains. In addition, some bird species are particularly susceptible to aspergillosis. Therefore, avian aspergillosis could be considered as an environmental health indicator. In this review, aspergillosis in humans and birds will be discussed, with focus on the presence of Aspergillus in the environment. We will relate these issues with the emergence of azole resistance on Aspergillus. These topics will be therefore considered and reviewed from the “One Health” perspective.
Collapse
|
20
|
Wang F, Yao S, Cao D, Ju C, Yu S, Xu S, Fang H, Yu Y. Increased triazole-resistance and cyp51A mutations in Aspergillus fumigatus after selection with a combination of the triazole fungicides difenoconazole and propiconazole. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123200. [PMID: 32593937 DOI: 10.1016/j.jhazmat.2020.123200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Triazole-resistance in Aspergillus fumigatus is widespread. We evaluated whether triazole-resistance in A. fumigatus and its related cyp51A mutations, induced by a combination of the triazole fungicides difenoconazole and propiconazole, differs from resistance induced by the individual fungicides. Both difenoconazole and propiconazole can induce triazole-resistance in A. fumigatus. Resistance is much easier induced by formulated fungicides or a combination of these two fungicides compared with standard fungicides or individual fungicides, respectively. Six different mutations (G138S, G138D, H147Y, I246M, M263I and D430N) were identified in the induced resistant strains. The H147Y, I246M and M263I mutations were associated with triazole-resistance. This implies that the application of a combination of difenoconazole and propiconazole may result in higher triazole-resistance in A. fumigatus and more mutations in the cyp51A gene.
Collapse
Affiliation(s)
- Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chao Ju
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Cao D, Wu R, Dong S, Wang F, Ju C, Yu S, Xu S, Fang H, Yu Y. Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115124. [PMID: 32673931 DOI: 10.1016/j.envpol.2020.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/30/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Aspergillus fumigatus is the primary agent of invasive aspergillosis (IA) causing high morbidity and mortality in immunocompromised patients. Triazole resistance in A. fumigatus and its sources have gained wide attention. For several years, environmental fungicides use has been proposed as the major cause for triazole resistance in A. fumigatus. However, there are few studies on azole-resistant A. fumigatus (ARAF) selected by triazole fungicides in agricultural systems. We studied the possible emergence of ARAF in the field after exposure to triazole fungicide tebuconazole. Our results showed that exposure to tebuconazole in soil selects for resistance to triazoles in A. fumigatus. The probability of ARAF developing in soils depends upon the concentrations of tebuconazole after application. We suggest that tebuconazole applications should be minimized to reduce selective pressure for the generation of ARAFs.
Collapse
Affiliation(s)
- Duantao Cao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruilin Wu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chao Ju
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sumei Yu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental Aspergillus fumigatus Isolates from China. Antimicrob Agents Chemother 2020; 64:AAC.00904-20. [PMID: 32718960 DOI: 10.1128/aac.00904-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023] Open
Abstract
A total of 191 soil samples from Hangzhou, China, were submitted to detect non-wild-type (non-WT) Aspergillus fumigatus and its associated mechanisms. There were 2 (4.7%), 13 (12.4%), and 31 (23.1%) isolates identified as non-WT in 2014, 2016, and 2018, respectively. The resistant mutations of TR34/L98H, TR46/Y121F/T289A, and TR34/L98H/S297T/F495I were found in 3, 5, and 5 non-WT isolates. The G448S mutation, previously only found in clinical settings, was detected in A. fumigatus from soil samples.
Collapse
|
23
|
Overexpression of Nepenthesin HvNEP-1 in Barley Endosperm Reduces Fusarium Head Blight and Mycotoxin Accumulation. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fusarium head blight (FHB) causes substantial losses of yield and quality in grains, both in the field and in post-harvest storage. To date, adequate natural genetic resistance is not available for the control of FHB. This study reports the cloning and overexpression of a barley (Hordeum vulgare L.) antifungal gene, nepenthesin 1 (HvNEP-1), in the endosperm of barley grains. Transgenic barley lines overexpressing HvNEP-1 substantially reduced FHB severity and disease progression after inoculation with Fusarium graminearum or Fusarium culmorum. The transgenic barley also showed reduced accumulation of the mycotoxin deoxynivalenol (DON) in grain, far below the minimum value allowable for food. Semi-field evaluation of four HvNEP-1 transgenic lines revealed substantial reduction of FHB severity and progression as compared with the control H. vulgare cultivar Golden promise (GP) plants. Our study demonstrated the utility of HvNEP-1 for the control of FHB in barley, and possibly other grains such as wheat and maize.
Collapse
|
24
|
Cao D, Yao S, Zhang H, Wang S, Jin X, Lin D, Fang H, Yu Y. Mutation in cyp51A and high expression of efflux pump gene of Aspergillus fumigatus induced by propiconazole in liquid medium and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113385. [PMID: 31662261 DOI: 10.1016/j.envpol.2019.113385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Triazole resistance in Aspergillus fumigatus is a major cause of clinical inefficacy in the treatment of invasive aspergillosis (IA). The hypothesis that triazole fungicides have driven the development of resistance in A. fumigatus has garnered substantial attention due to the similar structure and global detection of antifungal resistant A. fumigatus (ARAF) isolates in the soil. However, there is little evidence linking the application of triazole fungicides to the emergence of ARAF in the soil. This study was conducted to test if the resistance in A. fumigatus and its associated mutations in cyp51A could be induced by propiconazole in liquid medium and soil. The results indicate that propiconazole can induce resistance by alteration of G138S in cyp51A, and the overexpression of cyp51A, AfuMDR3 and AfuMDR4. G138S in cyp51A was first detected in the soil and associated with resistance. The emergence of the ARAFs in the soil may depends upon the level of propiconazole, and the number of ARAFs in soil treated with propiconazole at 2- and 5-fold dose was much greater than those in soil treated at the recommended dosage. The current data indicate that propiconazole can induce triazole resistance in A. fumigatus and should be applied for agricultural purposes at levels at or below the recommended dosage to avoid the emergence of ARAF in the soil.
Collapse
Affiliation(s)
- Duantao Cao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Saige Wang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiangxiang Jin
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dunli Lin
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J Fungi (Basel) 2019; 5:jof5030067. [PMID: 31330862 PMCID: PMC6787706 DOI: 10.3390/jof5030067] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023] Open
Abstract
The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyceshelicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.
Collapse
|