1
|
Liu Y, Zhang Z, Fang Y, Song Y, Li J, Feng Y. Assessing the long-term impact of incorporating GAC and Fe&G mediators for enhancing phenol containing simulated wastewater treatment in UASB reactor. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138459. [PMID: 40334595 DOI: 10.1016/j.jhazmat.2025.138459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Phenol containing wastewater (PCW) is highly toxic and difficult to be treated by traditional methods. This study utilized granular activated carbon (GAC) and Fe (Sponge iron) &GAC (Fe&G) in a laboratory-scale UASB reactor to mitigate the toxicity of phenol containing simulated wastewater (PCSW) and enhance treatment performance. Compared with GAC, Fe&G mediators achieves approximately 7 % and 24 % higher removal rates for COD and phenolic compounds, respectively. The methane accumulation in Fe&G group was about 10 % higher than that in GAC group and 22 % higher than that in blank group. Microbial analysis showed that compared with GAC, Fe&G mediators could enrich Petronas and Methanothrix to intensify Direct Interspecies Electron Transfer (DIET) to augment PCSW treatment and boost methane production. PICRUSt analysis showed that these mediators enriched key genes such as TCA cycle and CO2 methanogenesis pathway to improve microbial resistance to PCSW toxicity and enhance microbial metabolism. This study provides a new method for anaerobic treatment of highly polluted industrial wastewater.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanfang Song
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, China.
| |
Collapse
|
2
|
Liu Y, Zhang Z, Song Y, Peng F, Feng Y. Long-term evaluating the strengthening effects of iron-carbon mediator for coking wastewater treatment in EGSB reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134701. [PMID: 38824774 DOI: 10.1016/j.jhazmat.2024.134701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
3
|
Ma W, Zhang X, Han H, Shi X, Kong Q, Yu T, Zhao F. Overview of enhancing biological treatment of coal chemical wastewater: New strategies and future directions. J Environ Sci (China) 2024; 135:506-520. [PMID: 37778822 DOI: 10.1016/j.jes.2022.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023]
Abstract
Coal chemical wastewater (CCW) is a type of refractory industrial wastewater, and its treatment has become the main bottleneck restricting the sustainable development of novel coal chemical industry. Biological treatment is considered as an economical, effective and environmentally friendly technology for CCW treatment. However, conventional biological process is difficult to achieve the efficient removal of refractory organics because of CCW with the characteristics of composition complexity and high toxicity. Therefore, seeking the novel enhancement strategy appears to be a favorable solution for enhancing biological treatment efficiency of CCW. This review focuses on presenting a comprehensive picture about the exogenous enhancement strategies for CCW biological treatment. The performance and potential application of exogenous enhancement strategies, including co-metabolic substrate enhancement, biofilm filler enhancement, adsorption material enhancement and conductive mediator enhancement, were expounded. Meanwhile, the enhancing mechanisms of different strategies were comprehensively discussed from a biological perspective. Furthermore, the prospects of enhancement strategies based on the engineering performance, economic cost and environmental impact (3E) evaluation were introduced. And novel enhancement strategy based on "low carbon emissions", "resource recycling" and "water environment security" in the context of carbon neutrality was proposed. Taken together, this review provides technical reference and new direction to facilitate the regulation and optimization of typical industrial wastewater biological treatment.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoqi Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
4
|
Li D, Wen Q, Chen Z. Enhanced anaerobic biodegradation of typical phenolic compounds in coal gasification wastewater (CGW) using biochar: Focusing on the hydrolysis-acidification process and microbial community succession. ENVIRONMENTAL RESEARCH 2023; 237:116964. [PMID: 37619633 DOI: 10.1016/j.envres.2023.116964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The aim of this research is to investigate the effects of biochar (BC) on treatment performance (especially hydrolysis-acidification process) and microbial community shifts during anaerobic degradation of typical phenolic compounds in coal gasification wastewater. Compared to the control group, the removal of phenol, p-cresol and 3, 5-xylenol was gradually enhanced when increasing the BC addition within the test dosage (1-5 g/L). The biodegradation of phenol and p-cresol was significantly enhanced by BC addition while limited improvement for 3, 5-xylenol. The addition of BC significantly accelerated the hydrolysis-acidification process with the hydrolytic removal of phenol improved by 69.14%, the microbial activity was enhanced by 57.01%, and the key hydrolase bamA gene was enriched by 117.27%, respectively. Compared to 1-2 g/L dose, more protein-like and humic acid-like substances were secreted with 5 g/L BC, which probably contributed to higher extracellular electron transfer efficiency. In addition, phenol degrading bacteria (Syntrophorhabdus, Dysgonomonas, Holophaga, etc.) and electroactive microorganisms (Geobacter, Syntrophorhabdus, Methanospirillum, etc.) were enriched by BC addition. The functional genes related to carboxylation, benzoylation and ring cleavage processes of benzoyl-CoA pathway were potentially activated by BC.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China.
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China.
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|
5
|
Liu L, Yun S, Ke T, Wang K, An J, Liu J. Dual utilization of aloe peel: Aloe peel-derived carbon quantum dots enhanced anaerobic co-digestion of aloe peel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 159:163-173. [PMID: 36764241 DOI: 10.1016/j.wasman.2023.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Carbon materials have been widely used in anaerobic digestion (AD), but the role of zero-dimensional carbon quantum dots (CQDs) in anaerobic co-digestion (AcoD) has not yet been reported. In this work, the effect of aloe peel-derived CQDs (AP-CQDs) on the AcoD system of aloe peel and dairy manure was investigated. The addition of AP-CQDs accelerants increased the cumulative CH4 yield from 201.14 to 266.92-339.64 mL/g VS and increased total chemical oxygen demand removal efficiency from 34.72 % to 48.77-57.87 %. The use of a digestate with 0.36 wt.% of AP-CQDs resulted in a thermogravimetric mass loss of 47.15 % and a promising total nutrient content of 46.65 g/kg. The excellent electron exchange capacity of AP-CQDs may facilitate direct interspecies electron transfer during the AD process. Moreover, the use of AP-CQDs can enrich methanogenic microorganisms (Methanosarcina and Methanobacterium). These findings provide a viable strategy for improving methane production and create awareness regarding the dual use of biomass waste.
Collapse
Affiliation(s)
- Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, the Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
6
|
Liu K, Zhang Y, Xu W. Bioaugmentation of quinoline-degrading bacteria for coking wastewater treatment: performance and microbial community analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:601-619. [PMID: 35799368 DOI: 10.1080/10934529.2022.2095177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Ochrobactrum sp. XKL1, previously found to have the ability to efficiently degrade quinoline, was bioaugmented into a lab-scale A/O/O system to treat real coking wastewater. During the bioaugmentation stage, the removal of quinoline and pyridine of the O1 tank could be enhanced by 9.88% and 7.96%, respectively. High-throughput sequencing analysis indicated that the addition of XKL1 could significantly affect the alteration of microbial community structure in the sludge. In addition, the relative abundance of Ochrobactrum has demonstrated a trend of increasing first followed by decreasing with the highest abundance of 7.87% attained on the 94th day. The bioaugmentation effects lasted for about 14 days after the strains was inoculated into the reactor. Although a decrease in the relative abundance of XKL1 was observed for a rather short period of time, the bioaugmented A/O/O system has been proven to be more effective in the removal of organic pollutants than the control. Hence, the results of this study indicated that the bioaugmentation with XKL1 is a feasible operational strategy that would be able to enhance the removal of NHCs in the treatment of coking wastewater with complex composition and high organic concentrations.
Collapse
Affiliation(s)
- Kexin Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, P.R. China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, P.R. China
| | - Weichao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, P.R. China
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
7
|
Liu J, Zang N, Gao L, Liu X, Tian H, Yue P, Li T. A modified packed anaerobic baffled reactor based on phase separation for the treatment of decentralized wastewater: Performance and microbial communities. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Gu Z, Zhang Z, Ni N, Hu C, Qu J. Simultaneous Phenol Removal and Resource Recovery from Phenolic Wastewater by Electrocatalytic Hydrogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4356-4366. [PMID: 35194996 DOI: 10.1021/acs.est.1c07457] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient pollutants removal and simultaneous resource recovery from wastewater are of great significance for sustainable development. In this study, an electrocatalytic hydrogenation (ECH) approach was developed to selectively and rapidly transform phenol to cyclohexanol, which possesses high economic value and low toxicity and can be easily recovered from the aqueous solution. A three-dimensional Ru/TiO2 electrode with abundant active sites and massive microflow channels was prepared for efficient phenol transformation. A pseudo-first-order rate constant of 0.135 min-1 was observed for ECH of phenol (1 mM), which was 34-fold higher than that of traditional electrochemical oxidation (EO). Both direct electron transfer and indirect reduction by atomic hydrogen (H*) played pivotal roles in the hydrogenation of phenol ring. The ECH technique also showed excellent performance in a wide pH range of 3-11 and with a high concentration of phenol (10 mM). Moreover, the functional groups (e.g., chloro- and methyl-) on phenol showed little influence on the superiority of the ECH system. This work provides a novel and practical solution for remediation of phenolic wastewater as well as recovery of valuable organic compounds.
Collapse
Affiliation(s)
- Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Zhiyang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Ni
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chen X, Hu X, Lu Q, Yang Y, Linghu S, Zhang X. Study on the differences in sludge toxicity and microbial community structure caused by catechol, resorcinol and hydroquinone with metagenomic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114027. [PMID: 34872176 DOI: 10.1016/j.jenvman.2021.114027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The aerobic biodegradation rate, organic toxicity and microbial community structure of activated sludge acclimated by catechol, resorcinol and hydroquinone were investigated, to study the relationship between microbial structure and sludge organic toxicity caused by phenolic compounds. At the stable operation stage, the degradation rates of the dihydroxy benzenes in a single sequencing batch reactor (SBR) cycle were followed the order: resorcinol (89.71%) > hydroquinone (85.64%) > catechol (59.62%). Sludge toxicity bioassay indicated that the toxicity of sludge was catechol (45.63%) > hydroquinone (40.28%) > resorcinol (38.15%). The accumulation of secondary metabolites such as 5-10 kDa tryptophan and tyrosine protein substances caused the differential sludge toxicity. Microbial metagenomic analysis showed that the toxicity of sludge was significantly related to the microbial community structure. Thauera, Azoarcus, Pseudomonas and other Proteobacteria formed in the sludge during acclimation. Catechol group had the least dominant bacteria and loop ring opening enzyme genes (catA, dmpB, dxnF, hapD) numbers. Therefore, the degradation of catechol was the most difficult than resorcinol and hydroquinone, resulting the highest sludge toxicity.
Collapse
Affiliation(s)
- Xiurong Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xueyang Hu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Quanling Lu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yingying Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shanshan Linghu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xinyu Zhang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
10
|
Chen Z, Li D, Liu H, Wen Q. Effects of polyurethane foam carrier addition on anoxic/aerobic membrane bioreactor (A/O-MBR) for coal gasification wastewater (CGW) treatment: Performance and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148037. [PMID: 34082207 DOI: 10.1016/j.scitotenv.2021.148037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Coal gasification wastewater (CGW) is a typical toxic and refractory industrial wastewater with abundant phenols contained. Two identical anoxic/aerobic membrane bioreactors (with (R2) and without (R1) polyurethane (PU) foam) were carried out in parallel to investigate the role of PU foam addition in enhancing pollutants removal in CGW. Results showed that both systems exhibited effective removal of chemical oxygen demand (>93%) and total phenols (>97%) but poor ammonia nitrogen removal (<35%) constrained by ammonia oxidation process. GC-MS analysis revealed that aromatic and other refractory intermediates were dramatically reduced in R2. Moreover, the PU addition had negligible influence on the total soluble microbial products and extracellular polymeric substances contents but significantly alleviated membrane fouling with the operating time 33% prolonged. Microbial community revealed that Flavobacterium, Holophaga, and Geobacter were enriched on PU. Influent type might be a main driver for microbial community succession.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730070, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongguo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Lai C, He C, Han F, Xu H, Huang B, Dionysiou DD, Pan X. Simultaneous changes of exogenous dissolved organic matter treated by ozonation in properties and interaction behavior with sulfonamides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116546. [PMID: 33578313 DOI: 10.1016/j.envpol.2021.116546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Effluent is often treated with ozone before being discharged into a natural water environment. This process will change the interaction between effluent organic matter and pollutants in aquatic environment. The impact of ozonation on complexation between dissolved organic matter in such wastewater and sulfadimidine often found in natural water was studied in laboratory experiments using four types of real wastewater. Ozonation was found to decrease the proportion of organic matter with a molecular weight greater than 5 kDa as well as protein-like, fulvic-like and humic-like components, but except the proportion of hydrophilic components. The aromaticity of the dissolved organic matter was also reduced after ozonation. The complexation of tryptophan and tyrosine with sulfadimidine mainly depends on their hydrophobicity and large molecular weight. Ozonation of fulvic and humic acid tends to produce small and medium molecular weight hydrophilics. The complexation of humic and fulvic acids with sulfadimidine was enhanced by ozonation. Dissolved organic matter, with or without oxidation, were found to weaken sulfadimidine's inhibition of microbial growth, especially for Aeromonas and Acinetobacter species. This finding will expand our understanding about the impact of advanced treatment processes on the dissolved organic matters' properties in effluent.
Collapse
Affiliation(s)
- Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Caiwen He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fengxia Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huayu Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China
| |
Collapse
|
12
|
Li Y, Wang Q, Liu L, Tabassum S, Sun J, Hong Y. Enhanced phenols removal and methane production with the assistance of graphene under anaerobic co-digestion conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143523. [PMID: 33223184 DOI: 10.1016/j.scitotenv.2020.143523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Coal gasification wastewater (CGW) contains high concentration phenols which lead to poor anaerobic biodegradability and resource utilization. In this paper, new insights to improve synthetic CGW anaerobic degradation with the help of graphene under co-digestion conditions were investigated. Batch tests showed that with the addition of graphene dosage of 10 g/L and glucose as a co-substrate with chemical oxygen demand (COD) concentration of 2000 mg/L, the average COD concentration decreased from 3995 mg/L on day 1 to 983 mg/L on day 12. The average total phenol (TP) concentration decreased from 431 mg/L on day 1 to 23 mg/L on day 12. The cumulative methane production for 12 days was about 200 mL. Long-term experiments showed the average effluent COD and total phenol reached 1137 mg/L and 200 mg/L, respectively. While methane production stabilized at 500 mL/d. In addition, the coenzyme F420 concentration increased from 1.075 μmol/g/VSS to 2.3 μmol/g/VSS. The analysis of microbial community structure indicated that the performance of phenols removal and methane production was related to the main microbial flora. The enriched Clostridium, Pseudomonas and species from Firmicutes and Chloroflexi participated in the stages of hydrolysis and acidogenesis. The electrogens Pseudomonas and archaea Methanosaeta were likely the major groups taking part in the direct interspecies electron transfer (DIET). The results obtained in this paper provide a theoretical basis for high-efficiency anaerobic degradation of CGW in practical engineering applications.
Collapse
Affiliation(s)
- Yajie Li
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Qingshui Wang
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lingyu Liu
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Salma Tabassum
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, 46423 Yanbu, Saudi Arabia
| | - Jie Sun
- Aeronautic and Mechanic Engineering school, Changzhou Institute of Technology, Changzhou 213031, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
13
|
Fan Y, Wang R, Sun J, Xiang J, Wang R, Sun H. An effective recycle way of waste coke ash and coking wastewater for preparing coke ash coking wastewater slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140581. [PMID: 32721733 DOI: 10.1016/j.scitotenv.2020.140581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The carbon riched coke ash (CA) and organic components riched coking wastewater (CW) recovered from coking plants wastes were utilized for the preparation of coke ash coking wastewater slurry (CACWS), aiming for the fuel and waste reduction and recovery. The effects induced by the properties of CA and compositions of CW on the performances of CACWS, such as slurryability, rheology, stability and dispersant adsorption were investigated and discussed. Characterizations like zeta potentials and contact angles on the surface of CA were also conducted to draw a comprehensive formation mechanism of CACWS. Results showed that the CA was suitable for preparing slurry due to the lack of micropore structures and hydrophobicity in the surface. The maximum content of CA in the as-prepared CACWS could reach 66% and CACWS exhibited non-Newtonian pseudoplastic fluid behaviour. By reducing the particle size distribution, the slurryability of CA could be effectively improved. Although the components in CW enhance the wettability of CA surface, compared with cations in CW, the organic components had more influence on CACWS, which also obviously increased the viscosity of CACWS. The maximum CA content in CACWS (ω = 66 wt%) reduced by 9% comparing to CA water slurry (ω = 75 wt%) which improved the storage stability about 10%. In addition, results show that the dispersant Triton X-405 reduced viscosity and improved stability while in comparison with the anionic polycarboxylate dispersant. Overall, this study may provide an innovative and effective utilization of CA and CW from the coke plants wastes.
Collapse
Affiliation(s)
- Yaoyao Fan
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Ruixin Wang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jinyan Sun
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jin Xiang
- College of Mechanical Engineering, Jinzhong University, Yuci 030600, Shanxi, China
| | - Ruiqi Wang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Huanwu Sun
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; National Demonstration Center for Experimental Coal Resource and Mining Equipment Education, Taiyuan 030024, China.
| |
Collapse
|
14
|
Peng S, Deng S, Li D, Xie B, Yang X, Lai C, Sun S, Yao H. Iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) for high-nitrogen/phosphorus and low-carbon sewage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137657. [PMID: 32199356 DOI: 10.1016/j.scitotenv.2020.137657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
The treatment of sewage with high-nitrogen/-phosphorus and low-carbon remains a challenge. A novel iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) was developed for high-nitrogen/-phosphorus and low-carbon sewage treatment. The cost-effective iron-scraps (ISs) was recycled as Fe(0)-source under the mediation of Fe/C galvanic cell reaction to develop effective Fe(0)-oxidizing autotrophic-denitrification and -dephosphorization. Utilizing practical high-nitrogen/-phosphorus and low-carbon sewage as target wastewater, the performance, impact factors, contribution of Fe/C galvanic cell reactions, microbial characteristics, strengthening mechanisms, and application potential of Fe/C-A2O process were investigated. The Fe/C-A2O process achieved high TN and TP removal efficiencies of 92.0 ± 1.3% and 97.2 ± 0.9% with removal loads of 0.176 ± 0.002 kg TN/(m3·d) and 0.017 ± 0.002 kg TP/(m3·d), respectively. Optimal HRT of 12 h, DO of 4.0-4.5 mg/L, and reflux-ratio of 4:1 were obtained, and no sludge-reflux was required. Autotrophic-denitrification and -dephosphorization supported by the Fe/C galvanic cell reactions contributed 63.1% and 75.3% of TN and TP removal, respectively. Microbial characterization revealed the dominance of autotrophic denitrifiers (e.g., Thiobacillus), AOB (e.g., Nitrosomonas), NOB (e.g., Nitrospira), and heterotrophic denitrifiers (e.g., Zoogloea). The mechanism analysis demonstrated that Fe/C galvanic cells strengthened nitrogen removal by raising Fe2+/H2-supported autotrophic denitrification; and strengthened dephosphorization by introducing Fe3+-based PO43--precipitation and enhancing the denitrifying phosphate-accumulation by denitrifying phosphate-accumulating organisms (DPAOs). Based on the efficiency and cost evaluation, the ISs-based Fe/C-A2O process showed significant application potential as an upgrade strategy for traditional A2O process in advanced high-nitrogen/phosphorus and low-carbon sewage treatment.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shihai Deng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore.
| | - Desheng Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Binghan Xie
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Xue Yang
- Process & Engineering Center, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, PR China
| | - Cai Lai
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shaobin Sun
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
15
|
Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. WATER 2020. [DOI: 10.3390/w12051431] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible.
Collapse
|
16
|
Liu J, Liu X, Gao L, Xu S, Chen X, Tian H, Kang X. Performance and microbial community of a novel combined anaerobic bioreactor integrating anaerobic baffling and anaerobic filtration process for low-strength rural wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18743-18756. [PMID: 32207002 DOI: 10.1007/s11356-020-08263-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 05/08/2023]
Abstract
A novel combined bioreactor integrating anaerobic baffling and anaerobic filtration process was developed and operated for 210 days to treat low-strength rural wastewater. The effects of hydraulic residence time (HRT) and organic loading rate (OLR) on chemical oxygen demand (COD) removal and methane (CH4) production of the combined bioreactor were investigated. The combined bioreactor can start up successfully in 25 days and achieve enhanced performance. The COD removal rate and CH4 yield were influenced significantly by HRT and OLR. The influent COD was removed effectively through the synergistic effects of the anaerobic baffling and anaerobic filtration. The baffle zone played the main role in the degradation of the pollutants, and the filter zone mainly contributed to improve the resistance to shock loading. High-throughput sequencing technology was used to analyze the bacterial and archaeal community structure and diversity. Clostridium_sensu_stricto, Longilinea, Acetoanaerobium, Arcobacter, and Acinetobacter were found to be the dominant bacteria. While Methanothrix and Methanoregula were the dominant archaea, which were responsible for methane generation. This study not only highlights the good energy recovery and resource utilization potential of the combined bioreactor but also presents significant guidance for the application of the combined anaerobic process for low-strength rural wastewater treatment.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xueli Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Liutang Gao
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Shijiazhuang Yiling Pharmaceutical Co., Ltd., Shijiazhuang, 050035, China
| | - Song Xu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xuewei Chen
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hongyu Tian
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
17
|
Huang W, Gong B, Wang Y, Lin Z, He L, Zhou J, He Q. Metagenomic analysis reveals enhanced nutrients removal from low C/N municipal wastewater in a pilot-scale modified AAO system coupling electrolysis. WATER RESEARCH 2020; 173:115530. [PMID: 32006807 DOI: 10.1016/j.watres.2020.115530] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
The conventional biological nutrients removal process is challenged by insufficient organic carbon in influent. To cross such an organic-dependent barrier, a pilot-scale electrolysis-integrated anaerobic/anoxic/oxic (AAO) process was developed for enhanced removal of nitrogen (N) and phosphorus (P) from low carbon/nitrogen (C/N) municipal wastewater. Average removal efficiencies of total nitrogen (TN) and total phosphorus (TP) in the electrolysis-AAO reached to 77.24% and 95.08% respectively, showing increases of 13.88% and 21.87%, as compared to the control reactor. Spatial variations of N and P showed that NH4+-N removal rate was promoted in aerobic zone of electrolysis-AAO. The intensified TN elimination, which was mostly reflected by abatement of NO3--N with the concomitant slight accumulation of NH4+-N and NO2--N, mainly occurred in anoxic2 compartment as the electrons supplied by electrolysis. Furthermore, minor P contents were measured and remained almost unchanged along the reaction units, indicating that chemical precipitation should be the dominant mechanism of P-removal in electrolysis-AAO. From the metagenomic-based taxonomy, phylum Actinobacteria was dramatically inhibited, and phylum Proteobacteria dominated the electrolysis-AAO. Particularly, nitrifying bacteria and multifarious autotrophic denitrifiers were enriched, meanwhile, a significant evolution of heterotrophic denitrifiers was found in electrolysis-AAO compared to control, which was mostly reflected by the inhibition of genus Candidatus Microthrix. Batch tests further confirmed that autotrophic denitrifiers using H2 and Fe2+ as essential electron sinks were mainly responsible for the electrolysis-induced denitrification. Differential metabolic capacities were revealed from the perspectives of functional enzymes and genes, and network analysis allowed insight of microbial taxa-functional genes associations and shed light on stronger relevance between autotrophic denitrifiers and denitrification-associated genes in the electrolysis-AAO system.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Benzhou Gong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
18
|
Xu W, Zhao H, Cao H, Zhang Y, Sheng Y, Li T, Zhou S, Li H. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: Role of zero-valent iron in metagenomic functions. BIORESOURCE TECHNOLOGY 2020; 300:122667. [PMID: 31901513 DOI: 10.1016/j.biortech.2019.122667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Coking wastewater (CWW) has long been a serious challenge for anaerobic treatment due to its high concentrations of phenolics and nitrogen-containing heterocyclic compounds (NHCs). Herein, we proposed and validated a new strategy of using zero-valent iron (ZVI) to strengthen the anaerobic treatment of CWW. Results showed that COD removal efficiencies was increased by 9.5-13.7% with the assistance of ZVI. GC-MS analysis indicated that the removal of phenolics and NHCs was improved, and the intermediate 2(1H)-Quinolinone of quinoline degradation was further removed by ZVI addition. High-throughput sequencing showed that phenolics and NHCs degraders, such as Levilinea and Sedimentibacter were significantly enriched, and the predicted gene abundance of xenobiotic degradation and its downstream metabolic pathways was also increased by ZVI. Network and redundancy analysis indicated that the decreased oxidation-reduction potential (ORP) by ZVI was the main driver for microbial community succession. This study provided an alternative strategy for strengthening CWW anaerobic treatment.
Collapse
Affiliation(s)
- Weichao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Yuxing Sheng
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tinggang Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Siyuan Zhou
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Haibo Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
19
|
Improvement of Black-Odor Water by Pichia Strain GW1 under Optimized NH 3-N Degradation Conditions. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1537873. [PMID: 32149079 PMCID: PMC7049327 DOI: 10.1155/2020/1537873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/04/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
In this study, a yeast strain with an outstanding NH3-N degradation ability was isolated from the sediment of a black-odor water channel in Guangdong Province, China. Based on phenotypic and phylogenetic analysis, this strain was identified as Pichia kudriavzevii GW1. The optimum conditions for NH3-N degradation by the GW1 strain were as follows: 0.3% inoculum concentration, 1.5 L/min aeration, pH 7, and a temperature of 35°C. Under optimized conditions, the GW1 strain degraded 95.5% of the NH3-N. The strain was then added to simulated black-odor water under optimal degradation conditions to investigate changes to the bacterial community over time. 16S rRNA sequencing of samples collected on days 0, 7, 14, and 21 showed that, in the presence of the GW1 strain, the relative abundances of the phyla Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes increased in the black-odor water. In addition, the relative abundance of Propionivibrio, a known NH3-N degrading genus, increased. This study will facilitate the use of microbiological methods to repair black-odor water.
Collapse
|
20
|
Nan L, Yingying L, Jixiang L, Dujuan O, Wenjuan W. Study on the removal of high contents of ammonium from piggery wastewater by clinoptilolite and the corresponding mechanisms. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, a clinoptilolite was applied to remove ammonium from piggery wastewater. The performance of ammonium removal and the correspondingly mechanisms were discussed. Under the optimal conditions of clinoptilolite dosage of 12 g/L, solution pH value of 8.3, shaking speed of 280 rpm and contact time of 55 min obtained by using response surface methodology (RSM), 19.7 mg of ammonium can be adsorbed onto 1 g of clinoptilolite, which was declined when metal cations were presented in the piggery wastewater. The ammonium adsorption process by the clinoptilolite can be well fitted by Langmuir isotherm with a spontaneous nature and pseudo–second–order kinetics model. Furthermore, column study showed that to some extent, the increased flow rate was beneficial to the removal of ammonium, and the ammonium adsorption capacity of clinoptilolite in column study was much higher than those in batch study.
Collapse
Affiliation(s)
- Liu Nan
- Environmental Pollution Control and Ecological Restoration Henan Collaborative Innovation Center, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Li Yingying
- Environmental Pollution Control and Ecological Restoration Henan Collaborative Innovation Center, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Li Jixiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201203, China
| | - Ouyang Dujuan
- Environmental Pollution Control and Ecological Restoration Henan Collaborative Innovation Center, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Wang Wenjuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201203, China
| |
Collapse
|
21
|
Ping L, Zhuang H, Shan S. New insights into pollutants removal, toxicity reduction and microbial profiles in a lab-scale IC-A/O-membrane reactor system for paper wastewater reclamation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:374-382. [PMID: 31005839 DOI: 10.1016/j.scitotenv.2019.04.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, an internal circulation-anoxic/aerobic (IC-A/O) process followed by ultrafiltration (UF) and reverse osmosis (RO) system was applied for paper wastewater reclamation. The IC-AO system presented a stable and efficient performance, achieving high removal of chemical oxygen demand (COD), total organic carbon (TOC) and total nitrogen (TN) with methane production rate of 132.8 mL/d. Acute toxicity to Daphnia magna (D. magna) was reduced significantly (83.2%) and the spearman's rank correlation analysis indicated that the toxicity of effluents from each reactor were positively correlated with COD and TOC. Hexadecanoic acid, octadecanoic acid and benzophenone were the main toxic contributors for biological effluent. Microbial community revealed that Anaerolinea was significantly related with organic pollutants. The UF-RO system further removed pollutants and toxicity with the final effluent COD, TOC, ammonium nitrogen (NH4+-N) and TN of 32.6, 18.8, 0.3 and 9.2 mg/L, respectively, which proved that it was feasible for paper wastewater reuse. This study presented an efficient, practical and environmentally competitive system, and paved a foundation for the treatment and reuse of paper wastewater.
Collapse
Affiliation(s)
- Lifeng Ping
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|