1
|
Liu X, Wang S, Mu L, Xie Y, Hu X. Microplastics Reshape the Fate of Aqueous Carbon by Inducing Dynamic Changes in Biodiversity and Chemodiversity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37392182 DOI: 10.1021/acs.est.3c02976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The interactions among dissolved organic matter (DOM), microplastics (MPs) and microbes influence the fate of aqueous carbon and greenhouse gas emissions. However, the related processes and mechanisms remain unclear. Here, we found that MPs determined the fate of aqueous carbon by influencing biodiversity and chemodiversity. MPs release chemical additives such as diethylhexyl phthalate (DEHP) and bisphenol A (BPA) into the aqueous phase. The microbial community, especially autotrophic bacteria such as Cyanobacteria, showed a negative correlation with the additives released from MPs. The inhibition of autotrophs promoted CO2 emissions. Meanwhile, MPs stimulated microbial metabolic pathways such as the tricarboxylic acid (TCA) cycle to accelerate the DOM biodegradation process, and then the transformed DOM presented low bioavailability, high stability, and aromaticity. Our findings highlight an urgent need for chemodiversity and biodiversity surveys to assess ecological risks from MP pollution and the impact of MPs on the carbon cycle.
Collapse
Affiliation(s)
- Xueju Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingying Xie
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Meng Z, Yu X, Xia S, Zhang Q, Ma X, Yu D. Effects of water depth on the biomass of two dominant submerged macrophyte species in floodplain lakes during flood and dry seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162690. [PMID: 36894075 DOI: 10.1016/j.scitotenv.2023.162690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
Floodplain lakes share characteristics of both deep and shallow lakes throughout any given year. Seasonal fluctuations in their water depth drive changes in nutrients and total primary productivity, which directly and indirectly affect submerged macrophyte biomass. To investigate how water depth and environmental variables affect submerged macrophyte biomass, we surveyed six sub-lakes in the Poyang Lake floodplain, China, during the flood and dry seasons of 2021. Dominant submerged macrophytes include Vallisneria spinulosa and Hydrilla verticillata. The effect of water depth on the biomass of these macrophytes varied between the flood and dry seasons. In the flood season, there was a direct effect of water depth on biomass, while in the dry season only an indirect effect was observed. During the flood season, the direct effect of water depth on the biomass of V. spinulosa was less than the indirect effect, with water depth primarily affecting the total nitrogen, total phosphorus and water column transparency. Water depth directly, positively affected H. verticillata biomass, with this effect being greater than the indirect effect by affecting the carbon, nitrogen and phosphorus content in the water column and sediment. During the dry season, water depth affected H. verticillata biomass indirectly through sediment carbon and nitrogen content, while for V. spinulosa, the effect on biomass was indirect through carbon content of the sediment and water column. The main environmental variables affecting submerged macrophyte biomass in the Poyang Lake floodplain during the flood and dry seasons, and the mechanisms through which water depth affects dominant submerged macrophyte biomass, are identified. An understanding of these variables and mechanisms will enable improved management and restoration of wetland.
Collapse
Affiliation(s)
- Zhujian Meng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiubo Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shaoxia Xia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Quanjun Zhang
- CMA Meteorological Observation Centre (MOC), Beijing 100081, China
| | - Xu Ma
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China; China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dingkun Yu
- Jiangxi Poyang Lake National Nature Reserve Authority, Nanchang 330038, China
| |
Collapse
|
3
|
Hu X, Liu WJ, Ma LL, Yu HQ. Sustainable Conversion of Harmful Algae Biomass into a CO 2 Reduction Electrocatalyst for Two-Fold Carbon Utilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1157-1166. [PMID: 36602942 DOI: 10.1021/acs.est.2c07145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Harmful algae blooms (HABs) frequently occur all over the world and cause great harm to the environment, human health, and aquatic ecosystems. However, owing to their great growth rate and large nutrient intake capacity, algae can enrich a large amount of carbon (CO2) and nutritional elements (N and P) in their biomass. Thus, this could be applied as a robust approach to battle global warming and water eutrophication if the harmful algae biomass was effectively harvested and utilized. Herein, we propose a thermochemical approach to convert algae biomass into a nitrogen-doped electrocatalyst for CO2 reduction. The as-synthesized carbon catalyst exhibits a favorable electrochemical CO2 reduction activity. The key drivers of the environmental impacts in the thermochemical conversion approach with a comparison with the commonly used landfilling approach are identified with life cycle assessment. The former presents much lower environmental burdens in terms of impacts such as freshwater/terrestrial ecotoxicity and human toxicity than the latter. Moreover, if the thermochemical conversion process was successfully applied for biomass conversion worldwide, 2.17 × 108 tons of CO2-eq, 8.42 × 106 tons of N, and 1.21 × 106 tons of P could be removed from the global carbon and other element cycles. Meanwhile, the thermochemical approach is also similar to landfilling in terms of costs. The results from this work provide a brand-new perspective for achieving twofold CO2 utilization and efficiently battling harmful algae blooms.
Collapse
Affiliation(s)
- Xiao Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lin-Lin Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Xu X, Wu C, Xie D, Ma J. Sources, Migration, Transformation, and Environmental Effects of Organic Carbon in Eutrophic Lakes: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:860. [PMID: 36613182 PMCID: PMC9820045 DOI: 10.3390/ijerph20010860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Organic carbon (OC) plays a leading role in the carbon cycle of lakes and is crucial to carbon balances at regional and even global scales. In eutrophic lakes, in addition to external river inputs, the decomposition of endogenous grass and algae is a major source of organic carbon. Outbreaks of algal blooms (algal eutrophication) and the rapid growth of aquatic grasses (grass eutrophication) can lead to the accumulation and decay of large amounts of algae and aquatic grass debris, which increases the intensity of the carbon cycle of lakes and greatly impacts aquatic environments and ecosystems. The structures, decomposition processes, and distribution characteristics of algae and higher aquatic plant debris in eutrophic lakes are different from mesotrophic and oligotrophic lakes. Studying their accumulation dynamics and driving mechanisms is key to further understanding lake carbon cycles and their many interdependent pathways. This paper focuses on the carbon sources, tracing technologies, migration and transformation processes, and environmental effects of OC in eutrophic lakes. Based on the existing knowledge, we further combed the literature to identify the most important knowledge gaps preventing an in-depth understanding of the processes and driving mechanisms of the organic carbon cycle in eutrophic lakes.
Collapse
Affiliation(s)
- Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chao Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Dongyu Xie
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
5
|
Lü W, Ren H, Ding W, Li H, Yao X, Jiang X, Qadeer A. Biotic and abiotic controls on sediment carbon dioxide and methane fluxes under short-term experimental warming. WATER RESEARCH 2022; 226:119312. [PMID: 36369685 DOI: 10.1016/j.watres.2022.119312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Due to the differences in biotic and abiotic factors between soil and sediments, the predicted linkages between biotic and abiotic factors and soil carbon dioxide (CO2) and methane (CH4) fluxes under warming may not be suitable for sediments. Additionally, the combination of biotic and abiotic factors which determines sediment temperature-dependent CO2 and CH4 fluxes remains unresolved. To address this issue, different types of sediments (including lake, small river and pond sediments) collected from 30 sites across the Yangtze River Basin were incubated under short-term experimental warming. During the incubating phase, the sediment temperature-dependent CO2 and CH4 fluxes as well as the accompanying biotic factors (organic carbon and microbial community) and abiotic factors (pH and dissolved oxygen (DO)) were determined and analyzed synthetically. Our results indicated that sediment CO2 fluxes were more sensitive than CH4 fluxes to warming, which might lead to a relatively large CO2 contribution to total greenhouse gas emissions in a warming climate. Additionally, temperature-dependent CO2 fluxes in pond sediments were more sensitive than those in lake sediments. Random forest analysis indicated that DO greatly affected the variation in the sediment temperature-dependent CO2 fluxes, whereas Methanococcales primarily predicted the CH4 fluxes under warming. DO also highly affected the variation in the temperature sensitivity of CH4 fluxes, whereas pH mostly predicted the temperature sensitivity of CO2 fluxes. Our findings suggest that biotic and abiotic factors, especially DO, pH and the composition of methanogens, coregulate CO2 and CH4 emissions in response to climate warming. Therefore, biotic and abiotic factors should be considered in the models for predication and investigation of sediment organic carbon dynamics under climate change.
Collapse
Affiliation(s)
- Weiwei Lü
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haoyu Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wanchang Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - He Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yao
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Li Y, Shang J, Zhang C, Zhang W, Niu L, Wang L, Zhang H. The role of freshwater eutrophication in greenhouse gas emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144582. [PMID: 33736331 DOI: 10.1016/j.scitotenv.2020.144582] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Greenhouse gases (GHGs) have long received public attention because they affect the Earth's climate by producing the greenhouse effect. Freshwaters are an important source of GHGs, and the enhancement in their eutrophic status affects GHG emissions. Along with the increasing eutrophication of water bodies, the relevant quantitative and qualitative studies of the effects of freshwater eutrophication on GHG emissions have made substantial progress, particularly in the past 5 years. However, to our knowledge, this is the first critical review to focus on the role of freshwater eutrophication in GHG emissions. In this review, the emissions of common GHGs from freshwater are quantitatively described. Importantly, direct (i.e., dissolved oxygen, organic carbon, and nutrients) and indirect factors (i.e., dominant primary producer and algal blooms) affecting GHG emissions from eutrophic freshwater are systematically analyzed. In particular, the existence and significance of feedback loops between freshwater eutrophication and GHG emissions are emphasized considering the difficulties managing freshwater ecosystems and the Earth's climate. Finally, several future research directions as well as mitigation measures are described to provide useful insight into the dynamics and control of GHG emissions.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
7
|
Zhou X, He Y, Li H, Wei Y, Zhao L, Yang G, Chen X. Using flocculation and subsequent biomanipulation to control microcystis blooms: A laboratory study. HARMFUL ALGAE 2020; 99:101917. [PMID: 33218442 DOI: 10.1016/j.hal.2020.101917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/27/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence and long-term duration of Microcystis harmful algal blooms (HABs) are of great concern. Chemical flocculation is thought to be an effective way to deal with the HABs, while the application of the flocculants at a high dosage pose potential adverse impacts to the aquatic ecosystems. In this study, an alternative approach is proposed that involves the employment of polyaluminum chloride (PAC) combined with the Daphnia magna (D. magna) to achieve sustainable HABs removal efficiency with an acceptable ecological risk. It was found that under a dense Microcystis HABs (algal density of 1.5 × 107 cells/ml), a PAC dosage of 30 mg/l triggered >95% algae removal, but the released Al3+ caused 90% mortality of planktonic D. magna. Reducing the PAC dosage to 15 mg/l resulted in a slightly lower algal removal efficiency (>90%). In addition the reduced PAC dosage benefited the proliferation of the remaining unicellular algal cells, which tended to form a large colony during the 25-day experiment. Incubation of D. magna following flocculation with 15 mg/l PAC effectively grazed the remaining algal cells, meanwhile increasing the D. magna density by approximately 40-folds, and enlarging the body size by 1.37-1.50 times. This result implied that the released Al3+ was not detrimental to the D. magna. Flocculation with a reduced dosage is sufficient for colonial and large algal cells mitigation, which creates a window time for the biomanipulation of the residual tiny algae. Hence, the subsequent addition of D. magna triggered the sustainable removal of the HABs cells. The present study provides an environmentally friendly strategy for cleaning up the green tides without obvious detrimental effects on the aquatic ecosystem.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Lei Zhao
- The second Construction Engineering Co., Ltd of the third Bureau of China Construction Co., Ltd., Wuhan, China
| | - Guofeng Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xudong Chen
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Xu H, Li H, Tang Z, Liu Y, Li G, He Q. Underestimated methane production triggered by phytoplankton succession in river-reservoir systems: Evidence from a microcosm study. WATER RESEARCH 2020; 185:116233. [PMID: 32738604 DOI: 10.1016/j.watres.2020.116233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The impoundment of dammed rivers accelerates phytoplankton succession from river-dominated to lake-dominated species. Little is known about the role of phytoplankton succession in methane (CH4) production. In this study, we performed a 61-day microcosm investigation to simulate the collapse processes of Cyclotella meneghiniana (river-dominated algae) and Chlorella pyrenoidosa and Microcystis aeruginosa (lake-dominated algae). The results suggested that different methanogenic conditions were induced by the collapse of river-and lake-dominated algae. The rapid settlement of C. meneghiniana induced aerobic conditions in the water that inhibited anaerobic CH4 production and intensified CH4 oxidation as a result of an increase in pmoA. However, the decomposition of C. pyrenoidosa and M. aeruginosa depleted dissolved oxygen and provided abundant labile organic matter, which jointly elevated mcrA and the mcrA/pmoA ratio. Under this condition, anaerobic CH4 production was the dominant pathway for the mineralization of algae-derived carbon. Finally, the CH4 produced per unit of particulate total carbon (identified as the carbon content of the algal biomass) by C. pyrenoidosa and M. aeruginosa was 16.29-fold and 8.56-fold higher, respectively, than that produced by C. meneghiniana. These observations provided evidence that lake-dominated algae played a more vital role in CH4 production than river-dominated algae when algal succession occurred. This discovery might be a new and vital, yet largely underestimated CH4 emission pathway in river-reservoir systems, that should be considered when evaluating the effect of hydraulic projects on greenhouse gas emissions.
Collapse
Affiliation(s)
- Haolian Xu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhenzhen Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guo Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Liu M, Ran Y, Peng X, Zhu Z, Liang J, Ai H, Li H, He Q. Sustainable modulation of anaerobic malodorous black water: The interactive effect of oxygen-loaded porous material and submerged macrophyte. WATER RESEARCH 2019; 160:70-80. [PMID: 31132564 DOI: 10.1016/j.watres.2019.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Depleted oxygen (O2) in the sediment and overlying water of malodorous black water poses a potential threat to aquatic ecosystems. This study presents a method for sustainable regulation of the dissolved oxygen (DO) levels towards the malodorous black water. Oxygen-loaded natural porous materials were prepared by vacuum degassing to remove air from the pores and fill them with pure O2. Capping anaerobic sediment with the prepared 6 oxygen-loaded porous materials was effective in prompting the DO concentration of the malodorous black water. Although granules activated carbon (GAC) displayed the highest oxygen-loading capability, oxygen-loaded volcanic stone additive was more efficient for long-lasting combating of the anaerobic condition because the DO level at sediment-water interface (SWI) and the DO penetration depth showed approximately 5.38- and 3.75-fold increase, respectively, compared with the untreated systems. The improvement in DO was substantially enhanced in the presence of submerged macrophyte (Vallisneria natans), during which the release of O2 from oxygen-loaded volcanic stone facilitated the plant growth. With the joint efforts of the O2 released from volcanic stone and photosynthesis by the macrophytes, the DO levels were maintained at approximately 6.80 mg/L after a 41-day incubation, which exceeded (P < 0.05) the value in only oxygen-loaded volcanic stone or macrophytes added treatments. In addition to the elevated DO level, the combined employment of oxygen-loaded volcanic stone and macrophytes triggered a negative ammonia (NH4+-N) flux across the SWI and an 85.82% reduction of methane (CH4) production compared with those without treatment, accompanied by a decrease in total inorganic carbon and a 2.55- fold increasing of submerged macrophyte biomass, which is presumably attributed to nitrification, remineralization, and assimilation. The results obtained here shed a degree of light on the sustainable modulation of the anaerobic condition in malodorous black water.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yan Ran
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xinxin Peng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhiqiang Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jialiang Liang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|