1
|
Aghaei Y, Badami MM, Aldekheel M, Tohidi R, Sioutas C. Seasonal Characterization of Primary and Secondary Sources of Fine PM-Bound Water-Soluble Organic Carbon in Central Los Angeles. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2025; 346:121084. [PMID: 39959759 PMCID: PMC11823697 DOI: 10.1016/j.atmosenv.2025.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Understanding the sources and formation processes of fine particulate matter (PM2.5) is crucial for improving urban air quality and public health. This study provides a real-time analysis of PM2.5-bound water-soluble organic carbon (WSOC) and related carbonaceous species during winter, spring, and summer periods in 2023-2024, aiming to identify their major sources in central Los Angeles. Using advanced online monitoring equipment, including a Sunset Laboratory EC/OC analyzer and a custom-developed setup including a total organic carbon (TOC) analyzer coupled with a particle collection system, we obtained hourly measurements of organic carbon (OC), its fractions (OC1-OC4, based on volatility), elemental carbon (EC), and WSOC. Positive matrix factorization (PMF) identified three principal PM2.5 sources: vehicular emissions, secondary organic carbon (SOC) formation influenced by nighttime aqueous-phase chemical processes, and SOC formation driven by daytime photochemical reactions. Vehicular emissions dominated EC levels, accounting for 86-95% across seasons. This factor also had high contributions from nitrogen oxides (NOₓ) (75-82%), vehicle counts (approximately 85%), and OC1 (51-83%), reflecting the persistent influence of traffic emissions. Nighttime SOC formation was significant in winter, with WSOC and OC4 contributing 58% and 40% to this factor. In contrast, daytime photochemical SOC formation was prominent in summer, with WSOC and OC4 contributing 63% and 47%, and ozone loading up to 89%, reflecting increased photochemical activity. Spring exhibited a mix of aqueous and photochemical SOC formation, with similar contributions from WSOC (38-35%) and OC4 (35-33%), reflecting the transitional season's mixed SOC formation mechanisms. Diurnal profiles revealed that primary emissions peaked during morning rush hours, while secondary formation processes elevated OC levels at night in winter and during afternoons in summer. The EC tracer method corroborated these findings by estimating primary and secondary organic carbon levels, highlighting significant seasonal and diurnal variations in carbonaceous aerosols. These results emphasize the need for targeted strategies addressing both primary emissions and the precursors of secondary aerosol formation, to improve air quality in Los Angeles.
Collapse
Affiliation(s)
- Yashar Aghaei
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Air Quality Planning and Science Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, CA 92507, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
2
|
Zheng S, Jiang J, Shu Z, Qiu C, Jiang L, Zhao N, Lin X, Qian Y, Liang B, Qiu L. Fine particulate matter (PM 2.5) induces testosterone disruption by triggering ferroptosis through SIRT1/HIF-1α signaling pathway in male mice. Free Radic Biol Med 2024; 221:40-51. [PMID: 38759901 DOI: 10.1016/j.freeradbiomed.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Fine particulate matter (PM2.5), a significant component of air pollution particulate matter, is inevitable and closely associated with increasing male reproductive disorder. However, the testicular targets of PM2.5 and its toxicity related molecular mechanisms are still not fully understood. In this study, the conditional knockout (cKO) mice and primary Leydig cells were used to explore the testicular targets of PM2.5 and the related underlying mechanisms. First, apparent the structure impairment of seminiferous tubules, Leydig cells vacuolization, decline of serum testosterone and sperm quality reduction were found in male wild-type (WT) and Sirt1 knockout mice after exposure to PM2.5. Enrichment analyses revealed that differentially expressed genes (DEGs) were enriched in steroid hormone biosynthesis, ferroptosis, and HIF-1 signaling pathway in the mice testes after exposure to PM2.5, which were subsequently verified by the molecular biological analyses. Notably, similar enrichment analyses results were also observed in primary Leydig cells after treatment with PM2.5. In addition, Knockdown of Sirt1 significantly increased PM2.5-induced expression and activation of HIF-1α, which was in parallel to the changes of cellular iron levels, oxidative stress indicators and the ferroptosis markers. In conclusion, this highlights that PM2.5 triggers ferroptosis via SIRT1/HIF-1α signaling pathway to inhibit testosterone synthesis in males. These findings provide a novel research support for the study that PM2.5 causes male reproductive injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Jinchen Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Zhenhao Shu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd, Nantong, 226001, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Yingyun Qian
- Graduate School, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Bo Liang
- Department of Ultrasound, Affiliated Hospital 2 of Nantong University, 6 Hai'er Lane North Rd, Nantong, 226019, PR China.
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China.
| |
Collapse
|
3
|
Chang C, Louie A, Zhou Y, Gupta R, Liang F, Xanthou G, Ereso J, Koletic C, Yang JC, Sedighian F, Lagishetty V, Arias-Jayo N, Altuwayjiri A, Tohidi R, Navab M, Reddy ST, Sioutas C, Hsiai T, Araujo JA, Jacobs JP. Ambient Particulate Matter Induces In Vitro Toxicity to Intestinal Epithelial Cells without Exacerbating Acute Colitis Induced by Dextran Sodium Sulfate or 2,4,6-Trinitrobenzenesulfonic Acid. Int J Mol Sci 2024; 25:7184. [PMID: 39000289 PMCID: PMC11241079 DOI: 10.3390/ijms25137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 μm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 μg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Zhou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fengting Liang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Georgina Xanthou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Jason Ereso
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Carolina Koletic
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Julianne Ching Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Abdulmalik Altuwayjiri
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Ramin Tohidi
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Air Quality Planning and Science Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, CA 92507, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
| | - Srinivasa Tadiparthi Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
- Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Chang C, Gupta R, Sedighian F, Louie A, Gonzalez DM, Le C, Cho JM, Park SK, Castellanos J, Ting TW, Dong TS, Arias-Jayo N, Lagishetty V, Navab M, Reddy S, Sioutas C, Hsiai T, Jacobs JP, Araujo JA. Subchronic inhalation exposure to ultrafine particulate matter alters the intestinal microbiome in various mouse models. ENVIRONMENTAL RESEARCH 2024; 248:118242. [PMID: 38242419 PMCID: PMC11737635 DOI: 10.1016/j.envres.2024.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 μg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, β-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - David M Gonzalez
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Collin Le
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jocelyn Castellanos
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - To-Wei Ting
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, Los Angeles, CA, USA
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Srinivasa Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California (USC) Viterbi School of Engineering, Los Angeles, CA, USA
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, Los Angeles, CA, USA.
| | - Jesus A Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Jankowska-Kieltyka M, Roman A, Nalepa I. Dataset on exposure conditions to Fe 2O 3 and SiO 2 colloidal suspension and airborne particulate matter (PM) suspensions: crude NIST1648a and with reduced content of organic matter, LAp120. Data Brief 2024; 53:110242. [PMID: 38533120 PMCID: PMC10964041 DOI: 10.1016/j.dib.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Particulate matter (PM) present in the air pollution increases morbidity and mortality due to several reasons. The dataset presents a comparative analysis of nebulization process of Fe2O3 and SiO2 nanoparticles or crude PM (NIST1648a) and that with reduced content of organic matter (LAp120). Nebulization tests were carried out to determine concentrations of nanoparticle and PM suspensions, in order to create an atmosphere with a concentration of PM particles about 1000 µg/m3 of air in the exposure chambers. It is important to properly recreate environmental conditions during further research on animals. The absorbance spectrum of the suspensions of the tested materials was measured in the range of 300-700 nm. The changes in the absorbance of these suspensions depending on the concentration after their passage through the nebulizers were examined. Based on the absorbance, it was determined to what extent the suspensions are passed out and dispersed by the nebulizers. The operating mode of the nebulizers and the concentration of suspensions were determined in order to establish the optimal exposure conditions and the microclimate of the chambers for further studies with mice. The dataset can help in optimization of nebulization process for all researchers exploring the further issue of the influence of the air pollution on the broadly understood animal functions, behavioral parameters and biochemical aspects.
Collapse
Affiliation(s)
| | | | - Irena Nalepa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
6
|
Shkirkova K, Demetriou AN, Sizdahkhani S, Lamorie-Foote K, Zhang H, Morales M, Chen S, Zhao L, Diaz A, Godoy-Lugo JA, Zhou B, Zhang N, Li A, Mack WJ, Sioutas C, Thorwald MA, Finch CE, Pike C, Mack WJ. Microglial TLR4 Mediates White Matter Injury in a Combined Model of Diesel Exhaust Exposure and Cerebral Hypoperfusion. Stroke 2024; 55:1090-1093. [PMID: 38299349 PMCID: PMC10978264 DOI: 10.1161/strokeaha.124.046412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Air pollution particulate matter exposure and chronic cerebral hypoperfusion (CCH) contribute to white matter toxicity through shared mechanisms of neuroinflammation, oxidative stress, and myelin breakdown. Prior studies showed that exposure of mice to joint particulate matter and CCH caused supra-additive injury to corpus callosum white matter. This study examines the role of TLR4 (toll-like receptor 4) signaling in mediating neurotoxicity and myelin damage observed in joint particulate matter and CCH exposures. METHODS Experiments utilized a novel murine model of inducible monocyte/microglia-specific TLR4 knockout (i-mTLR4-ko). Bilateral carotid artery stenosis (BCAS) was induced surgically to model CCH. TLR4-intact (control) and i-mTLR4-ko mice were exposed to 8 weeks of either aerosolized diesel exhaust particulate (DEP) or filtered air (FA) in 8 experimental groups: (1) control/FA (n=10), (2) control/DEP (n=10), (3) control/FA+BCAS (n=9), (4) control/DEP+BCAS (n=10), (5) i-mTLR4-ko/FA (n=9), (6) i-mTLR4-ko/DEP (n=8), (7) i-mTLR4-ko/FA+BCAS (n=8), and (8) i-mTLR4-ko/DEP+BCAS (n=10). Corpus callosum levels of 4-hydroxynonenal, 8-Oxo-2'-deoxyguanosine, Iba-1 (ionized calcium-binding adapter molecule 1), and dMBP (degraded myelin basic protein) were assayed via immunofluorescence to measure oxidative stress, neuroinflammation, and myelin breakdown, respectively. RESULTS Compared with control/FA mice, control/DEP+BCAS mice exhibited increased dMBP (41%; P<0.01), Iba-1 (51%; P<0.0001), 4-hydroxynonenal (100%; P<0.0001), and 8-Oxo-2'-deoxyguanosine (65%; P<0.05). I-mTLR4 knockout attenuated responses to DEP/BCAS for all markers. CONCLUSIONS i-mTLR4-ko markedly reduced neuroinflammation and oxidative stress and attenuated white matter degradation following DEP and CCH exposures. This suggests a potential role for targeting TLR4 signaling in individuals with vascular cognitive impairment, particularly those exposed to substantial ambient air pollution.
Collapse
Affiliation(s)
| | | | - Saman Sizdahkhani
- Zilkha Neurogenetic Institute, University of Southern California (USC)
| | | | | | - Manuel Morales
- Zilkha Neurogenetic Institute, University of Southern California (USC)
| | - Selena Chen
- Zilkha Neurogenetic Institute, University of Southern California (USC)
| | - Lifu Zhao
- Zilkha Neurogenetic Institute, University of Southern California (USC)
| | | | | | - Beryl Zhou
- Leonard Davis School of Gerontology, USC
| | | | - Andrew Li
- Leonard Davis School of Gerontology, USC
| | - Wendy J. Mack
- Keck School of Medicine, Department of Population and Public Health Sciences, USC
| | | | | | | | | | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California (USC)
| |
Collapse
|
7
|
Kek HY, Tan H, Othman MHD, Nyakuma BB, Ho WS, Sheng DDCV, Kang HS, Chan YT, Lim NHAS, Leng PC, Wahab NHA, Wong KY. Critical review on airborne microplastics: An indoor air contaminant of emerging concern. ENVIRONMENTAL RESEARCH 2024; 245:118055. [PMID: 38154562 DOI: 10.1016/j.envres.2023.118055] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 μm), and comprehensive human exposure risk assessments.
Collapse
Affiliation(s)
- Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Wai Shin Ho
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Hooi Siang Kang
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Marine Technology Centre, Institute for Vehicle System & Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Yoon Tung Chan
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Pau Chung Leng
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
8
|
Badami MM, Tohidi R, Sioutas C. Los Angeles Basin's air quality transformation: a long-term investigation on the impacts of PM regulations on the trends of ultrafine particles and co-pollutants. JOURNAL OF AEROSOL SCIENCE 2024; 176:106316. [PMID: 38223364 PMCID: PMC10783618 DOI: 10.1016/j.jaerosci.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigates the long-term trends of ambient ultrafine particles (UFPs) and associated airborne pollutants in the Los Angeles Basin from 2007 to 2022, focusing on the indirect effects of regulations on UFP levels. The particle number concentration (PNC) of UFPs was compiled from previous studies in the area, and associated co-pollutant data, including nitrogen oxides (NOx), carbon monoxide (CO), elemental carbon (EC), organic carbon (OC), and ozone (O3), were obtained from the chemical speciation network (CSN) database. Over the study period, a general decrease was noted in the PNC of UFPs, NOx, EC, and OC, except for CO, the concentration trends of which did not exhibit a consistent pattern. UFPs, NOx, EC, and OC were positively correlated, while O3 had a negative correlation, especially with NOx. Our analysis discerned two distinct subperiods in pollutant trends: 2007-2015 and 2016-2022. For example, there was an overall decrease in the PNC of UFPs at an annual rate of -850.09 particles/cm3/year. This rate was more pronounced during the first sub-period (2007-2015) at -1814.9 particles/cm3/year and then slowed to -227.21 particles/cm3/year in the second sub-period (2016-2023). The first sub-period (2007-2015) significantly influenced pollutant level changes, exhibiting more pronounced and statistically significant changes than the second sub-period (2016-2022). Since 2016, almost all primary pollutants have stabilized, indicating a reduced impact of current regulations, and emphasizing the need for stricter standards. In addition, the study included an analysis of Vehicle Miles Traveled (VMT) trends from 2007 to 2022 within the Los Angeles Basin. Despite the general increase in VMT, current regulations and cleaner technologies seem to have successfully mitigated the potential increase in increase in PNC. Overall, while a decline in UFPs and co-pollutant levels was observed, the apparent stabilization of these levels underscores the need for more stringent regulatory measures and advanced emission standards.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
9
|
Taghvaee S, Shen J, Banach C, La C, Campbell SJ, Paulson SE. Robust quantification of the burst of OH radicals generated by ambient particles in nascent cloud droplets using a direct-to-reagent approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165736. [PMID: 37495143 DOI: 10.1016/j.scitotenv.2023.165736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Reactive oxygen species (ROS) play a central role in chemistry in cloud water, as well as in other aqueous phases such as lung fluid and in wastewater treatment. Recently, work simulating nascent cloud droplets showed that aerosol particles produce a large burst of OH radicals when they first take up water. This activity stops abruptly, within two minutes. The source of the OH radicals is not well understood, but it likely includes the aqueous phase chemistry of ROS and/or organic hydroperoxides and redox active metals such as iron and copper. ROS and their precursors are in general highly reactive and labile, and thus may not survive during traditional sampling methods, which typically involve multi-hour collection on a filter or direct sampling into water or another collection liquid. Further, these species may further decay during storage. Here, we develop a technique to grow aerosol particles into small droplets and capture the droplets directly into a vial containing the terephthalate probe in water, which immediately scavenges OH radicals produced by aerosol particles. The method uses a Liquid Spot Sampler. Extensive characterization of the approach reveals that the collection liquid picks up substantial OH/OH precursors from the gas phase. This issue is effectively addressed by adding an activated carbon denuder. We then compared OH formation measured with the direct-to-reagent approach vs. filter collection. We find that after a modest correction for OH formed in the collection liquid, the samples collected into the reagent produce about six times those collected on filters, for both PM2.5 and total suspended particulate. This highlights the need for direct-to-reagent measurement approaches to accurately quantify OH production from ambient aerosol particles.
Collapse
Affiliation(s)
- Sina Taghvaee
- Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
| | - Jiaqi Shen
- Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
| | - Catherine Banach
- Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
| | - Chris La
- Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
| | - Steven J Campbell
- Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
| | - Suzanne E Paulson
- Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Chakhoyan A, Shkrkova K, Sizdahkhani S, Huuskonen MT, Lamorie-Foote K, Diaz A, Chen S, Liu Q, D'Agostino C, Zhang H, Mack WJ, Sioutas C, Finch CE, Zlokovic B, Mack WJ. Magnetic resonance imaging of white matter response to diesel exhaust particles. RESEARCH SQUARE 2023:rs.3.rs-3087503. [PMID: 37503159 PMCID: PMC10371072 DOI: 10.21203/rs.3.rs-3087503/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Air pollution is associated with risks of dementia and accelerated cognitive decline. Rodent air pollution models have shown white matter vulnerability. This study uses diffusion tensor imaging (DTI) to quantify changes to white matter microstructure and tractography in multiple myelinated regions after exposure to diesel exhaust particulate (DEP). Adult C57BL/6 male mice were exposed to re-aerosolized DEP (NIST SRM 2975) at a concentration of 100 ug/m3 for 200 hours. Ex-vivo MRI analysis and fractional anisotropy (FA)-aided white matter tractography were conducted to study the effect of DEP exposure on the brain white matter tracts. Immunohistochemistry was used to assess myelin and axonal structure. DEP exposure for 8 weeks altered myelin composition in multiple regions. Diffusion tensor imaging (DTI) showed decreased FA in the corpus callosum (30%), external capsule (15%), internal capsule (15%), and cingulum (31 %). Separate immunohistochemistry analyses confirmed prior findings. Myelin basic protein (MBP) was decreased (corpus callosum: 28%, external capsule: 29%), and degraded MPB increased (corpus callosum: 32%, external capsule: 53%) in the DEP group. White matter is highly susceptible to chronic DEP exposure. This study demonstrates the utility of DTI as a neuroanatomical tool in the context of air pollution and white matter myelin vulnerability.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Kristina Shkrkova
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Saman Sizdahkhani
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Arnold Diaz
- Leonard Davis School of Gerontology, University of Southern California
| | - Selena Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California
| | - Berislav Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
11
|
Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R. Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5471. [PMID: 37107752 PMCID: PMC10138381 DOI: 10.3390/ijerph20085471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses.
Collapse
Affiliation(s)
- Yuqing Chang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Wen Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| |
Collapse
|
12
|
Zhao YB, Cen T, Jiang F, He W, Zhang X, Feng X, Gao M, Ludwig C, Bakker E, Wang J. Aerosol-into-liquid capture and detection of atmospheric soluble metals across the gas-liquid interface using Janus-membrane electrodes. Proc Natl Acad Sci U S A 2023; 120:e2219388120. [PMID: 36848559 PMCID: PMC10013784 DOI: 10.1073/pnas.2219388120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 03/01/2023] Open
Abstract
The soluble fraction of atmospheric transition metals is particularly associated with health effects such as reactive oxygen species compared to total metals. However, direct measurements of the soluble fraction are restricted to sampling and detection units in sequence burdened with a compromise between time resolution and system bulkiness. Here, we propose the concept of aerosol-into-liquid capture and detection, which allowed one-step particle capture and detection via the Janus-membrane electrode at the gas-liquid interface, enabling active enrichment and enhanced mass transport of metal ions. The integrated aerodynamic/electrochemical system was capable of capturing airborne particles with a cutoff size down to 50 nm and detecting Pb(II) with a limit of detection of 95.7 ng. The proposed concept can pave the way for cost-effective and miniaturized systems, for the capture and detection of airborne soluble metals in air quality monitoring, especially for abrupt air pollution events with high airborne metal concentrations (e.g., wildfires and fireworks).
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Tianyu Cen
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Bioenergy and Catalysis Laboratory, Energy and Environment Research Division, Paul Scherrer Institut, Villigen5232, Switzerland
| | - Fuze Jiang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
- Filter Test Center, College of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning110819, China
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Xiaoxiao Feng
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Min Gao
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Christian Ludwig
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Bioenergy and Catalysis Laboratory, Energy and Environment Research Division, Paul Scherrer Institut, Villigen5232, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva1211, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| |
Collapse
|
13
|
Lamorie‐Foote K, Liu Q, Shkirkova K, Ge B, He S, Morgan TE, Mack WJ, Sioutas C, Finch CE, Mack WJ. Particulate matter exposure and chronic cerebral hypoperfusion promote oxidative stress and induce neuronal and oligodendrocyte apoptosis in male mice. J Neurosci Res 2023; 101:384-402. [PMID: 36464774 PMCID: PMC10107949 DOI: 10.1002/jnr.25153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) may amplify the neurotoxicity of nanoscale particulate matter (nPM), resulting in white matter injury. This study characterized the joint effects of nPM (diameter ≤ 200 nm) and CCH secondary to bilateral carotid artery stenosis (BCAS) exposure on neuronal and white matter injury in a murine model. nPM was collected near a highway and re-aerosolized for exposure. Ten-week-old C57BL/6 male mice were randomized into four groups: filtered air (FA), nPM, FA + BCAS, and nPM + BCAS. Mice were exposed to FA or nPM for 10 weeks. BCAS surgeries were performed. Markers of inflammation, oxidative stress, and apoptosis were examined. nPM + BCAS exposure increased brain hemisphere TNFα protein compared to FA. iNOS and HNE immunofluorescence were increased in the corpus callosum and cerebral cortex of nPM + BCAS mice compared to FA. While nPM exposure alone did not decrease cortical neuronal cell count, nPM decreased corpus callosum oligodendrocyte cell count. nPM exposure decreased mature oligodendrocyte cell count and increased oligodendrocyte precursor cell count in the corpus callosum. nPM + BCAS mice exhibited a 200% increase in cortical neuronal TUNEL staining and a 700% increase in corpus callosum oligodendrocyte TUNEL staining compared to FA. There was a supra-additive interaction between nPM and BCAS on cortical neuronal TUNEL staining (2.6× the additive effects of nPM + BCAS). nPM + BCAS exposure increased apoptosis, neuroinflammation, and oxidative stress in the cerebral cortex and corpus callosum. nPM + BCAS exposure increased neuronal apoptosis above the separate responses to each exposure. However, oligodendrocytes in the corpus callosum demonstrated a greater susceptibility to the combined neurotoxic effects of nPM + BCAS exposure.
Collapse
Affiliation(s)
- Krista Lamorie‐Foote
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Qinghai Liu
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristina Shkirkova
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brandon Ge
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Shannon He
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesUniversity of Southern California, Keck School of MedicineLos AngelesCaliforniaUSA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - William J. Mack
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Aldekheel M, Farahani VJ, Tohidi R, Altuwayjiri A, Sioutas C. Development and performance evaluation of a two-stage cascade impactor equipped with gelatin filter substrates for the collection of multi-sized particulate matter. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 294:119493. [PMID: 36504702 PMCID: PMC9733700 DOI: 10.1016/j.atmosenv.2022.119493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study presents the development and evaluation of a high flow rate gelatin cascade impactor (GCI) to collect different PM particle sizes on water-soluble gelatin substrates. The GCI operates at a flow rate of 100 lpm, and consists of two impaction stages, followed by a filter holder to separate particles in the following diameter ranges: >2.5 μm, 0.2-2.5 μm, and <0.2 μm. Laboratory characterization of the GCI performance was conducted using monodisperse polystyrene latex (PSL) particles as well as polydisperse ammonium sulfate, sodium chloride, and ammonium nitrate aerosols to obtain the particle collection efficiency curves for both impaction stages. In addition to the laboratory characterization, we performed concurrent field experiments to collect PM2.5 employing both GCI equipped with gelatin filter and personal cascade impactor sampler (PCIS) equipped with PTFE filter for further toxicological analysis using macrophage-based reactive oxygen species (ROS) and dithiothreitol consumption (DTT) assays. Our results showed that the experimentally determined cut-point diameters for the first and second impaction stages were 2.4 μm and 0.21 μm, respectively, which agreed with the theoretical predictions. Although the GCI has been developed primarily to collect particles on gelatin filters, the use of a different type of substrate (i.e., quartz) led to similar particle separation characteristics. The findings of the field tests demonstrated the advantage of using the GCI in toxicological studies due to its ability to collect considerable PM-toxic constituents, as corroborated by the DTT and ROS values for the GCI-collected particles which were 26.44 nmoles/min/mg PM and 8813.2 μg Zymosan Units/mg PM, respectively. These redox activity values were more than twice those of particles collected concurrently on PTFE filter using the PCIS. This high-flow-rate impactor can collect considerable amounts of size-fractionated PM on water-soluble filters (i.e., gelatin), which can completely dissolve in water allowing for the extraction of soluble and insoluble PM species for further toxicological analysis.
Collapse
Affiliation(s)
- Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, AL-Majmaah 11952, Saudi Arabia
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
15
|
Shkirkova K, Lamorie-Foote K, Zhang N, Li A, Diaz A, Liu Q, Thorwald MA, Godoy-Lugo JA, Ge B, D'Agostino C, Zhang Z, Mack WJ, Sioutas C, Finch CE, Mack WJ, Zhang H. Neurotoxicity of Diesel Exhaust Particles. J Alzheimers Dis 2022; 89:1263-1278. [PMID: 36031897 DOI: 10.3233/jad-220493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Air pollution particulate matter (PM) is strongly associated with risks of accelerated cognitive decline, dementia and Alzheimer's disease. Ambient PM batches have variable neurotoxicity by collection site and season, which limits replicability of findings within and between research groups for analysis of mechanisms and interventions. Diesel exhaust particles (DEP) offer a replicable model that we define in further detail. OBJECTIVE Define dose- and time course neurotoxic responses of mice to DEP from the National Institute of Science and Technology (NIST) for neurotoxic responses shared by DEP and ambient PM. METHODS For dose-response, adult C57BL/6 male mice were exposed to 0, 25, 50, and 100μg/m3 of re-aerosolized DEP (NIST SRM 2975) for 5 h. Then, mice were exposed to 100μg/m3 DEP for 5, 100, and 200 h and assayed for amyloid-β peptides, inflammation, oxidative damage, and microglial activity and morphology. RESULTS DEP exposure at 100μg/m3 for 5 h, but not lower doses, caused oxidative damage, complement and microglia activation in cerebral cortex and corpus callosum. Longer DEP exposure for 8 weeks/200 h caused further oxidative damage, increased soluble Aβ, white matter injury, and microglial soma enlargement that differed by cortical layer. CONCLUSION Exposure to 100μg/m3 DEP NIST SRM 2975 caused robust neurotoxic responses that are shared with prior studies using DEP or ambient PM0.2. DEP provides a replicable model to study neurotoxic mechanisms of ambient PM and interventions relevant to cognitive decline and dementia.
Collapse
Affiliation(s)
- Kristina Shkirkova
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krista Lamorie-Foote
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nathan Zhang
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Andrew Li
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Arnold Diaz
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Qinghai Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jose A Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ge
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zijiao Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Dornsife College, University of Southern California, Los Angeles, CA, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Farahani VJ, Pirhadi M, Sioutas C. Are standardized diesel exhaust particles (DEP) representative of ambient particles in air pollution toxicological studies? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147854. [PMID: 34029805 PMCID: PMC8206007 DOI: 10.1016/j.scitotenv.2021.147854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/21/2023]
Abstract
In this study, we investigated the chemical characteristics of standardized diesel exhaust particles (DEP) and compared them to those of read-world particulate matter (PM) collected in different urban settings to evaluate the extent to which standardized DEPs can represent ambient particles for use in toxicological studies. Standard reference material SRM-2975 was obtained from the National Institute of Standards and Technology (NIST) and was chemically analyzed for the content of elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), inorganic ions, and several metals and trace elements. The analysis on the filter-collected DEP sample revealed very high levels of EC (i.e., ~397 ng/μg PM) which were comparable to the OC content (~405 ng/μg PM). This is in contrast with the carbonaceous content in the emitted particles from typical filter-equipped diesel-powered vehicles, in which low levels of EC emissions were observed. Furthermore, the EC mass fraction of the DEP sample did not match the observed levels in the ambient PM of multiple US urban areas, including Los Angeles (8%), Houston (~14%), Pittsburgh (~12%), and New York (~17%). Our results illustrated the lack of several high molecular weight carcinogenic PAHs in the DEP samples, unlike our measurements in major freeways of Los Angeles. Negligible levels of inorganic ions were observed in the sample and the DEP did not contain toxic secondary organic aerosols (SOAs) formed through synchronized reactions in the atmosphere. Lastly, the analysis of redox-active metals and trace elements demonstrated that the levels of many species including vehicle emission tracers (e.g., Ba, Ti, Mn, Fe) on Los Angeles roadways were almost 20 times greater than those in the DEP sample. Based on the abovementioned inconsistencies between the chemical composition of the DEP sample and those of real-world PM measured and recorded in different conditions, we conclude that the standardized DEPs are not suitable representatives of traffic emissions nor typical ambient PM to be used in toxicological studies.
Collapse
Affiliation(s)
- Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Liu Q, Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Babadjouni R, Huuskonen M, Montagne A, Baertsch H, Zhang H, Chen JC, Mack WJ, Walcott BP, Zlokovic BV, Sioutas C, Morgan TE, Finch CE, Mack WJ. Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87006. [PMID: 34424052 PMCID: PMC8382048 DOI: 10.1289/ehp8792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to ambient air pollution particulate matter (PM) is associated with increased risk of dementia and accelerated cognitive loss. Vascular contributions to cognitive impairment are well recognized. Chronic cerebral hypoperfusion (CCH) promotes neuroinflammation and blood-brain barrier weakening, which may augment neurotoxic effects of PM. OBJECTIVES This study examined interactions of nanoscale particulate matter (nPM; fine particulate matter with aerodynamic diameter ≤ 200 nm ) and CCH secondary to bilateral carotid artery stenosis (BCAS) in a murine model to produce white matter injury. Based on other air pollution interactions, we predicted synergies of nPM with BCAS. METHODS nPM was collected using a particle sampler near a Los Angeles, California, freeway. Mice were exposed to 10 wk of reaerosolized nPM or filtered air (FA) for 150 h. CCH was induced by BCAS surgery. Mice (C57BL/6J males) were randomized to four exposure paradigms: a) FA, b) nPM, c) FA + BCAS , and d) nPM + BCAS . Behavioral outcomes, white matter injury, glial cell activation, inflammation, and oxidative stress were assessed. RESULTS The joint nPM + BCAS group exhibited synergistic effects on white matter injury (2.3× the additive nPM and FA + BCAS scores) with greater loss of corpus callosum volume on T2 magnetic resonance imaging (MRI) (30% smaller than FA group). Histochemical analyses suggested potential microglial-specific inflammatory responses with synergistic effects on corpus callosum C5 immunofluorescent density and whole brain nitrate concentrations (2.1× and 3.9× the additive nPM and FA + BCAS effects, respectively) in the joint exposure group. Transcriptomic responses (RNA-Seq) showed greater impact of nPM + BCAS than individual additive effects, consistent with changes in proinflammatory pathways. Although nPM exposure alone did not alter working memory, the nPM + BCAS cohort demonstrated impaired working memory when compared to the FA + BCAS group. DISCUSSION Our data suggest that nPM and CCH contribute to white matter injury in a synergistic manner in a mouse model. Adverse neurological effects may be aggravated in a susceptible population exposed to air pollution. https://doi.org/10.1289/EHP8792.
Collapse
Affiliation(s)
- Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Kristina Shkirkova
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Michelle Connor
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arati Patel
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Robin Babadjouni
- Department of Neurological Surgery, Cedars-Sinai, Los Angeles, California, USA
| | - Mikko Huuskonen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Preventative Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Wendy J. Mack
- Department of Preventative Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Brian P. Walcott
- Department of Neurosurgery, Northshore Neurological Institute, Evanston, Illinois, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
18
|
An Embryonic Zebrafish Model to Screen Disruption of Gut-Vascular Barrier upon Exposure to Ambient Ultrafine Particles. TOXICS 2020; 8:toxics8040107. [PMID: 33228016 PMCID: PMC7711522 DOI: 10.3390/toxics8040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022]
Abstract
Epidemiological studies have linked exposure to ambient particulate matter (PM) with gastrointestinal (GI) diseases. Ambient ultrafine particles (UFP) are the redox-active sub-fraction of PM2.5, harboring elemental and polycyclic aromatic hydrocarbons from urban environmental sources including diesel and gasoline exhausts. The gut-vascular barrier (GVB) regulates paracellular trafficking and systemic dissemination of ingested microbes and toxins. Here, we posit that acute UFP ingestion disrupts the integrity of the intestinal barrier by modulating intestinal Notch activation. Using zebrafish embryos, we performed micro-gavage with the fluorescein isothiocynate (FITC)-conjugated dextran (FD10, 10 kDa) to assess the disruption of GVB integrity upon UFP exposure. Following micro-gavage, FD10 retained in the embryonic GI system, migrated through the cloaca. Conversely, co-gavaging UFP increased transmigration of FD10 across the intestinal barrier, and FD10 fluorescence occurred in the venous capillary plexus. Ingestion of UFP further impaired the mid-intestine morphology. We performed micro-angiogram of FD10 to corroborate acute UFP-mediated disruption of GVB. Transient genetic and pharmacologic manipulations of global Notch activity suggested Notch regulation of the GVB. Overall, our integration of a genetically tractable embryonic zebrafish and micro-gavage technique provided epigenetic insights underlying ambient UFP ingestion disrupts the GVB.
Collapse
|
19
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
20
|
Haghani A, Johnson R, Safi N, Zhang H, Thorwald M, Mousavi A, Woodward NC, Shirmohammadi F, Coussa V, Wise JP, Forman HJ, Sioutas C, Allayee H, Morgan TE, Finch CE. Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. ENVIRONMENT INTERNATIONAL 2020; 136:105510. [PMID: 32004873 PMCID: PMC7063839 DOI: 10.1016/j.envint.2020.105510] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 05/19/2023]
Abstract
Air pollution (AirP) is associated with many neurodevelopmental and neurological disorders in human populations. Rodent models show similar neurotoxic effects of AirP particulate matter (PM) collected by different methods or from various sources. However, controversies continue on the identity of the specific neurotoxic components and mechanisms of neurotoxicity. We collected urban PM by two modes at the same site and time: direct collection as an aqueous slurry (sPM) versus a nano-sized sub-fraction of PM0.2 that was eluted from filters (nPM). The nPM lacks water-insoluble PAHs (polycyclic aromatic hydrocarbons) and is depleted by >50% in bioactive metals (e.g., copper, iron, nickel), inorganic ions, black carbon, and other organic compounds. Three biological models were used: in vivo exposure of adult male mice to re-aerosolized nPM and sPM for 3 weeks, gestational exposure, and glial cell cultures. In contrast to larger inflammatory responses of sPM in vitro, cerebral cortex responses of mice to sPM and nPM largely overlapped for adult and gestational exposures. Adult brain responses included induction of IFNγ and NF-κB. Gestational exposure to nPM and sPM caused equivalent depressive behaviors. Responses to nPM and sPM diverged for cerebral cortex glutamate receptor mRNA, systemic fat gain and insulin resistance. The shared toxic responses of sPM with nPM may arise from shared transition metals and organics. In contrast, gestational exposure to sPM but not nPM, decreased glutamatergic mRNAs, which may be attributed to PAHs. We discuss potential mechanisms in the overlap between nPM and sPM despite major differences in bulk chemical composition.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Richard Johnson
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Nikoo Safi
- Center for Cancer Prevention and Translational Genomics at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Amirhosein Mousavi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Nicholas C Woodward
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Farimah Shirmohammadi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Valerio Coussa
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - John P Wise
- School of Medicine, University of Louisville, Louisville, KY, United States
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States; Dornsife College, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
21
|
Soleimanian E, Mousavi A, Taghvaee S, Shafer MM, Sioutas C. Impact of secondary and primary particulate matter (PM) sources on the enhanced light absorption by brown carbon (BrC) particles in central Los Angeles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135902. [PMID: 31837867 DOI: 10.1016/j.scitotenv.2019.135902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 05/23/2023]
Abstract
In this study, we investigated aerosol chemical composition, spectral properties of aerosol extracts, and source contributions to the aerosol light-absorbing brown carbon (BrC) in central Los Angeles from July 2018 to March 2019, during warm and cold seasons. Spectrophotometric measurements (water and methanol extracts; 200 < λ < 1100) and chemical analyses were performed on collected particulate matter (PM), and relationships of BrC light absorption (Abs365) to source tracer chemical species were evaluated. Mass absorption efficiency (MAE) of both water and methanol extracted solutions exhibited an increasing trend from warm period to cold season, with an annual average value of 0.61 ± 0.22 m2.g-1 and 1.38 ± 0.89 m2.g-1, respectively. Principal component analysis (PCA) were coupled with multiple linear regression (MLR) to identify and quantify sources of BrC light absorption in each of the seasons. Our finding documented fossil fuel combustion as the dominant source of BrC light absorption during warm season, with relative contribution of 38% to total BrC light absorption, followed by (secondary organic aerosol) SOA (30%) and biomass burning (12%). In contrast, biomass burning was the major source of BrC during the cold season (53%), while fossil fuel combustion and SOA contributed to 18% and 12% of BrC, respectively. Significantly higher contribution of biomass burning to BrC during the cold season suggested that residential heating activities (wood burning) play a major role in increased BrC concentrations. Previously collected Aethalometer model data documented fossil fuel combustion as the dominant contributing source to >90% of BC throughout the year. Finally, the solar radiation absorption ratio of BrC to elemental carbon (EC) in the ultraviolet range (300-400 nm) was maximum during the cold season with the annual corresponding values of 13-25% and 17-29% for water- and methanol-soluble BrC, respectively; which provides further evidence of the important effect of BrC light absorption on atmospheric radiative balance.
Collapse
Affiliation(s)
- Ehsan Soleimanian
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| | - Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| | - Martin M Shafer
- University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, Madison, WI, USA.
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Pirhadi M, Mousavi A, Taghvaee S, Shafer MM, Sioutas C. Semi-volatile components of PM 2.5 in an urban environment: volatility profiles and associated oxidative potential. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 223:117197. [PMID: 32577088 PMCID: PMC7311065 DOI: 10.1016/j.atmosenv.2019.117197] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The volatility profiles of PM2.5 semi-volatile compounds and relationships to the oxidative potential of urban airborne particles were investigated in central Los Angeles, CA. Ambient and thermodenuded fine (PM2.5) particles were collected during both warm and cold seasons by employing the Versatile Aerosol Concentration Enrichment System (VACES) combined with a thermodenuder. When operated at 50 °C and 100 °C, the VACES/thermodenuder system removed about 50% and 75% of the PM2.5 volume concentration, respectively. Most of the quantified PM2.5 semi-volatile species including organic carbon (OC), water soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), organic acids, n-alkanes, and levoglucosan, as well as inorganic ions (i.e., nitrate, sulfate, and ammonium) exhibited concentration losses in the ranges of 40-66% and 67-92%, respectively, as the thermodenuder temperature increased to 50 °C and 100 °C. Species in the PM2.5 such as elemental carbon (EC) and inorganic elements (including trace metals) were minimally impacted by the heating process - thus can be considered refractory. On average, nearly half of the PM2.5 oxidative potential (as measured by the dichlorodihydrofluorescein (DCFH) alveolar macrophage in vitro assay) was associated with the semi-volatile species removed by heating the aerosols to only 50 °C, highlighting the importance of this quite volatile compartment to the ambient PM2.5 toxicity. The fraction of PM2.5 oxidative potential lost upon heating the aerosols to 100 °C further increased to around 75-85%. Furthermore, we document statistically significant correlations between the PM2.5 oxidative potential and different semi-volatile organic compounds originating from primary and secondary sources, including OC (Rwarm, and Rcold) (0.86, and 0.74), WSOC (0.60, and 0.98), PAHs (0.88, and 0.76), organic acids (0.76, and 0.88), and n-alkanes (0.67, and 0.83) in warm and cold seasons, respectively, while a strong correlation between oxidative potential and levoglucosan, a tracer of biomass burning, was observed only during the cold season (Rcold=0.81).
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Martin M. Shafer
- University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| |
Collapse
|
23
|
Zhang H, Haghani A, Mousavi AH, Cacciottolo M, D'Agostino C, Safi N, Sowlat MH, Sioutas C, Morgan TE, Finch CE, Forman HJ. Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radic Biol Med 2019; 145:33-41. [PMID: 31542466 PMCID: PMC7207020 DOI: 10.1016/j.freeradbiomed.2019.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
Exposure to urban ambient particulate matter (PM) is associated with risk of Alzheimer's disease and accelerated cognitive decline in normal aging. Assessment of the neurotoxic effects caused by urban PM is complicated by variations of composition from source, location, and season. We compared several in vitro cell-based assays in relation to their in vivo neurotoxicity for NF-κB transcriptional activation, nitric oxide induction, and lipid peroxidation. These studies compared batches of nPM, a nanosized subfraction of PM2.5, extracted as an aqueous suspension, used in prior studies. In vitro activities were compared with in vivo responses of mice chronically exposed to the same batch of nPM. The potency of nPM varied widely between batches for NF-κB activation, analyzed with an NF-κB reporter in human monocytes. Three independently collected batches of nPM had corresponding differences to responses of mouse cerebral cortex to chronic nPM inhalation, for levels of induction of pro-inflammatory cytokines, microglial activation (Iba1), and soluble Aβ40 & -42 peptides. The in vitro responses of BV2 microglia for NO-production and lipid peroxidation also differed by nPM batch, but did not correlate with in vivo responses. These data confirm that batches of nPM can differ widely in toxicity. The in vitro NF-κB reporter assay offers a simple, high throughput screening method to predict the in vivo neurotoxic effects of nPM exposure.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Amirhosein H Mousavi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Nikoo Safi
- Center for Cancer Prevention and Translational Genomics at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohammad H Sowlat
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, USA; Dept. Neurobiology, Dornsife College, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, USA.
| |
Collapse
|