1
|
He B, Li M, Zhao X, Zou H, Xu B, He J. Comparative study of the quick action effect of multiple enzyme-based nano-emulsified oils in enhancing nitrate contamination remediation in groundwater. ENVIRONMENTAL RESEARCH 2024; 257:119297. [PMID: 38824986 DOI: 10.1016/j.envres.2024.119297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Emulsified vegetable oil (EVO), as a novel green slow-releasing substrate, has performed great potential in subsurface bioremediation due to its slow release and longevity. Nevertheless, the long time it takes to initiate this process still exposed some limitations. Herein, multiple enzyme-based EVOs (EN-EVOs) were developed to enhance the quick-acting effect in nitrate-contaminated bioremediation. This study demonstrated that EN-EVOs loaded with cellulose (c-EVO) and protein enzymes (p-EVO) performed best, not only did not change the advantages of traditional EVO, but also optimized the stability and particle size to the level of 0.8-0.9 and 247.95-252.25 nm, respectively. Nitrate (NO3-N) degradation further confirmed the superiority of c-EVO in rapidly initiating degradation and achieving stable denitrification. Compared with traditional EVO, the maximum start-up efficiency and the rapid achieving stable denitrification efficiency were improved by 37.6% and 1.71 times, respectively. In such situation, the corresponding NO3-N removal efficiency, kinetics rate constant (k1), and half-life period (t1/2) reached as high as 85.39%, as quick as 1.079 d-1, and as short as 0.64 d after 30-day cultivation. Meanwhile, the rapid conversion efficiency of NO2-N was observed (k2 = 0.083 d-1). High-throughput 16S rRNA gene sequencing indicated that the quick-acting process of NO3-N reduction coupled to c-EVO was mediated by microbial reducers (e.g., Ralstonia, Gulbenkiania, and Sphingobacterium) with regulations of narG, nirS and norB genes. Microorganisms with these genes could achieve quick-acting not only by enhancing microbial activity and the synthesis and metabolism of volatile fatty acids, but also by reducing the production and accumulation of loosely bound-extracellular polymeric substances (LB-EPS). These findings advance our understanding on fast-acting of NO3-N degradation supported by c-EVO and also offer a promising direction for groundwater remediation.
Collapse
Affiliation(s)
- Baonan He
- Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Meiying Li
- Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xiejie Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Hua Zou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Baoshi Xu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
2
|
Qin J, He L, Su X, Wang S, Tong M. Starvation Process Would Induce Different Bacterial Mobilities and Attachment Performances in Porous Media without and with Nutrients on Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13879-13889. [PMID: 39047087 DOI: 10.1021/acs.est.4c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The influence and mechanisms of starvation on the bacterial mobile performance in porous media with different nutrition conditions are not well understood. The present study systematically investigated the impacts of starvation on the mobility and attachment of both Gram-negative and Gram-positive strains in porous media without and with nutrients on surfaces in both simulated and real water samples. We found that regardless of strain types and water chemistries, starvation would greatly inhibit bacterial attachment onto bare porous media without nutrients yet could significantly enhance cell attachment onto porous media with nutrients on their surfaces. The mechanisms driving the opposite transport behaviors induced by starvation in porous media without and with nutrients were totally different. We found that the starvation process decreased cell motility and increased repulsive force between bacteria and porous media via decreasing cell sizes and zeta potentials, reducing EPS secretion and cell hydrophobicity, thus increasing transport/inhibiting attachment of bacteria in porous media without nutrients on sand surfaces. In contrast, through strengthening the positive chemotactic response of bacteria to nutrients, the starvation process greatly enhanced bacterial attachment onto porous media with nutrients on sand surfaces. Clearly, via modification of the nutrient conditions in porous media, the mobility/attachment performance of bacteria could be regulated.
Collapse
Affiliation(s)
- Jianmei Qin
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiangyu Su
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory of Water Resources & Environmental, Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Xiao X, He X, Ji C, Li L, Zhou M, Yin X, Shan Y, Wang M, Zhao Y. Activation of persulfate by g-C 3N 4/nZVI@SBC for degradation of total petroleum hydrocarbon in groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120612. [PMID: 38537465 DOI: 10.1016/j.jenvman.2024.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
In this study, we synthesized a high removal efficiency catalyst using biochar-supported nanoscale zero-valent iron and g-C3N4, denoted as g-C3N4/nZVI@SBC, to activate persulfate (PS) for the degradation of total petroleum hydrocarbon (TPH) in groundwater. We characterized the morphology and physiochemical properties of g-C3N4/nZVI@SBC with scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), BET surface area analysis, and X-ray photoelectron spectroscopy (XPS). To assess the performance of the g-C3N4/nZVI@SBC catalyst, we investigated various reaction parameters, such as the mass ratio of g-C3N4 to nZVI@SBC, PS concentration, initial pH, initial TPH concentration, and the presence of coexisting ions in the system. The results from batch experiments and repeated use trials indicate that g-C3N4/nZVI@SBC exhibited both excellent catalytic activation capability and impressive durability, making it a promising choice for TPH degradation. Specifically, when the PS concentration reached 1 mM, the catalyst dosage was 0.3 g/L, and the g-C3N4 to nZVI@SBC mass ratio was 2, we achieved a remarkable TPH removal efficiency of 93.8%. Through electron paramagnetic resonance (EPR) testing and quenching experiments, we identified sulfate radicals, hydroxyl radicals, and superoxide radicals as the primary active substance involved in the TPH degradation process. Moreover, the g-C3N4/nZVI@SBC composite proved highly effective for in-situ TPH removal from groundwater and displayed an 86% removal rate, making it a valuable candidate for applications in permeable reactive barriers (PRB) aimed at enhancing environmental remediation. In summary, by skillfully utilizing g-C3N4/nZVI@SBC, this study has made notable advancements in synthesis and characterization, presenting a feasible and innovative approach to addressing TPH pollution in groundwater.
Collapse
Affiliation(s)
- Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xingguo He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Caiya Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of China, Guangzhou, 510655, China
| | - Meichun Zhou
- Jiangsu Zhongwu Environmental Protection Industry Development Co., Ltd., Changzhou, 213164, China
| | - Xinyu Yin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yong Shan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingyu Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Zhang R, Zhuang J, Guo X, Dai T, Ye Z, Liu R, Li G, Yang Y. Microbial functional heterogeneity induced in a petroleum-polluted soil profile. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133391. [PMID: 38171203 DOI: 10.1016/j.jhazmat.2023.133391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Microbial taxonomic diversity declines with increasing stress caused by petroleum pollution. However, few studies have tested whether functional diversities vary similarly to taxonomic diversity along the stress gradient. Here, we investigated soil microbial communities in a petrochemically polluted site in China. Total petroleum hydrocarbon (TPH) concentrations were higher in the middle (2-3 m) and deep soil layer (3-5 m) than in the surface soil layer (0-2 m). Accordingly, microbial taxonomic α-diversity was decreased by 44% (p < 0.001) in the middle and deep soil layers, compared to the surface soil layer. In contrast, functional α-diversity decreased by 3% (p < 0.001), showing a much better buffering capacity to environmental stress. Differences in microbial taxonomic and functional β-diversities were enlarged in the middle and deep soil layers, extending the Anna Karenina Principle (AKP) that a community adapts to stressful environments in its own way. Consistent with the stress gradient hypothesis, we revealed a higher degree of network connectivity among microbial species and genes in the middle and deep soil layers compared to the surface soil layer. Together, we demonstrate that microbial functionality is more tolerant to stress than taxonomy, both of which were amenable to AKP and the stress gradient hypothesis.
Collapse
Affiliation(s)
- Ruihuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jugui Zhuang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tianjiao Dai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - ZhenCheng Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rongqin Liu
- Shanghai SUS Environment Remediation Co., LTD, Shanghai 201703, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Yuan L, Wang K, Zhao Q, Yang L, Wang G, Jiang M, Li L. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119342. [PMID: 37890298 DOI: 10.1016/j.jenvman.2023.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Groundwater is an important component of water resources. Mixed pollutants comprising heavy metals (HMs) and petroleum hydrocarbons (PHs) from industrial activities can contaminate groundwater through such processes as rainfall infiltration, runoff and discharge, which pose direct threats to human health through the food chain or drinking water. In situ remediation of contaminated groundwater is an important way to improve the quality of a water environment, develop water resources and ensure the safety of drinking water. Bioremediation and permeable reactive barriers (PRBs) were discussed in this paper as they were effective and affordable for in situ remediation of complex contaminated groundwater. In addition, media types, technology combinations and factors for the PRBs were highlighted. Finally, insights and outlooks were presented for in situ remediation technologies for complex groundwater contaminated with HMs and PHs. The selection of an in situ remediation technology should be site specific. The remediation of complex contaminated groundwater can be approached from various perspectives, including the development of economical materials, the production of slow-release and encapsulated materials, and a combination of multiple technologies. This review is expected to provide technical guidance and assistance for in situ remediation of complex contaminated groundwater.
Collapse
Affiliation(s)
- Luzi Yuan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Guangzhi Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
6
|
Lin WH, Chien CC, Ou JH, Yu YL, Chen SC, Kao CM. Cleanup of Cr(VI)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117947. [PMID: 37075632 DOI: 10.1016/j.jenvman.2023.117947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Cr(VI) bioreduction has become a remedial alternative for Cr(VI)-polluted site cleanup. However, lack of appropriate Cr(VI)-bioreducing bacteria limit the field application of the in situ bioremediation process. In this study, two different immobilized Cr(VI)-bioreducing bacterial consortia using novel immobilization agents have been developed for Cr(VI)-polluted groundwater remediation: (1) granular activated carbon (GAC) + silica gel + Cr(VI)-bioreducing bacterial consortia (GSIB), and (2) GAC + sodium alginate (SA) + polyvinyl alcohol (PVA) + Cr(VI)-bioreducing bacterial consortia (GSPB). Moreover, two unique substrates [carbon-based agent (CBA) and emulsified polycolloid substrate (EPS)] were developed and used as the carbon sources for Cr(VI) bioreduction enhancement. The microbial diversity, dominant Cr-bioreducing bacteria, and changes of Cr(VI)-reducing genes (nsfA, yieF, and chrR) were analyzed to assess the effectiveness of Cr(VI) bioreduction. Approximately 99% of Cr(VI) could be bioreduced in microcosms with GSIB and CBA addition after 70 days of operation, which caused increased populations of total bacteria, nsfA, yieF, and chrR from 2.9 × 108 to 2.1 × 1012, 4.2 × 104 to 6.3 × 1011, 4.8 × 104 to 2 × 1011, and 6.9 × 104 to 3.7 × 107 gene copies/L. In microcosms with CBA and suspended bacteria addition (without bacterial immobilization), the Cr(VI) reduction efficiency dropped to 60.3%, indicating that immobilized Cr-bioreducing bacteria supplement could enhance Cr(VI) bioreduction. Supplement of GSPB led to a declined bacterial growth due to the cracking of the materials. The addition of GSIB and CBA could establish a reduced condition, which favored the growth of Cr(VI)-reducing bacteria. The Cr(VI) bioreduction efficiency could be significantly improved through adsorption and bioreduction mechanisms, and production of Cr(OH)3 precipitates confirmed the occurrence of Cr(VI) reduction. The main Cr-bioreducing bacteria included Trichococcus, Escherichia-Shigella, and Lactobacillus. Results suggest that the developed GSIB bioremedial system could be applied to cleanup Cr(VI)-polluted groundwater effectively.
Collapse
Affiliation(s)
- Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Sun J, Wang X, Song Q, Li R, Xie J, Yang X, Cai L, Wang Z, Zhao C, Zhang X. Fingerprint characteristics of refined oils and their traceability in the groundwater environment. CHEMOSPHERE 2023; 333:138868. [PMID: 37160170 DOI: 10.1016/j.chemosphere.2023.138868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Chemical fingerprinting is essential for identifying the presence and responding to oil spills that frequently contaminate the groundwater environment of refineries. In this study, crude oil and oil products from the atmospheric and vacuum distillation units of a refinery were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate their chemical variability before and after refinery. A series of experiments involving evaporation and soil column penetration were conducted to simulate refined oil spilling into groundwater and determine appropriate characteristic ratios (CRs) for principal component analysis (PCA) for oil source identification. The simulated study demonstrated that all products had bell-shaped n-alkane distributions, with dominant peaks that remained unchanged or shifted towards longer chain lengths compared to the source oil. Similarly, naphthalene and dibenzothiophene series remained the main PAH components like the source oil. Ten relatively stable CRs were selected for PCA to identify different oil products through the simulated experiments. The chosen CRs were then utilized to identify the sources for two groundwater oil spills recently occurred, one that occurred in an oil depot area, and another near a continuous catalytic reforming unit in a refinery. This study showed that the components with long-chain n-alkanes (n ≥ C18), pristane, phytane, and phenanthrene and dibenzothiophene series PAHs played an important role in the identification of refined oil products spilling into the groundwater environment. The selected CRs provide an effective tool for rapid and accurate identification of oil spills, especially for newly occurring spills in the groundwater environment, which can aid in developing appropriate response strategies.
Collapse
Affiliation(s)
- Juan Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China.
| | - Xiaoyang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Safety and Environmental Protection Technology Research Institute, Beijing, 102206, China
| | - Ran Li
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| | - Jiacai Xie
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Safety and Environmental Protection Technology Research Institute, Beijing, 102206, China
| | - Xiaoqing Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| | - Liuping Cai
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| | - Zihao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum East China, Qingdao, 266580, China
| |
Collapse
|
8
|
He B, He J, Bi E, Zou H, Liu T, Liu Z. Transport and retention of nano emulsified vegetable oil in porous media: Effect of pore straining, roughness wedging, and interfacial effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115912. [PMID: 35944327 DOI: 10.1016/j.jenvman.2022.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Emulsified vegetable oil (EVO), as one of the novel green substrates, has been widely used in subsurface remediation. In these applications, the retention behavior of EVO presents a challenge to remediation efficiency as mechanism insights into the retention of EVO is limited. Herein, Brinell funnels experiments with X-ray microtomography (XMT) were conducted to examine the drainage and retention of nanoscale EVO in porous media, with a specific focus on investigating the impact of pore straining, grain surface roughness, and interfacial effects on Nano-EVO (NEVO) retention. This study demonstrated that the retention of NEVO in porous media is the synergistic result of pore straining, roughness wedging, and interface attachment. With the action of these effects, three residual states of NEVO, incorporating retention at porous ganglia, grain-grain contacts, and grain surface, were identified by XMT in porous media. After multiple periods of drainage and imbibition, the NEVO arrived at stable retention proportions of 46.3%, 72.2%, and 85.9% in three independent systems with coarse, medium, and fine sand as porous media, respectively. The interfacial effects, including the attachment of solid-phase and air-liquid interface, are confirmed as the dominant factors for the retention of NEVO in porous media, which contributed 35.63-47.33% of total retention for the conditions employed. Correspondingly, the contributions of pore straining and roughness wedging only ranged 3.78-24.06% and 3.87-9.94%, respectively. The consistency of the contributions between the actual measurement of XMT and computational evaluation further confirmed the rationality and reliability of the results. In such the dominant factor, interfacial tension, contact angle, and capillary radius play an essential role in NEVO retention, which could be reflected by capillary rise height. These findings advance our understanding on NEVO retention caused by substrate-media interaction and also offer a promising direction for subsurface remediation.
Collapse
Affiliation(s)
- Baonan He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, PR China.
| | - Jiangtao He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, PR China.
| | - Erping Bi
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, PR China
| | - Hua Zou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tao Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zirong Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
9
|
Huang L, Jin Y, Zhou D, Liu L, Huang S, Zhao Y, Chen Y. A Review of the Role of Extracellular Polymeric Substances (EPS) in Wastewater Treatment Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12191. [PMID: 36231490 PMCID: PMC9566195 DOI: 10.3390/ijerph191912191] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A review of the characterization and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems is presented in this paper. EPS represent the complex high-molecular-weight mixture of polymers excreted by microorganisms generated from cell lysis as well as adsorbed inorganic and organic matter from wastewater. EPS exhibit a three-dimensional, gel-like, highly hydrated matrix that facilitates microbial attachment, embedding, and immobilization. EPS play multiple roles in containments removal, and the main components of EPS crucially influence the properties of microbial aggregates, such as adsorption ability, stability, and formation capacity. Moreover, EPS are important to sludge bioflocculation, settleability, and dewatering properties and could be used as carbon and energy sources in wastewater treatment. However, due to the complex structure of EPS, related knowledge is incomplete, and further research is necessary to understand fully the precise roles in biological treatment processes.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| | - Yinie Jin
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Danheng Zhou
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linxin Liu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shikun Huang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yaqi Zhao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| |
Collapse
|
10
|
Lo KH, Lu CW, Chien CC, Sheu YT, Lin WH, Chen SC, Kao CM. Cleanup chlorinated ethene-polluted groundwater using an innovative immobilized Clostridium butyricum column scheme: A pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114836. [PMID: 35272161 DOI: 10.1016/j.jenvman.2022.114836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
In this study, the developed innovative immobilized Clostridium butyricum (ICB) (hydrogen-producing bacteria) column scheme was applied to cleanup chlorinated-ethene [mainly cis-1,2-dichloroethene (cis-DCE)] polluted groundwater in situ via the anaerobic reductive dechlorinating processes. The objectives were to assess the effectiveness of the field application of ICB scheme on the cleanup of cis-DCE polluted groundwater, and characterize changes of microbial communities after ICB application. Three remediation wells and two monitor wells were installed within the cis-DCE plume. In the remediation well, a 1.2-m PVC column (radius = 2.5 cm) (filled with ICB beads) and 20 L of slow polycolloid-releasing substrate (SPRS) were supplied for hydrogen production enhancement and primary carbon supply, respectively. Groundwater samples from remediation and monitor wells were analyzed periodically for cis-DCE and its degradation byproducts, microbial diversity, reductive dehalogenase, and geochemical indicators. Results reveal that cis-DCE was significantly decreased within the ICB and SPRS influence zone. In a remediation well with ICB injection, approximately 98.4% of cis-DCE removal (initial concentration = 1.46 mg/L) was observed with the production of ethene (end-product of cis-DCE dechlorination) after 56 days of system operation. Up to 0.72 mg/L of hydrogen was observed in remediation wells after 14 days of ICB and SPRS introduction, which corresponded with the increased population of Dehalococcoides spp. (Dhc) (increased from 3.76 × 103 to 5.08 × 105 gene copies/L). Results of metagenomics analyses show that the SPRS and ICB introduction caused significant impacts on the bacterial communities, and increased Bacteroides, Citrobacter, and Desulfovibrio populations were observed, which had significant contributions to the reductive dechlorination of cis-DCE. Application of ICB could effectively result in increased populations of Dhc and RDase genes, which corresponded with improved dechlorination of cis-DCE and vinyl chloride. Introduction of ICB and SPRS could be applied as a potential in situ remedial option to enhance anaerobic dechlorination efficiencies of chlorinated ethenes.
Collapse
Affiliation(s)
- Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Yi-Tern Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung City, Taiwan
| | - Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Low-Field Nuclear Magnetic Resonance Characteristics of Biofilm Development Process. Microorganisms 2021; 9:microorganisms9122466. [PMID: 34946068 PMCID: PMC8707105 DOI: 10.3390/microorganisms9122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
To in situ and noninvasively monitor the biofilm development process by low-field nuclear magnetic resonance (NMR), experiments should be made to determine the mechanisms responsible for the T2 signals of biofilm growth. In this paper, biofilms were cultivated in both fluid media and saturated porous media. T2 relaxation for each sample was measured to investigate the contribution of the related processes to T2 relaxation signals. In addition, OD values of bacterial cell suspensions were measured to provide the relative number of bacterial cells. We also obtained SEM photos of the biofilms after vacuum freeze-drying the pure sand and the sand with biofilm formation to confirm the space within the biofilm matrix and identify the existence of biofilm formation. The T2 relaxation distribution is strongly dependent on the density of the bacterial cells suspended in the fluid and the stage of biofilm development. The peak time and the peak percentage can be used as indicators of the biofilm growth states.
Collapse
|
12
|
Guo Y, Wen Z, Zhang C, Jakada H. Contamination characteristics of chlorinated hydrocarbons in a fractured karst aquifer using TMVOC and hydro-chemical techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148717. [PMID: 34323754 DOI: 10.1016/j.scitotenv.2021.148717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated a fractured karst aquifer polluted by chlorinated hydrocarbons to determine the contamination characteristics of the main hydrocarbon components. The natural attenuation processes of representative components were simulated and forecasted using TMVOC and hydro-chemical components (NO3-, SO42-, HCO3- Cl- and δ13CDIC). The impact of hydrocarbon compounds on the hydro-chemical ions were estimated, and their historical contamination characteristics were also reconstructed. Results showed that the dynamic characteristics of Trichloromethane and 1,1,2-Trichlorethane can indicate those of chlorinated hydrocarbons, where the rate of natural attenuation was observed to decrease with decreasing concentrations of hydrocarbon compounds. Additionally, the long-term variation characteristics in groundwater levels showed that the relatively stable hydrodynamic field conditions enabled the simulation of the natural attenuation processes of chlorinated hydrocarbons. The simulation which also considered the biodegradation processes showed that the use of TMVOC and hydro-chemical parameters may better describe natural attenuation processes. Over 3 years (from 2017 to 2019), the average percentage of biodegradation in the total natural attenuation was estimated to be 88.35%. Similarly, Trichloromethane and 1,1,2-Trichlorethane are forecasted to have no health hazards in 10 and 15 years, respectively. The contribution rates of biodegradation to HCO3- and Cl- in the fractured karst aquifer varied with the concentrations of chlorinated hydrocarbons. Overall, the findings and methods in this work have significant contributions for advancing remediation developments of petroleum hydrocarbons, especially in karst environments that are highly susceptible to contamination.
Collapse
Affiliation(s)
- Yongli Guo
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Key Laboratory of Karst Dynamics, MNR and GZAR, Guilin 541004, People's Republic of China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, People's Republic of China
| | - Zhang Wen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, NO. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430074, People's Republic of China.
| | - Cheng Zhang
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Key Laboratory of Karst Dynamics, MNR and GZAR, Guilin 541004, People's Republic of China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, People's Republic of China
| | - Hamza Jakada
- Department of Civil Engineering, Baze University, Abuja, Nigeria
| |
Collapse
|
13
|
Ji B, Xiao LY, Ren JC, Zhang GH, Wang Y, Dong T, Li J, Zhang F, Xia ZL. Gene-Environment Interactions Between Environmental Response Genes Polymorphisms and Mitochondrial DNA Copy Numbers Among Benzene Workers. J Occup Environ Med 2021; 63:e408-e415. [PMID: 34184658 DOI: 10.1097/jom.0000000000002225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To determine the effect of mitochondrial DNA copy number (mtDNAcn) as a biomarker of benzene exposure. METHODS A total of 294 benzene-exposed workers and 102 controls were recruited. Biomarkers of mtDNAcn, cytokinesis-block micronucleus (MN) frequency, and peripheral blood white blood cells (WBC) were detected. Eighteen polymorphism sites in DNA damage repair and metabolic genes were analyzed. RESULTS Benzene exposure increased mtDNAcn and indicated a dose-response relationship (P < 0.001). mtDNAcn was negatively correlated with WBC count and DNA methylation and positively correlated with MN frequency. The AG type in rs1695 interacted with benzene exposure to aggravate mtDNAcn (β = 0.006, 95% CI: 0, 0.012, P = 0.050). rs13181, rs1695, rs1800975, and GSTM1 null were associated with benzene-induced mtDNAcn. Rs1695 interacted with benzene to increase mitochondrial damage. CONCLUSIONS Benzene exposure increases mtDNAcn levels in benzene-exposed workers.
Collapse
Affiliation(s)
- Buqiang Ji
- Department of Hematology, Linyi People's Hospital, 27 Jifang Road, Linyi, China (Ji, Xiao), School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, China (Ren, Zhang, Wang, Dong, Li, Zhang), Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, China (Xia)
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
He B, He J, Zou H, Lao T, Bi E. Pore-scale identification of residual morphology and genetic mechanisms of nano emulsified vegetable oil in porous media using 3D X-ray microtomography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143015. [PMID: 33158542 DOI: 10.1016/j.scitotenv.2020.143015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The application of emulsified vegetable oil (EVO) has attracted widespread attention in environmental remediation. Residual morphology is an important factor affecting its migration and mass transfer. However, proper identification of the EVO residual morphology at pore-scale has still remained a challenging task. Hence, this study aimed to identify the residual morphology of nanoscale EVO (NEVO) through developing a method combining natural breaks with 3D X-ray microtomography, then further explore the genetic mechanism of each residual morphology to verify the rationality of this method. The results showed that the natural breaks method can effectively classify the residual morphology of NEVO. Four morphologies including cluster, throat, corner, and membrane state were obtained from coarse, medium, and fine sands with a total proportion of 18.3%, 26.2%, and 30.8%. The cluster state was the main residual morphology, accounting for 10.0- 16.2%, then followed by corner-throat state and membrane state. Pore radius, throat radius, and length were confirmed providing sufficient evidences for cluster residues, because these factors determined the connectivity of porous media for the trapping of droplets. Comparison of the theoretical and actual results implied that capillarity coupling pore-throat shape jointly controlled corner and throat residues. Grain surface roughness and specific surface area were the main factors of membrane residue. The different residual morphologies of NEVO identified by the natural breaks method can reasonably explain their magnitude and controlling mechanisms, which in turn confirms the rationality of this method. Although the proportions of each form are related to the experimental conditions, the classification method and mechanism are of great significance for understanding NEVO residues.
Collapse
Affiliation(s)
- Baonan He
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jiangtao He
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Hua Zou
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tianying Lao
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
15
|
Guo Y, Wen Z, Zhang C, Jakada H. Contamination and natural attenuation characteristics of petroleum hydrocarbons in a fractured karst aquifer, North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22780-22794. [PMID: 32323239 DOI: 10.1007/s11356-020-08723-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
A rare super-large fractured karst aquifer located in Zibo city, Shandong Province of Northern China was polluted by petroleum hydrocarbons from a petrochemical company. Over the last 30 years, it has been the focus of several remediation efforts. In this study, the contamination and natural attenuation characteristics of the petroleum hydrocarbons were elucidated using hydrogeochemical indicators (DO, DOC, Cl-, HCO3-, pH, NO3-, and SO42-), petroleum hydrocarbons elements and environmental isotopes (δ15NNO3, δ18ONO3, δ13CDIC, and δ13CDOC). With the aid of GIS, statistical analyses, as well as first-order decay model and electron-acceptor-limited kinetic model, the spatio-temporal evolution characteristics of the petroleum hydrocarbons were modeled. Results showed a positive natural attenuation trend over the last 3 decades where intrinsic biodegradation mechanism was found to be the most important factor driving the degradation of hydrocarbons in the aquifer system. The hydrogeochemical association between the indicators and petroleum hydrocarbons provided the evidences of biodegradation and also served as markers, highlighting the occurrence of anaerobic respiration without methanogenic activities within the heterogenous karst media. Furthermore, the mean natural attenuation rate of petroleum hydrocarbons was calculated to be 3.76 × 10-3/day whereby the current highest petroleum hydrocarbons concentration (361.13 μg/L) is estimated to be degraded completely in 6 years under the present hydrogeological and environmental conditions.
Collapse
Affiliation(s)
- Yongli Guo
- School of Environmental Studies, China University of Geosciences, NO. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430074, People's Republic of China
- Institute of Karst Geology, Chinese Academy of Geological Sciences / Key Laboratory of Karst Dynamics, MNR and GZAR, Guilin, 541004, People's Republic of China
| | - Zhang Wen
- School of Environmental Studies, China University of Geosciences, NO. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430074, People's Republic of China.
| | - Cheng Zhang
- Institute of Karst Geology, Chinese Academy of Geological Sciences / Key Laboratory of Karst Dynamics, MNR and GZAR, Guilin, 541004, People's Republic of China
- International Research Center on Karst under the Auspices of UNESCO, Guilin, 541004, People's Republic of China
| | - Hamza Jakada
- Department of Civil Engineering, Baze University Abuja, Abuja, Nigeria
| |
Collapse
|
16
|
Braun AB, Trentin AWDS, Visentin C, Thomé A. Sustainable remediation through the risk management perspective and stakeholder involvement: A systematic and bibliometric view of the literature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113221. [PMID: 31541824 DOI: 10.1016/j.envpol.2019.113221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Sustainable remediation is a new way of thinking and acting in the management of contaminated sites. This research aims to identify and structure the state-of-the-art of sustainable remediation from the risk management and stakeholder involvement perspective. A systematic and bibliometric study of scientific production was performed on scientific papers indexed in the Scopus and Web of Science databases with the objectives: 1) to select a bibliographic portfolio that is aligned with the perception of the researchers in regard to theme, 2) to perform a bibliometric analysis of the selected bibliographic portfolio, and 3) to conduct a thematic synthesis and identify the integration of sustainable remediation from the risk management and stakeholder involvement perspective. The results indicated that although sustainable remediation is a recent theme it presents a promising field for development worldwide, verified by the growing number of publications in recent years. A change is observed in the way risk management is considered with the rise of sustainable remediation, demonstrated by different approaches in publications. Likewise, the involvement of stakeholders is widely discussed, and the importance of their participation in decision-making processes in the field of sustainable remediation is identified. This research brings several and new contributions as it provides with a detailed overview and guidance about the main characteristics and peculiarities as well as what already exists, the form to approach, the advances and what still needs to be improved so that the perception of stakeholders and risk management are better understood within the context of sustainable remediation.
Collapse
Affiliation(s)
- Adeli Beatriz Braun
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil.
| | - Adan William da Silva Trentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil
| | - Caroline Visentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil
| | - Antônio Thomé
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900, Passo Fundo, RS, Brazil
| |
Collapse
|